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Abstract 
A new ensemble dimension reduction regression technique, called Correlated Component 
Regression (CCR), is proposed that predicts the dependent variable based on K correlated 
components. For K = 1, CCR is equivalent to the corresponding Naïve Bayes solution, 
and for K = P, CCR is equivalent to traditional regression with P predictors. An optional 
step-down variable selection procedure provides a sparse solution, with each component 
defined as a linear combination of only P* < P predictors. For high-dimensional data, 
simulation results suggest that good prediction is generally attainable for K = 3 or 4 
regardless of the number of predictors, and estimation is fast. 
 
When predictors include one or more suppressor variables, common with gene expression 
data, simulations based on linear regression, logistic regression and discriminant analysis 
suggest that CCR predicts outside the sample better than comparable approaches based 
on stepwise regression, penalized regression and/or PLS regression. A major reason for 
the improvement is that the CCR/step-down algorithm is much better than other sparse 
techniques in capturing important suppressor variables among the final predictors.  
 

Keywords: High dimensional data; variable reduction; correlated component 
regression; naïve Bayes; suppressor variable; penalized regression 
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1. Background and Introduction 
When the number of predictor variables P approaches or exceeds the sample size N (high 
dimensional data), coefficients estimated using traditional regression techniques become 
unstable or cannot be uniquely estimated due to multicolinearity (singularity of the 
covariance matrix), and logistic regression has an additional problem, providing complete 
or quasi-complete separation in the analysis sample. However, seemingly good 
performance in the analysis sample is often due to overfitting, and does not generalize as 
well as certain kinds of restricted models to new cases outside the sample.  
 
Approaches for developing restricted models that yield regularized solutions include a) 
penalized regression methods such as Lasso and Elastic Net, which impose explicit 
penalties referred to as L1 or an average of L1 and L2 regularization respectively, and b) 
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dimension reduction approaches such as Principle Component Regression (PCR) and 
PLS Regression, which reduce the dimension of the problem to K < min (P, N-1), and 
Naïve Bayes which reduces the dimension to 1. Generally speaking, with high 
dimensional data, a substantial amount of regularization may be needed, via small values 
for K, to obtain reliable results. In this paper, we describe an alternative dimension 
reduction approach called Correlated Component Regression (CCR) and an associated 
step-down algorithm for reducing the number of predictors in the model to P* < P.  
 
Similar to traditional regression, CCR has different variants depending upon the scale 
type of the dependent variable.  Regardless of the scale type, the saturated CCR model, 
which occurs when K  Ksat = min (P, N-1)1, is equivalent to the corresponding 
traditional regression model (e.g., linear regression, logistic regression, linear 
discriminant analysis). As explained in section 3.1, use of Ksat components does not 
involve any reduction in dimensionality, and hence produces predictions equivalent to 
traditional regression.  
 
When the outcome is categorical, the 1-component CCR model is equivalent to Naïve 
Bayes classification. More generally, for any scale type, the 1-component CCR model 
may be viewed as a natural generalization of Naïve Bayes, the key being to represent the 
Naïve Bayes conditional independence assumption in a discriminative as opposed to 
generative form. For the distinction between these different model forms, see Ng and 
Jordan (2002) and Mitchell, 2005. We further suggest that for K > 1, CCR represents a 
natural extension of Naïve Bayes to multiple dimensions. 
 
A hybrid version of CCR is also proposed that involves mixed predictor scale types.  For 
example, in the case of a dichotomous dependent variable, when both continuous and 
categorical predictors are present, the coefficients for the continuous predictors can be 
estimated according to variant CCR-LDA (if the normality assumptions in linear 
discriminant analysis are appropriate), while those for the categorical predictors are 
estimated according to CCR-Logistic, which imposes no distributional assumptions on 
the predictors. 
 
Results from simulations and applications with real high dimensional data suggest that 
CCR models rarely require more than 10 components regardless of the number of 
predictors, and usually perform well with 3 or 4 components. With such a small number 
of components estimation is fast, which allows employment of M-fold cross-validation to 
determine the optimal values for the tuning parameters K and P.  
 
This paper is organized as follows: 
 
Section 2 illustrates the general high dimensional data problem with the application of a 
stepwise logistic regression analysis to a small sample of cases from real data where P > 
N. Section 3 discusses some sparse and non-sparse regression approaches that have been 
proposed for use with high dimensional data. Section 4 introduces the general CCR 
approach and section 5 summarizes some simulation results. Section 6 compares results 
of more detailed analyses of the data described in Section 2. 

                                                
1 Saturation may also occur prior to min(P, N-1) components. 
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2. Logistic Regression with More Features than Cases: P > N 
The logistic regression model for dichotomous dependent variable Z and P predictors is: 
 
 
 

•  As P approaches the sample size N, overfitting tends to dominate and estimates 
for  the regression coefficients become unstable 

•  Complete separation between the groups Z=1 and Z=0 is always attainable for P 
= N - 1  

•  Traditional algorithms do not yield unique coefficient estimates when P ≥ N as 
coefficients are not identifiable 

 
Table 1 and Figure 1 present results of applying the forward stepwise logistic regression 
option in the SPSS logistic regression procedure to a dataset with a dichotomous 
dependent variable, N = 40 cases and P = 85 dichotomous predictors. The p-value to 
enter the model was set to .999. An additional N=360 cases are retained for model 
validation. More specifics of the data and design are given in section 6.  
 
Table 1 shows that beginning in step 5 when perfect separation is achieved with 5 
predictors (AUC = 1 in the training data plot shown in Figure 1), the coefficients and 
standard errors become extremely large in magnitude and the associated coefficients no 
longer are statistically significant. This is indicative of the effects of multicolinearity. 
Despite the fact that these coefficient estimates are not (uniquely) identifiable, they can 
still be used to score the training and validation data. The plot of the validation results in 
Figure 1 show that a decline from AUC=.8 also begins to occur in this 5th step. This result 
is consistent with the hypothesis that prediction deteriorates due to overfitting when more 
than 4 predictors are included in the model. 
 
 
 
Table 1: Results from Stepwise Logistic Regression Estimated on Training Data 
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Variables in the Equation
  Coef. std. err. p-value
Step 1(a) item31e -2.8 0.8 0.00058

Constant 4.3 1.4 0.0019
Step 2(b) item31e -3.5 1.1 0.0024

item55e -2.6 1.1 0.022
Constant 9.0 3.1 0.0037

Step 3(c) item31e -3.9 1.3 0.0023
item55e -3.3 1.3 0.012
item20j 2.6 1.1 0.021
Constant 7.0 3.2 0.028

Step 4(d) item13e 3.4 1.6 0.038
item31e -4.3 1.6 0.007
item55e -4.3 1.7 0.014
item20j 3.3 1.4 0.018
Constant 3.8 3.8 0.31

Step 5(e) item13e 66.5 6919.5 0.99
item31e -99.8 9559.0 0.99
item55e -115.6 11089.9 0.99
item1j 82.0 7970.4 0.99
item20j 66.5 6898.5 0.99
Constant 17.2 7017.9 1.00

Step 6(f) item13e 69.5 9523.3 0.99
item26e -37.8 11949.3 1.00
item31e -68.0 8272.2 0.99
item55e -101.9 11276.6 0.99
item1j 67.3 8183.0 0.99
item20j 33.7 5459.6 1.00
Constant 54.9 16806.2 1.00  
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Figure 1: Results from Stepwise Logistic Regression Estimated on Training 
Sample 
 

3. Some Sparse and Non-sparse Approaches to Logistic Regression 
Since perfect discrimination is achieved with only 5 predictors in our example above, this 
raises the possibility that to achieve the best predictions no more than 4 or 5 predictors 
should be included in the model. The 5-predictor solution is said to be sparse because the 
coefficients for each of the remaining 80 predictors are set to 0.  

Stepwise regression is the most widely used technique to obtain a sparse regression 
solution. Alternative approaches include sparse component approaches and sparse 
penalized regression methods. In addition, non-sparse regression approaches such as 
ridge regression are also available to control how large the coefficients and standard 
errors can become as P increases and to achieve reliable prediction with P>N in the case 
of high dimensional data. Below we summarize the major (sparse and non-sparse) 
component approaches and provide references to some sparse penalized regression 
approaches that have been proposed.  

 
3.1 Component approaches 
a) Principal Component Regression (PCR) – PCR transform the predictors X1, X2, …, 

XP to principal components, S1, S2, …, SP, each component defined as a weighted 
sum of all the predictors. Then, the first K < P components (those explaining the most 
predictor variance) are used as predictors in the model. Advantages over stepwise 
regression are: 
1) PCR takes into account information on more predictors. While there are only K < 

P predictors in model, each component incorporates information on all the X 
variables, thus possibly providing better prediction of Z. 
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2) Since components are orthogonal (uncorrelated), problems due to 
multicolinearity go away. 
 

Disadvantages of PCR are: 
1) To apply the model, one needs measurements of all P of the X variables. 
2) One or more of the components might not be predictive of the dependent variable 

Z, and the resulting model might not predict better than that obtained by 
stepwise regression. 

3)  The components are not as interpretable.  
 
Regarding interpretability (disadvantage #3), since each component is a weighted sum of 
the Xs, substituting for the components, one gets coefficients for the Xs. For example, for 
K = 2 components, we have: 

 
 

  
 
which yields: 
 
 
 

From this latter equation we see that the effect for each predictor can be decomposed into 
separate effects (loadings) associated with each component. Thus, if the components 
were more meaningful, the coefficients of the Xs will also be more meaningful. In 
particular, we will see that the CCR components are more meaningful – the loadings on 
component 1 correspond to direct effects and the loadings on component 2, which 
frequently has a moderate to high correlation with component 1, capture indirect effects. 
In particular, pure suppressor variables have zero loadings on component 1 but highly 
significant loadings on CCR component #2. Magidson and Wassmann (2010) argue that 
suppressor variables are often among the most important predictors in a model. 

 
b) Supervised PCR (SPCR). Regarding predictability (PCR disadvantage #2), a modified 

version of PCR called Supervised PCR (SPCR: Bair, et. al., 2006) has been proposed. 
Rather than using the first K components as the predictors in the model, SPCR selects 
only the K components that are significant predictors of Z. The obvious advantage of 
SPCR over PCR is that each component is assured to be predictive (individually) of Z. 
An important disadvantage however is that it tends to exclude components that act as 
suppressor variables. As such, when one or more suppressor variables are included 
among the P predictors, SPCR may provide poorer prediction than PCR. 
 

c) PLS regression. PLS regression differs from PCR and SPCR in that the dependent 
variable is utilized in addition to the predictors in forming the K components. As a result, 
it will generally contain fewer components and be more predictive than PCR and SPCR. 
However, similar to PCR and SPCR, the components are orthogonal, which means that 
they are not as interpretable as those obtained in CCR and when one or more suppressor 
variable exists among the P predictors, more components are required to capture the 
suppressor variable effects than CCR. An additional disadvantage of each of these 
approaches is that they are non-sparse. That is, to apply the model to new data, one needs 
measurements on all P of the X variables. 
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d) Sparse PLS regression. SPLS (Chun and Keles, 2009) is a modified version of PLS 

regression that also includes variable reduction. A disadvantage is that when one or more 
suppressor variables is included among the P predictors, our simulation results (section 5) 
suggest SPLS does not predict as well as CCR, and is less likely to capture the suppressor 
variable(s) than if the CCR step/down algorithm is used for variable reduction.  

e) Naïve Bayes 
Consider first the situation with a dichotomous dependent variable, Z = 1 or 0. In this 
case the conditional probability of being in group 1 given the predictors X, denoted 
P(Z=1|X), may be predicted using the traditional logistic regression model, and if X 
follows the multivariate normal distribution with different group means but common 
variances and covariances within each group, efficient estimates for the coefficients can 
be obtained from LDA (Efron, 1975).  
 
Since Naïve Bayes (NB) is justified under the assumption that the predictors are 
conditionally independent given each outcome category, when the data follows the LDA 
assumptions, NB is equivalent to LDA performed with a diagonal variance covariance 
matrix (Ng, A. and M. Jordan, 2002). The coefficient estimate for a given predictor in the 
discriminative form of NB is thus equivalent to the usual estimate for the population log-
odds ratio, which takes the form 2

1 0( ) /   . This quantity is obtained by LDA with a 
single predictor, and thus is equivalent to the 1-component CCR-LDA model.  Similarly, 
if we maintain the assumption of conditional independence but relax the LDA 
assumptions, the NB-type coefficients can be obtained from corresponding 1-predictor 
logistic regressions (see e.g., Mitchell, 2005), which is equivalent to the 1-component 
CCR-Logistic model. 
 
 

3.2 Sparse Penalty Regression Approaches 
Unlike ridge regression which makes use of L2 regularization, use of L1- regularization 
results in sparse solutions; i.e., solutions where some of the regression coefficients equal 
0. In this way, dimensionality is reduced. Since L1- regularization involves a convex loss 
function, its implementation is computationally efficient (Friedman, et. al, 2010). 
Recently, algorithms involving non-convex loss functions such as SCAD, and MCP have 
been proposed (see e.g., NCVREG R package). 
  
While both the (non-sparse) component methods and sparse penalized approaches both 
reduce the dimensionality to include only K < P predictors, they do so in very different 
ways. The component methods replace the predictors by fewer components, while the 
sparse penalty methods eliminate certain predictors by setting their coefficients to 0.  

The 3 sparse penalty approaches that are included in our simulation study are:  
a) LARS/Lasso (L1- regularization): GLMNET (R package) 
b) Elastic Net (Average of L1 and L2 regularization): Zou and Hastie (2005) GLMNET 

(R package) 
c) Non-convex penalty: e.g., TLP (Shen, et. al, 2010) 
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4. Correlated Component Regression 
 
4.1 CCR General Description 
Correlated Component Regression (CCR) is a general approach for the development of a 
sequential K-component predictive model, each component estimated by application of 
the naïve Bayes rule to deal with the effects of multi-colinearity. In particular, with high 
dimensional data it has been shown that use of the Naïve Bayes Rule: 
 
 “greatly outperforms the Fisher linear discriminant rule (LDA) under   
 broad conditions when the number of variables grows faster than the   
 number of observations”,         Bickel and Levina (2004)  
 
even when the true model is that of LDA!  
 
In practice, Dudoit et al. (2002) found that naïve Bayes outperformed LDA in classifying 
tumors based on gene expression data. 
 
Results from simulated data (section 5) suggest that CCR outperforms other sparse 
regression methods, with generally good outside-the-sample prediction attainable with 
K=2, 3, or 4. In addition, several applications with gene expression data suggest that 
CCR may be quite useful in practice Magidson (2010). Magidson and Wassmann (2010) 
provide an application in the early detection of prostate cancer and suggest that an 
important reason for the good performance of CCR is that it is designed to capture the 
effects of suppressor variables when such are included among the predictors.  
Suppressor variables, called “proxy genes” in genomics (Magidson and Wassmann, 
2010), have no direct effects, but improve prediction by enhancing the effects of genes 
that do have direct effects “prime genes”.  Based on experience with gene expression and 
other high dimensional data, suppressor variables often turn out to be among the most 
important predictors:   

 9-gene model for prostate cancer (single most important gene, SP1, is a 
proxy gene (Magidson and Wassmann, 2010) 

 
 Survival model for prostate cancer (3 prime and 3 proxy genes supported 

in blind validation), Magidson (2010) 
 

 Survival model for melanoma (2 proxy genes in 4-gene model supported 
in blind validation), Magidson (2010) 

 
Despite the extensive literature documenting the strong enhancement effects of 
suppressor variables (e.g., Horst, 1941, Lynn, 2003, Friedman and Wall, 2005), most pre-
screening methods omit proxy genes prior to model development, resulting in suboptimal 
models. This is akin to “throwing out the baby with the bath water”. 
 
Because of their sizable correlations with associated prime genes, proxy genes can also 
provide structural information useful in assuring that these associated prime genes are 
selected with the proxy gene(s), improving over non-structural penalty approaches. 
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Just as there are several different variants of regression to deal with different assumptions 
associated with the distributions and scale types of the dependent variable and predictors, 
there are several variants of CCR – one for each different type of regression: 
 
CCR-Linear – Continuous dependent variable 
CCR-LDA – Dichotomous dependent and continuous predictors satisfying assumptions  
  of linear discriminant analysis (LDA) 
CCR-Logistic – Dichotomous dependent variable 
CCR-Ord – Ordinal dependent variable 
CCR-Nom – Nominal dependent variable 
CCR-Cox – Survival analysis (right censored event history data) 
CCR-Latent – Dependent variable represented by latent classes 
 
In the remainder of this section we describe the general approach and illustrate it with 
equations pertaining to CCR-Logistic. In section 5 we summarize simulation results 
associated with the first 2 variants above and section 6 presents new results from real data 
on the CCR-Logistic variant. For further details on CCR-LDA, CCR-Ord and CCR-Nom 
see Magidson (2010). 
 
4.2 CCR General Algorithm 
Correlated Component Regression (CCR) utilizes K correlated components, each a linear 
combination of the predictors X1, X2, …, XP, to predict an outcome variable Z.  

Step 1: The first component S1 captures the effects of prime predictors which have direct 
effects on the outcome. It is an average (ensemble) of all 1-predictor effects. For 
example, for CCR-Logistic: 

Form 1st component S1 as weighted average of P 1-predictor models (ignoring g) : 
  

                                                g=1,2,…,P;    (1) 
 
1-component model:        (2) 

Step 2: The second component S2, correlated with S1, captures the effects of suppressor 
variables (proxy predictors) that improve prediction by removing extraneous variation 
from S1. For example, for CCR-Logistic: 

Step 2: Form 2nd component S2 as an average of the                  terms 
 
where each              is estimated from the following P=2-predictor logit model: 
                                                                          
          g=1,2,…,P;    (3) 
 
Step 3: Estimate the 2-component model using S1 and S2 as predictors: 
          (4) 
 
Continue for K = 3,4,…,K*-component model.  For example, for K=3, step 2 becomes: 
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          (5) 

The CCR-linear algorithm, which is the generalization of the CCR-logistic algorithm 
described above to the case of a continuous predictor Y is straightforward. Logit(Z) is 
simply replaced by Y in the above equations, an error term can be added at the end of the 
equations, and OLS is used to obtain the coefficient estimates. 

Step 3A: In the case of CCR-LDA, we can utilize the random X normality assumption to 
speed up the CCR-logistic algorithm, to be comparable to the speed of CCR-linear. For 
example, in the step for component K, regress each predictor on Z, controlling for 
S1,…,SK-1 in fast linear regressions:  

 
e.g., for K=1:                   (6) 
                                                 
  g=1,2,…,P;                 (7) 

 
where g is the maximum likelihood estimate for the log-odds ratio  in the simple logistic 
regression model (Lyles et al., 2009).   
 
Note that this approach also accomodates missing values on predictors, since cases 
missing on predictor Xg can simply be excluded from the regression in eq. (6).  In 
addition, CCR-ord can be performed by simply replacing the dichotomous Z by the full 
ordinal dependent variable based on the sterotype ordinal regression (see e.g., Magidson 
1996). 
 
Step 3B: Alternatively, in the case of CCR-LDA, in the step where we wish to estimate 
eq. 5 when K components have already been estimated (K=2 being illustrated in eq. 5), 
we assume that the attenuated vector S=(S1, S2, …,SK,Xg) is distributed according to 
MVN distribution with different group means but common covariances and estimate the 
LDA coefficients directly using the standard LDA formula. This is equally fast as step 
3A, both 3A and 3B avoiding iterative algorithms (e.g., iteratively reweighted least 
squares) used to estimate the logistic regression model. 
 
Step 3C: A hybrid CCR approach can be used when the predictors are of mixed scale 
types.  For example, suppose that X1 is dichotomous but X2 is continous. Since the 
predictors enter into the equations one at a time, we can use the approach that is most 
appropriate to estimate the log-odds ratio and partial log-odds ratio coefficients for each 
predictor.  For example, at the step where 2 components have been estimated, we can 
estimate the coefficients for the components and for Xg in the logistic regression equation 
(5), we can use traditional logistic regression when g=1 to obtain the coefficient for X1 
and use the LDA formula when g=2 to obtain the coefficient for X2. 

 
 4.3 Correlated Component Regression Step-down Variable Reduction Step 
Step SD: For a given K-component model, eliminate the variable that is the least 
important, where importance is quantified as the absolute value of the variable’s 
standardized coefficient, where the standardized coefficient is defined as:   
 

          (8) 
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For example, suppose we are evaluating models with K = 2, and that predictor g* is 
found to be least important, being the predictor that has the smallest absolute value of its 
standardized coefficient in the 2-component model. Then that predictor would be 
excluded and the steps of the CCR estimation algorithm repeated on the reduced set of 
predictors. 
 
In practice, in the case of large P, more than 1 predictor can be eliminated at a time.  For 
example, at each step we can eliminate the 1% of the predictors that are least important 
until P < 100, at which time we can begin eliminating 1 predictor at a time. This process 
can continue until 1 predictor remains.  
 
Note that for P = K, the model becomes ‘saturated’ and is equivalent to the traditional 
regression model.  In order to reduce the number of predictors further, we maintain the 
saturated model by reducing K so that P = K. Thus, for example, for K = 4, when we step 
down to 3 predictors, we reduce K so K = 3.  
 
Use of M-fold cross-validation is used to determine the optimal value for the tuning 
parameters K and P for a given criterion (or loss function). For computational efficiency, 
this is done first for K=1 components, then K=2 components, ... , up through say K=8 
components. Since in practice, the optimal number of components will rarely be greater 
than 8, one can be fairly sure of obtaining a good model with K < 9. For a given number 
of components K, the optimal number of predictors P*(K), can then be determined, and 
(P*, K*) can be determined as the combination minimizing the loss function.  Thus, P* 
predictors will be retained where P* is the best of the P*(K), K=1,..., 8, and K* will be 
the optimal number of components associated with P* predictors. 
 
Evaluating up to only 8 components saves computer resources since the speed of CCR 
increases exponentially as the number of components increases. Since estimation utilizes 
a sequential process, most of the sufficient statistics from previous runs can be reused.  
Hence, CCR is very fast with a small number of components.   
 
Let A(K) = cross-validated accuracy for the K-component model based on the optimal 
number of predictors P*(K).  Then, if A(1) < A(2) < A(3) < A(4) > A(5), we might stop 
after evaluating K = 5 and not evaluate K=6,7,8, saving more computer time.  That is, if 
the 5-component model fails to provide a solution that improves over the 4-component 
model according to the results of the M-fold cross-validation, we might take K* = 4, and 
P* = P*(4). As a somewhat more conservative approach, we might also evaluate K = 6 to 
check that performance continues to degrade. 
 
The use of M-fold cross-validation to determine the optimal value for one or more 'tuning 
parameters' is standard practice in data mining.  It is used for example, to obtain the 
single tuning parameter 'lambda' in the lasso penalized regression approach.  Here, we 
use it to optimize the two tuning parameters, P and K.  We do it in an efficient way by 
doing it for each component separately, and evaluate only a small number of models 
(those with K in a specified range), and limit to small values of K.  In practice with high-
dimensional data, we have found that the best model is rarely one with K>8. 
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For ultra-high dimensional data with many irrelevant predictors, typical with gene 
expression data, by chance some large loadings for the many irrelevant predictors may 
dominate the first component, leading to unreliable results. To avoid this, an initial 
variable selection ‘screening’ step may be performed to reduce # predictors to a 
manageable number prior to model estimation.  

Most current screening methods should be avoided because they typically exclude 
important suppressor variables. These include supervised principle components 
analysis/SPCA: (Bair, et. al., 2006), as well as the SIS approach (Fan and Lv, 2008). Fan 
and Lv (2008) distinguish between high and ultra-high dimensional data, and propose 
ISIS to pre-screen predictors in ultra-high dimensional data where suppressor variables 
may be present. Fan et. al. (2009) present ISIS simulation results based on 3 prime 
predictors and one suppressor variable which shows a large improvement over SIS. 

While promising, ISIS has been criticized for having too many tuning parameters. We are 
developing a CCR-based screening procedure, CCR/Screen, that has a single parameter 
P*, or the desired number of predictors to be selected (Magidson and Yuan, 2010). 
Section 5.3 shows that CCR/Screen outperforms ISIS on the simulation data provided in 
Fan. et. al (2008, 2009) that includes a suppressor variable. Our screening procedure is 
based on a restricted 3-component CCR model, developed as follows: 

For Component 1: Apply Inverse normal transformation to Comp. #1 p-vals > .5 to get 
Zval1, and use 2-class truncated normal mixture (latent class) model on -Zval1 to identify 
the G1 most significant predictors (G1 predictors whose posterior prob >.5 of being in 
class with lowest p-vals). Set component #1 loadings to 0 for all but G*1 predictors, 
where G*1 = min{max{ G1, 2}, 10}.  

For Component 2: Compute Zval2= Inverse normal of Comp #2 p-vals > .5 (excluding 
the G*1 predictors identified above), and estimate latent class model on -Zval2 to identify 
G2 predictors assigned to lowest component #2 p-val class. Set the loading to 0 for all but 
the G*2 predictors with lowest p-values (excluding the G*1 predictors), where G*2 = 
min{max{ G2, 1}, G1}.  

For Component 3: Set the loading to 0 for all but the M predictors with lowest p-values. 
introduce CCR/Select and compare its performance with ISIS based on Fan et. al. (2009) 
simulated data. See Magidson and Yuan (2010) 
 

5. Simulation Results 

CCR, as implemented in the CORExpress™ program, is compared to alternative methods 
M=1,2,… across 3 different simulation studies (Magidson and Yuan, 2010). Some results 
from each of 3 different simulation studies are given below: 
 

1) LDA: CCR-LDA vs. penalized regression and sparse PLS regression 
2) Linear Regression: CCR-Linear vs: penalized regression 
3) LDA Variable Screening – CCR-LDA/Select vs. ISIS 

 
5.1 Simulation for CCR-LDA 
Here, data were simulated according to assumptions of Linear Discriminant Analysis.  
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P = G1 + G2 where G
1
 = 28 predictors (including 15 weak predictors) and G

2
 = 28 

irrelevant predictors. 2 Groups: N
1
 = N

2
 = 25;    100 simulated samples. 

Method M selects G*(M) < 56 predictors for final model; Methods tuned using same 
sized validation file. Final models from each method evaluated based on large 
independent ‘test’ file. (In practice, M-fold cross-validation is used to optimize the CCR 
models when validation files are not available.) 
 
Variable selection METHODS: 
Correlated Component Regression (CCR), Elastic Net (L1 + L2 regularization, Zou and 
Hastie, 2005), Lasso (L1 regularization), and sparse PLS regression (sgpls, Chun and 
Keles, 2009) 
 
Results favor CCR over the other approaches 
Lowest misclassification error rate:  
 CCR (17.4%), sparse PLS (19.1%), Elastic net (20.2%), lasso (20.8%) 
Fewest irrelevant variables:  
 CCR (3.4), lasso (6.2), Elastic net (11.5), sparse PLS (13.1) 
Most likely to include suppressor variable SP1 (% of simulations): 
 CCR (91%), sparse PLS (78%), Elastic Net (61%), lasso (51%) 
Average # predictors in model: 
 lasso (13.6), CCR (14.5), Elastic Net (19.2), sparse PLS (20.4) 
Most sparse solution (average # predictors in model): 
 CCR (14.5), lasso (17.3), Elastic net (28.3), sparse PLS (32.3) 
 
5.2 Simulation for CCR-Linear  
Data were simulated according to assumptions of Linear Regression 
G1 = 14 predictors + G2 = 14 irrelevant predictors correlated with true predictors  
+ G3 = 28 irrelevant predictors uncorrelated with true; 
Continuous dependent variable, N = 50, population R2 = 0.9;    100 simulated samples 
 
Method M selects G*(M) < 56 predictors for final model; Each method tuned using a 
validation file with N=50. Final models from each method evaluated based on large 
independent ‘test’ file. TLP = nonconvex (truncated L1) penalty (Shen, et. al., 2010) 
Again, results favor CCR over the other approaches: 

Number of ‘True’ Predictors included, Percentage of included that were ‘True’: 
 CCR (9.7, 78%), TLP (10.3,50%), sparse PLS (9.5, 48%), Elastic Net (12, 35%) 
Fewest irrelevant uncorrelated variables:  
 CCR (1.0, 8%), TLP (6.4, 31%), sparse PLS (6.4, 33%), Elastic Net (14.1, 41%) 
Fewest irrelevant correlated variables:  
 CCR (1.8, 15%), sparse PLS (4.4, 22%), Elastic Net (8.0, 23%), TLP (4.0, 27%) 
Lowest mean squared error:  
 CCR (3.13), sparse PLS (3.34), Elastic Net (3.50), TLP (3.55) 
 
# tuning parameters: CCR (3x50), sparse PLS (3x50), TLP (5x100), Elastic Net (10x50) 
 

5.3 Simulation for Variable Screening 
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Here we simulated 100 data sets with 4 true predictors, the 4th being a suppressor 
variable. The data were simulated according to specifications of Fan et. al. (2009) with 
N=200: Logistic Regression with 0= 0, effects of primes 1 = 2 = 3 = 4; effect of 
suppressor = 4 6 2   and predictors X5 - X1000 are irrelevant: 5 = 6 = … = 1000 = 0. 
 

 

where X follows a multivariate normal distribution with means 0, variances 1 and all        
correlations = .5 except that                                                for i ≠ 4. 
  
 
CCR/Screen includes the suppressor variable X4 among the 10 top predictors 91% of the 
time compared to only 80% for ISIS. In addition, ISIS performed very poorly when fewer 
than 7 predictors were selected. 

 
Figure 2: Simulation results showing the improvement of CCR/Screen over ISIS. 
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6. Case study: Logistic Regression on High Dimensional Data 
A small sample of N=40 cases (‘training data’, ‘analysis sample’) was selected from a 
larger sample of N=400, the remaining larger number of cases (“validation data”) being 
used to evaluate the predictive performance of the resulting high dimensional regression 
models. For further information on these data see Wyman and Magidson (2008). 

6.1 Design of P > N Example with Real Meyers-Briggs (MBTI) Data 

• Dependent variable Z is the dichotomous self validated Extraversion/Introversion 
scale:   Z=1 for 220 Extraverts (E) ,  Z=0 for 180 Introverts (I) 
 

•  Total sample size: 400 cases with no missing on any of the 85 predictors 
•  randomly select 10% for training sample -- 22 E + 18 I = total N(TRAIN)= 40 

N(VALIDATION) = 360 
• Use 85 dichotomous features – 84 items from MBTI Form G plus 1 item that is 

an Enneagram-3 identifier (see Wyman and Magidson, 2008 for the relationship 
between Enneagram-3 types and the EI dimension of MBTI). 
 

  
 Item Description # items   # significant in sample 
      validation  training 
 20 EI items --   20  20  12   

21 JP items   21  10    4 
 20 SN items   20    3    2 
 23 TF items  23    3    0 
 Enneagram-3    1    0    1 
  
 

 

Table 2: Relationship between Self-validation and Classification based on EI items using 
MBTI Scoring 

The results in Table 2 are consistent with known misclassification rates. Theoretically, 
the E-I items should be the ones selected into the predictive model. However, 
Extraverts tend to be more likely to be Perceiving as opposed to Judging types than 
Introverts, and thus, some J-P items may also enter, as well as the Enneagram-3 indicator. 
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The inclusion of S-N and T-F items should be an indicator of over-fitting since these 
would be extraneous predictors. 
 
 
6.2 Validation Sample Results Obtained from CCR/Step-down Algorithm 

 

Figure 3: Results from the CCR Algorithms 

CCR selection Criterion:  Taking K*=2, at each step, the predictor having the smallest 
absolute value on its standardized coefficient for the 2-component model is eliminated. 
 

• Results from 1-component models: AUC performance (red line) gradually 
improves as the number of predictors in the model is reduced from 85 to 24 and 
then begins to decline 

•  Results from 2-component models: AUC performance (green line) gradually 
improves as the number of predictors in the model is reduced from 85 to 22 and 
then begins to decline. 

  
•  The 2-component models outperform the respective 1-component models 

 

Results: Number of E-I, J-P, S-N, and T-F Predictors in the Final Models Favor the 
Component Methods Over the Penalty Methods 

The Component methods resulted in a higher percentage of the included variables being 
E-I items than the other methods. 
 
These methods also resulted in fewer J-P and T-F variables, which are believed to be 
extraneous predictors. 
 
Comparison of Validation Results Also Support the Component Approach 
 
AUC = 1 (perfect separation) obtained for all models based on the training sample 
 
Comparison of AUC for models based on Validation Data 
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Table 3: Included Items   Table 4: Results of Different methods 

 
 

The Component methods resulted in a higher percentage of the included variables being 
E-I items than the other methods. These methods also resulted in fewer J-P and T-F 
variables, which are believed to be extraneous predictors. 

7. Conclusion 

We conclude that Correlated Component Regression (CCR) is a promising new method. 
(Multiple patent applications are pending regarding this technology.) 
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