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DOMINATION NUMBER OF TOTAL GRAPH OF MODULE

ABBAS SHARIATINIA AND ABOLFAZL TEHRANIAN

Communicated by S. Alikhani

Abstract. Let R be a commutative ring and M be an R-module with T (M) as subset, the set

of torsion elements. The total graph of the module denoted by T (Γ(M)), is the (undirected)

graph with all elements of M as vertices, and for distinct elements n,m ∈ M , the vertices

n and m are adjacent if and only if n + m ∈ T (M). In this paper we study the domination

number of T (Γ(M)) and investigate the necessary conditions for being Zn as module over Zm
and we find the domination number of T (Γ(Zn)).

1. Introduction

The idea of associating a graph to a ring first appears in [4]. For the vertices of the graph,

Beck takes all elements of a commutative ring R. Two distinct vertices x, y ∈ R are adjacent if

xy = 0. This paper primarily deals with the questions of coloring and the computation of the

chromatic number for some rings. Other authors have been motivated by the results of this

article to research the interrelations between properties of graphs and rings, the question of the

connectivity of the graph, its diameter, radius and other interesting invariants of graphs. Their

interpretations in the theory of commutative rings, make Becks paper the founding paper of a

new and interesting field of algebra.
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Of course, there are many ways to associate a graph to a given ring R. The most well-known

is certainly the zero-divisor graph Γ(R) introduced in [3]. In this paper, the set of vertices

consists only of non-zero zero-divisors. The authors show that Γ(R) is always connected, of

diameter at most 3. Some other investigations into properties of this graph may be found in

[1, 4, 7− 10].

In [1], the notion of the total graph of a commutative ring T (Γ(R)) is introduced. The ver-

tices of this graph are all elements of the ring R. Two vertices are adjacent if their sum is a

zero-divisor. This graph, unlike the zero-divisor graph, need not be connected. Even in the

case when the total graph is connected, its diameter may have arbitrary valuen, for n ≥ 1.

The structure and the properties of the total graph are thoroughly examined in [1]. We define

the total graph of a module in an analogous way. Let R be a commutative ring with identity,

R∗ = R − {0}, Z(R) the set of its zero-divisors, and Z(R)∗ = Z(R) − {0}. Let M be an

R-module, M∗ = M \ {0}, and T (M) = {m ∈ M : rm = 0 for some r ∈ R∗} the set of its

torsion elements. We will use Tof(M) = M − T (M) to denote the set of non-torsion elements

of M . We define the total graph of a module T (Γ(M) as follows:

V (T (Γ(M))) = M ;E(T (Γ(M))) = {(m1,m2) : m1 +m2 ∈ T (M)}
Let Tof(Γ(M)) be the (induced) subgraph of T (Γ(M)) with vertices Tof(M), and let

Tor(Γ(M)) be the (induced) subgraph of T (Γ(M)) with vertices T (M).

2. definitions and preliminaries

For a graph G, let V(G) denote the set of vertices, and let E(G) denote the set of edges. For

a graph G and vertex x ∈ V(G), the degree of x, denoted by deg(x), is the number of edges of

G incident with x. A complete graph is a graph in which each pair of distinct vertices is joined

by an edge. We denote the complete graph with n vertices by Kn. For a nonnegative integer

r, an r-partite graph is one whose vertex-set is partitioned into r disjoint parts in such a way

that the two end vertices for each edge lie in distinct partitions. A complete r-partite graph is

one in which each vertex is joined to every vertex that is not in the same partition. A complete

2-partite graph (also called the complete bipartite graph) with exactly two partitions of size

m and n, is denoted by Km,n. A clique of a graph G is a complete subgraph of G. A co-clique

in a graph G is a set of pairwise nonadjacent vertices. A subgraph H of a graph G is called

a spanning subgraph if V(H) = V(G). For every nonnegative integer r, a graph G is called

r-regular if the degree of each vertex of G is equal to r. A 1-regular spanning subgraph H of G

is called a perfect matching of G. Recall that the complement graph of a graph G is denoted

by Ḡ with vertices V(G), and for distinct x, y ∈ V(Ḡ), the vertices x and y are adjacent if and

only if xy /∈ E(G).

For a graph G = (V,E), a set S is a dominating set if every vertex in V \ S is adjacent to a
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vertex in S. Also, S is called a total dominating set if every vertex in V is adjacent to a vertex

in S. The domination number γ(G) is the minimum cardinality of a dominating set of G. We

call a dominating set of cardinality γ(G) a γ(G)-set. Also, the minimum cardinality among the

total dominating sets of G is denoted by γt(G). The study of the domination number has long

been a topic of interest both in graph theory and complexity theory. It was first considered

by Ore who introduced the concept of minimum dominating sets of vertices in a graph. The

dominating set problem concerns testing whether γ(G) ≤ k for a given graph G and integer k.

The problem is a classical NP-complete decision problem in computational complexity theory

(see, for example, [7]). Therefore, it is believed that there is no efficient algorithm that finds a

smallest dominating set of a given graph. The first volume of the two-volume book by Haynes,

Hedetniemi and Slater [8, 9] provides a comprehensive introduction to domination in graphs.

3. domination number of the total graph of module

Theorem 3.1. [6] Let M be a module over a commutative ring R such that T (M) is the

submodule of M .Then the following hold:

(1) Tor(Γ(M)) is a complete (induced) subgraph of T (Γ(M)) and Tor(Γ(M))is disjoint

from Tof(Γ(M)).

(2) If(0 :R) 6= 0,then T (Γ(M)) is a complete graph.

The next theorem gives a complete description of T (Γ(M)) .We allow α, β to be infinite,

then of course β − 1 = (β − 1)/2 = β.

Theorem 3.2. [6] Let M be a module over a commutative ring R such that T (M) is the

submodule of M and |T (M)| = α and | M
T (M) | = β.

(1) If 2 = 1R + 1R ∈ Z(R), then Tof(Γ(M)) is the union of β − 1 disjoint Kα
,s.

(2) If 2 = 1R + 1R /∈ Z(R), then Tof(Γ(M)) is the union of (β − 1)/2 disjoint Kα,α
,s

Corollary 3.3. Let M be a module over a commutative ring R such that T (M) is the submodule

of M , then γ(Tor(Γ(M))) = 1.

Proof. This following directly from theorem 3.1. �

Theorem 3.4. Let M be a module over a commutative ring R such that T (M) = M , then

γ(T (Γ(M))) = 1.

Proof. This is obvious. �

Theorem 3.5. Let M be a module over a commutative ring R such that T (M) is the submodule

and |T (M)| = α 6= 0 and | M
T (M) | = β, then γ(T (Γ(M))) = β.

Proof. We consider two cases for Z(R).
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case1: Suppose that 2 = 1R + 1R ∈ Z(R). Hence we use from theorem 3.2 ,the graph

Tof(Γ(M)) is the union of β − 1 disjoint K ,
αs and we know that γ(Kα) = 1. Thus

γ(Tof(Γ(M))) = β − 1 and γ(Tor(Γ(M))) = 1, consequently

γ(T (Γ(M))) = γ(Tor(Γ(M))
⋃
Tof(Γ(M))) = γ(Tor(Γ(M))) + γ(Tof(Γ(M)))

= 1 + β − 1 = β

case2: In the second case we suppose that 2 = 1R+ 1R /∈ Z(R), then again we have from

theorem 3.2, the graph Tof(Γ(M)) is the union of β−1
2 disjoint Kα,α

,s and we know

that γ(Kα,α) = 2. So

γ(T (Γ(M))) = γ(Tor(Γ(M))) + γ(Tof(Γ(M))) = β−1
2 × 2 + 1 = β − 1 + 1 = β.

�

Theorem 3.6. Let M be a nonzero module over commutative ring R such that T (M) = 0,

then γ(T (Γ(M))) = β+1
2 .

Proof. According hypothesis T (M) = 0, so | M
T (M) | = |M | = β. Now we show that Z(R) = 0.

Let 0 6= x ∈ Z(R), then there exist 0 6= y ∈ R such that xy = 0. Now we consider a element

0 6= m ∈M , and we have (xy)m = 0 and x(ym) = 0, then ym = 0, since T (M) = 0, but from

ym = 0 we have y = 0 or m = 0, that is contradiction. Therefore Z(R) = 0. So 2 /∈ Z(R) and

the graph Tof(Γ(M))is the union of β−1
2 disjoint K1,1

,s. Therefoe we will have

γ(T (Γ(M))) = γ(Tof(Γ(M))) + γ(Tor(Γ(M))) = β−1
2 × 1 + 1 = β+1

2

�

Theorem 3.7. Let M be a nonzero module over commutative ring R such that T (M) = M ,

then γ(T (Γ(M))) = 1.

Proof. This following directly from definition. �

4. Domination number of total graph of

module Zn over ring Zm

In this section we investigate the domination number of total graph of module Zn over ring

Zm. But generally for all n,m ∈ N,Zn is not module over Zm. We find the necessary conditio

for being module Zn.

Lemma 4.1. Let f : R → S be a ring homomorphism and A be a S-module, then A is a

R-module such that for all a ∈ A and r ∈ R we define r ∗ a = f(r)a.

Proof. We investigate the property of multiplication. For all r.s ∈ R and a.b ∈ A,

(1) (r + s) ∗ a = f(r + s)a = (f(r) + f(s))a = f(r)a+ f(s)a = r ∗ a+ s ∗ a
(2) r ∗ (a+ b) = f(r)(a+ b) = f(r)a+ f(r)b = r ∗ a+ r ∗ b
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(3) (rs) ∗ a = f(rs)a = f(r)f(s)a = f(r)(f(s)a) = f(r)(s ∗ a) = r ∗ (s ∗ a)

(4) 1R ∗ a = f(1R)a = 1Sa = a

�

Lemma 4.2. Let m,n ∈ N with gcd(m,n) = d and n/d = n1. Then there exists a non-zero

ring homomprphism f : Zm → Zn if and only if d | k(kn1 − 1) for some 1 ≤ k ≤ d− 1.

Proof. Let m/d = m1. (=⇒) Let f(1Zm) = a ∈ Zn, where 0 ≤ a ≤ n − 1. Since

1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
m items

= 0, we have 0 = f(1 + 1 + · · ·+ 1︸ ︷︷ ︸
m items

) = f(1) + f(1) + · · ·+ f(1)︸ ︷︷ ︸
m items

= ma.

Hence n | ma, and so dn1 | dm1a, which implies that n1 | m1a, and since gcd(n1,m1) = 1,

we have n1 | a. Thus a = n1k for some k ∈ z. As 0 6= f, we have 0 6= a, and so

1 ≤ a = n1k < n = n1d. Consequently 1 ≤ k ≤ d− 1.

a = f(1) = f(1.1) = f(1).f(1) = a2, that is n | a2 − a = a(a− 1). Hence

dn1 | kn1(kn1 − 1). Therefore d | k(kn1 − 1), where 1 ≤ k ≤ d− 1.

(⇐=) Consider a = kn1. As 1 ≤ k ≤ d − 1, we have 1 ≤ a < n. Define f : Zm → Zn, with

f(s) = sa, for each 0 ≤ s ≤ m− 1. Let s1, s2 ∈ Zm, where 0 ≤ s1, s2 ≤ m− 1.

If s1 = s2, where s1 ≤ s2, then m | s1 − s2. Suppose that mt = s1 − s2, where t ∈ N.
Then s1a − s2a = (s1 − s2)a = tma = tm1dn1k = tm1nk, that is n | (s1a − s2a), and so

f(s1) = s1a = s2a = f(s2). This shows that f is well defined.

Evidently f(s1 + s2) = f(s1 + s2) = (s1 + s2)a = s1a+ s2a = f(s1) + f(s2).

Note that d | k(kn1 − 1), and so n = dn1 | kn1(kn1 − 1) = a(a− 1) = a2 − a. Thus a = a2,

in Zn.
Hence:

f(s1s2) = f(s1s2) = s1s2a = s1s2a2 = s1a.s2a = f(s1)f(s2). Therefore f is a non-zero ring

homomorphism. �

Corollary 4.3. Let m,n ∈ N with gcd(m,n) = 1. Then there does not exist any non-zero ring

homomprphism f : Zm → Zn.

Proof. Since d = 1, there does not exist any integer 1 ≤ k ≤ d− 1, so the proof is obvious by

4.2. �

Theorem 4.4. Let m,n ∈ N. If n = pα1
1 pα2

2 · · · p
α`
` is the prime factorization of n, then there

exists a non-zero ring homomorphism f : Zm → Zn if and only if pαii |m for some 1 ≤ i ≤ `.

Proof. Let gcd(m,n) = d and n/d = n1.

(=⇒) By 4.2, d | k(kn1 − 1) for some 1 ≤ k ≤ d − 1. This shows that d > 1, so we can

suppose that d = pr11 p
r2
2 · · · prss is the prime factorization of d, for some 1 ≤ s ≤ `.



6 Alg. Struc. Appl. Vol. 2 No. 1 (2015) 1-9.

If pi | n1 for all 1 ≤ i ≤ s, then gcd(kn1 − 1, d) = 1, and from d | k(kn1 − 1) we get d | k,
and so d ≤ k ≤ d − 1, which is a contradiction. Therefore pi 6 |n1, for some 1 ≤ i ≤ s. This

shows that pαii |d, which implies that pαii |m.
(⇐=) By our assumption pαii |m for some 1 ≤ i ≤ `, so pαii |d, that is d > 1. Let d =

pr11 p
r2
2 · · · prss be the prime factorization of d, for some 1 ≤ s ≤ `.

We consider the following two cases.

Case 1. gcd(d, n1) = 1.

Since gcd(d, n1) = 1, the Diophantine equation n1x+ dy = 1 has integer solutions. Suppose

(x0, y0) is a solution of this equation. By the division algorithm x0 = qd+k, for some integers q

and k with 0 ≤ k ≤ d−1. If k = 0, then d | x0, and so d | (n1x0 +dy0) = 1, that is d = 1, which

is a contradiction, hence 1 ≤ k ≤ d − 1. We have k ≡ x0(mod d) and so kn1 ≡ n1x0(mod d)

and evidently 0 ≡ dy0(mod d); therefore kn1 ≡ (n1x0 + dy0)(mod d), that is kn1 ≡ 1(mod d)

and so d | k(kn1 − 1), where 1 ≤ k ≤ d− 1. Therefore the proof is given by 4.2.

Case 2. gcd(d, n1) > 1. By our assumption pαii |m for some 1 ≤ i ≤ s. Without loss of

generality we can assume that pα1
1 |m. This shows that r1 = α1.

Now set n′ = pr11 and gcd(m,n′) = d′ and n′/d′ = n′1. Then d′ = pr11 and n′1 = 1 and evidently

gcd(d′, n′1) = 1, thus by Case 1, there exists a non-zero ring homomorphism g : Zm → Zn′ . Note

that n = n′pα2
2 pα3

3 · · · p
α`
` , thus we have the ring isomorphism Zn ∼= Zn′⊕Zpα22

⊕Zpα33
⊕· · ·Zpα`` .

Consequently there exists a natural ring monomorphism ` : Zn′ → Zn, which implies the

non-zero ring homomorphism f = ` ◦ g : Zm → Zn. �

Let G be an abelian group and R be a ring. Then evidently G is an R-module, by the

multiplication rx = 0, ∀r ∈ R,∀x ∈ G. In this case, we say G is an R-module by the trivial

multiplication.

Lemma 4.5. Let m,n ∈ N with m < n and gcd(m,n) = d and n/d = n1. Then Zn is a non

trivial Zm-module if and only if d | k(kn1 − 1) for some 1 ≤ k ≤ d− 1.

Proof. (=⇒) Consider 1Zm ∈ Zm and 1Zn ∈ Zn. Since 1Zn + 1Zn + 1Zn + · · · 1Zn︸ ︷︷ ︸
m items

= 0, we

have 0 = (1Zn + 1Zn + 1Zn + · · · 1Zn︸ ︷︷ ︸
m items

).1Zn = 1Zm .1Zn + 1Zm .1Zn + · · ·+ 1Zm .1Zn︸ ︷︷ ︸
m items

= m(1Zm .1Zn).

Thus in the group Zn, we have o(1Zm .1Zn)|m. Also as 1Zm .1Zn ∈ Zn, obviously o(1Zm .1Zn)|n,
therefore o(1Zm .1Zn)|gcd(m,n) = d.

Let 1Zm .1Zn = t, where 0 ≤ t ≤ n − 1. Then we know that o(1Zm .1Zn) = n/gcd(n, t) | d.
Thus n1d = n | d× gcd(n, t), and so n1 | gcd(n, t) | t, that is t = n1.k, for some 0 ≤ k ≤ d− 1.

Hence

1Zm .1Zn = n1k, for some 0 ≤ k ≤ d− 1.
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For every r ∈ Zm, we have r.1Zn = (1Zm + 1Zm + · · ·+ 1Zm︸ ︷︷ ︸
r items

).1Zn = 1Zm .1Zn +1Zm .1Zn + · · ·+

1Zm .1Zn = r(1Zm .1Zn) = rn1k.Also for every s ∈ Zn, we have r.s = r.(1Zn + 1Zn + · · ·+ 1Zn︸ ︷︷ ︸
s items

) =

r.1Zn + r.1Zn + · · ·+ r.1Zn = s(r.1Zn) = s(rn1k) = rsn1k. This shows that this multiplication

of the module is defined by

r.s = rsn1k ∀r ∈ Zm ∈ ∀s ∈ Zn (∗)

Now if k = 0, then by (∗) the multiplication is the trivial zero multiplication, thus 1 ≤ k ≤
d− 1. Consequently 1Zm .1Zn = n1k, for some 1 ≤ k ≤ d− 1.

Evidently (1Zm1Zm).1Zn = 1Zm .1Zn = n1k. Also by (∗),
1Zm .(1Zm .1Zn) = 1Zm .(n1k) = 1.n1kn1k = n21k

2. Hence n1k = n21k
2, which implies that n1d =

n | n21k2 − n1k = n1k(kn1 − 1), that is d | k(kn1 − 1).

(⇐=) For each r ∈ Zm and for each s ∈ Zn, define:

r.s = rsn1k (∗∗)

First let r1 = r2 ∈ Zm, and s1 = s2 ∈ Zn. Then d | m | r1 − r2 and n | s1 − s2. Let

dr∗ = r1 − r2 and ns∗ = s1 − s2.
Then in Zn we have

r1s1n1k − r2s2n1k = (r1 − r2)s1n1k + r2(s1 − s2)n1k = r∗dn1s1k − ns∗r2n1k = r∗ns1k −
ns∗r2n1k = n(r∗s1k + s∗r2n1k), thus r1s1n1k = r2s2n1k in Zn, that is the multiplication is

well defined.

Also 1Zm .1Zn = 1.1.n1k = n1k, which is not zero because 1 ≤ k ≤ d− 1. So it is not a trivial

zero multiplication.

One can easily check that Zn is a Zm-module by the multiplication defined in (∗∗).

Corollary 4.6. Let m,n ∈ N with m < n and gcd(m,n) = 1. Then Zn is an Zm-module only

by the trivial zero multiplication.

Proof. Since d = 1, there does not exist any integer 1 ≤ k ≤ d − 1, so the proof is obvious

by 4.5.

Theorem 4.7. Let m,n ∈ N with gcd(m,n) = 1, then γ(T (Γ(Zn))) = 1.

Proof. Since gcd(m,n) = 1 thus Zn is an Zm-module only by the trivial zero multiplication

4.6, so T (Zn) = Zn. Therefore according to 3.7 we have γ(T (Γ(Zn))) = 1. �

Theorem 4.8. Let m,n ∈ N with gcd(m,n) = d > 1 and n/d = n1. If the prime factorization

of d is d = pr11 p
r2
2 · · · prss , then Zn is an Zm-module if and only if pi 6 |n1 for some 1 ≤ i ≤ s.
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Proof. (=⇒) By 4.6, d | k(kn1 − 1) for some 1 ≤ k ≤ d− 1. If pi | n1 for all 1 ≤ i ≤ s, then

gcd(kn1 − 1, d) = 1, and from d | k(kn1 − 1) we get d | k, and so d ≤ k ≤ d − 1, which is a

contradiction.

(⇐=) By 4.6, there is a non-zero ring homomorphism f : Zm → Zn. For each r ∈ Zm and

each x ∈ Zn, define r.x = f(r)x. One can easily see that Zn is a non trivial Zm-module by this

multiplication.

Proposition 4.9. Let n ∈ N and G be an abelian group with nG = 0. Then G is an Zn-module

by the natural definition k.x = kx, for each k ∈ Zn and every x ∈ G. Particularly if G is a

finite group of order n, then G is an Zn-module.

Proof. Note that if M is an R-module and I is an ideal of R with I ⊆ AnnR M, then M is

an R/I-module. Now as G is an Z-module, and nZ ⊆ AnnZG, obviously G is an Z/nZ-module,

and since Z/nZ ∼= Zn, the abelian group G is an Zn-module.

For the particular case, note that nG = 0.

Corollary 4.10. Let n < m and n | m, then Zn is a module over Zm and γ(T (Γ(Zn))) = 1.

Proof. Since n | m so mZn = 0 and according to 4.9 Zn is a module over ring Zm by the

way since n < m so n̄ in not zero in Zm thus T (Zn) = Zn and according to 3.7 we have

γ(T (Γ(Zn))) = 1. �

Example 4.11. Find the domination number of total graph of module Z6 over ring Z3.

Solution : We apply 4.2 and we define ring homomorphism f : Z3 → Z6 with f(t̄) = 4t. Now

Z6 is an Z3-module and for all x̄ ∈ Z3 and for all ā ∈ Z6 we have x̄ ∗ ā = 4xa. With this

multiplication we obtain T (Z6) = {0̄, 3̄} thus | T (Z6) |= 2 and | Z6
T (Z6)

|= 3 and from 3.5 we

conclude that γ(T (Γ(Z6))) = 3
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