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Abstract

The intent of this work is to derive a physically motivated mathematical form for the gra-
dient plasticity that can be used to interpret the size effects observed experimentally. The step
of translating from the dislocation-based mechanics to a continuum formulation is explored.
This paper addresses a possible, yet simple, link between the Taylor�s model of dislocation
hardening and the strain gradient plasticity. Evolution equations for the densities of statisti-
cally stored dislocations and geometrically necessary dislocations are used to establish this
linkage. The dislocation processes of generation, motion, immobilization, recovery, and anni-
hilation are considered in which the geometric obstacles contribute to the storage of statistical
dislocations. As a result, a physically sound relation for the material length scale parameter is
obtained as a function of the course of plastic deformation, grain size, and a set of macro-
scopic and microscopic physical parameters. Comparisons are made of this theory with exper-
iments on micro-torsion, micro-bending, and micro-indentation size effects.
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1. Introduction

The problem in developing a macroscopic model embedded with a micromechan-
ical-based theory of inelasticity which could be used as an engineering theory for
both the analysis and in computer-aided design of materials is a topical and still un-
solved material science problem. Attempts to construct such a theory are faced with
the difficulties in describing the microscopic structure of materials in terms of mac-
roscopic mechanics. On the other hand, at the present time, it is still not possible to
perform quantum and atomistic simulations on realistic time scale and structures.
When load is applied, the inelastic deformation that occurs in most cases is not
homogeneous, but reveals fluctuations on various length scales. This heterogeneity
plays a key role in determining the macroscopic properties of materials. A physically
based theory that bridges the gap between the conventional continuum theories and
the micromechanical theories should be developed as a remedy for this situation.

Material length scales (i.e., the dependence of mechanical response on the struc-
ture size) are of great importance to many engineering applications. Moreover, the
emerging areas of micro and nanotechnologies exhibit important strength differences
that result from continuous modification of the material microstructural character-
istics with changing size, whereby the smaller is the size the stronger is the response.
There are many experimental observations which indicate that, under certain specific
conditions, the specimen size may significantly affect deformation and failure of the
engineering materials and a length scale is required for their interpretation. Experi-
mental work on particle-reinforced composites has revealed that a substantial in-
crease in the macroscopic flow stress can be achieved by decreasing the particle
size while keeping the volume fraction constant (Lloyd, 1994; Rhee et al., 1994;
Zhu and Zbib, 1995; Nan and Clarke, 1996; Kiser et al., 1996). A similar strength-
ening effect associated with decreasing the diameter of thin wires in micro-torsion
test has been reported by Fleck et al. (1994) and with decreasing the thickness of
thin beams in micro-bending test has been reported by Stolken and Evans (1998),
Shrotriya et al. (2003), and Haque and Saif (2003). Moreover, micro- and nano-
indentation tests have shown that the material hardness increases with decreasing
indentation size (e.g., Stelmashenko et al., 1993; DeGuzman et al., 1993; Ma and
Clarke, 1995; Poole et al., 1996; McElhaney et al., 1998; Lim and Chaudhri, 1999;
Elmustafa and Stone, 2002; Swadener et al., 2002). Indentation of thin films shows
an increase in the yield stress with decreasing the film thickness (Huber et al., 2002).
An experimental work by Taylor et al. (2002) shows an increase in the flow
stress with decreasing hole size for geometrically similar perforated plates under
tension, i.e., plates with a hole or several holes. Furthermore, there are many other
well-known problems that show strong size effects. One example is the testing of
polycrystalline materials which shows an increase in both yield and flow stresses,
or equivalently the hardness, with decreasing the grain diameter; the so-called
Hall-Petch behavior. These experiments have, thus, shown increasing in strength
with decreasing size at the micron and submicron scales where the representative
length scale ‘ of the deformation field sets the qualitative and quantitative behavior
of the size effect.
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The aforementioned dependence of mechanical response on size could not be ex-
plained by the classical continuum mechanics since no length scale enters the consti-
tutive description. A multiscale continuum theory, therefore, is needed to bridge the
gap between the classical continuum theories and micromechanical theories. In all of
the problems mentioned above, a continuum approach is appropriate since the col-
lective nature of material defects is sufficiently large and faraway from individuality.
Since the increase in strength with decreasing scale can be related to proportional in-
crease in the strain gradients in each of the aforementioned experiments, the gradient
plasticity theory has been successful in addressing the size effect problem. This suc-
cess stems out from the incorporation of a microstructural length scale parameter
through functional dependencies on the plastic strain gradient of nonlocal media
(Aifantis, 1984, 1987). The gradient-dependent theory abandons the assumption that
the stress at a given point is uniquely determined by the history of strain at this point
only. It takes into account possible interactions with other material points in the
vicinity of that point. However, in the past decade, the physical basis of the gradient
plasticity theory for metals has been founded on theoretical developments concern-
ing geometrically necessary dislocations (GNDs). Standard micromechanical model-
ing of the inelastic material behavior of metallic single crystals and polycrystals is
commonly based on the premise that resistance to glide is due mainly to the random
trapping of mobile dislocations during locally homogeneous deformation. Such
trapped dislocations are commonly referred to as statistically stored dislocations
(SSDs), and act as obstacles to further dislocation motion, resulting in hardening.
As anticipated in the work of Ashby (1970), an additional contribution to the density
of immobile dislocations and so to hardening can arise when the continuum length
scale approaches that of the dominant microstructural features (e.g., mean spacing
between inclusions relative to the inclusion size when considering a microstructure
with dispersed inclusions, size of the plastic process zone at the front of the crack
tip, the mean spacing between dislocations, the grain size, etc.). Indeed, in this case,
the resulting deformation incompatibility between, e.g., ‘‘hard’’ inclusions and a
‘‘soft’’ matrix, is accommodated by the development of GNDs. An extensive review
of the recent developments in gradient-dependent theory can be found in Voyiadjis
et al. (2003, 2004) and Abu Al-Rub and Voyiadjis (2004a,b). A short review of these
developments is presented here.

Many researchers have contributed substantially to the gradient approach with
emphasis on numerical aspects of the theory and its implementation in finite element
codes: Lasry and Belytschko (1988), Zbib and Aifantis (1988); and de Borst and co-
workers (e.g., de Borst and Mühlhaus, 1992; de Borst et al., 1993; Pamin, 1994; de
Borst and Pamin, 1996). Gradient thermodynamic plasticity and damage models
were also introduced by Fremond and Nedjar (1996), Valanis (1996), and Voyiadjis
et al. (2001, 2003, 2004). In parallel, other approaches that have length scale param-
eters in their constitutive structure (commonly referred to as nonlocal integral theo-
ries) have appeared as an outgrowth of earlier work by Eringen in nonlocal
continuum elasticity and phenomenological hardening plasticity (e.g., Eringen and
Edelen, 1972) and Bazant in strain softening media (e.g., Pijaudier-Cabot and Ba-
zant, 1987; Bazant and Pijaudier-Cobot, 1988). Another class of gradient theories



R.K. Abu Al-Rub, G.Z. Voyiadjis / International Journal of Plasticity 22 (2006) 654–684 657
have advocated in the last decade that assume higher-order gradients of the displace-
ment field (e.g., Fleck et al., 1994; Fleck and Hutchinson, 1993, 1997, 2001; Nix and
Gao, 1998; Gao et al., 1999a,b; Huang et al., 2000a; Gao and Huang, 2001; Hwang
et al., 2002; Gurtin, 2002, 2003). This group of theories is in fact a particular case of
generalized continua, such as micromorphic continua (Eringen, 1968), or continua
with microstructure (Mindlin, 1964), which were all inspired by the pioneering work
of the Cosserat brothers (Cosserat and Cosserat, 1909). The Cosserat continuum (or
micropolar continuum) enhances the kinematic description of deformation by an
additional field of local rotations, which can depend on the rotations corresponding
to the displacement field, i.e., on the skew-symmetric part of the displacement gra-
dient for the small displacement theory, or on the rotational part of the polar decom-
position in the large-displacement theory. However, the works of Mindlin, Cosserat,
and Eringen are based on the classical balances of linear and angular momentum. In
contrast, the works of Fleck and Gurtin involve the introduction of additional bal-
ances over and above these classical balances; e.g., for single-crystal plasticity there is
a new balance for each slip system involving forces that expend power in consort
with slip on that system. In this connection, a similarly motivated strain gradient the-
ory of plasticity based on incompatible lattice deformations is advanced by Acharya
and Bassani (2000) and Bassani (2001). However, this theory preserves the same
structure of classical plasticity. All the aforementioned theories include in their struc-
ture explicit material length scale measures. Incorporation of rate-dependent viscous
terms introduces an implicit length scale measure and limits localization in dynamic
or quasi-static problems (e.g., Perzyna, 1963; Needleman, 1988; Wang et al., 1998).
However, the use of viscoinelastic theories for scale-dependent problems is question-
able and very limited work has been done in that direction (Voyiadjis et al., 2003,
2004).

The gradient theory has been applied to interpret size-dependent phenomena
including, shear banding, micro- and nano-indentation, twist of thin wires, bending
of thin films, void growth, crack tip plasticity, fine-grained metals, strengthening in
metal matrix composites, multilayers, etc. (see Qiu et al., 2003 for a detailed review).
Therefore, practical applications of gradient-dependent theories include, but not lim-
ited to, sensors, actuators, microelectromechanical systems (MEMS), microelec-
tronic packaging, advanced composites, micromachining, welds, and functionally
graded materials. However, the full utility of the gradient-type theories in bridging
the gap between modeling, simulation, and design of modern technology hinges
on one�s ability to determine accurate values for the constitutive length scale param-
eter that scales the effects of strain gradients. The study of Begley and Hutchinson
(1998), Shu and Fleck (1998), and Abu Al-Rub and Voyiadjis (2004a,b) indicated
that indentation experiments might be the most effective test for measuring the
length scale parameter ‘. Nix and Gao (1998) estimated the material length scale
parameter ‘ from the micro-indentation experiments of McElhaney et al. (1998) to
be ‘ = 12 lm for annealed single crystal copper and ‘ = 5.84 lm for cold worked
polycrystalline copper. Yuan and Chen (2001) proposed that the unique intrinsic
material length parameter ‘ can be computationally determined by fitting the Nix
and Gao (1998) model from micro-indentation experiments and they have identified
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‘ to be 6 lm for polycrystal copper and 20 lm for single crystal copper. By fitting
micro-indentation hardness data, Begley and Hutchinson (1998) have estimated that
the length scale associated with the stretch gradients ranges from 1/4 to 1 lm, while
the material lengths associated with rotation gradients are on the order of 4 lm.
Other tests also have been used to determine ‘. Based on Fleck et al. (1994) mi-
cro-torsion tests of thin copper wires and Stolken and Evans (1998) micro-bend tests
of thin nickel beams, the material length parameter is estimated to be ‘ = 4 lm for
copper and ‘ = 5 lm for nickel. Recently, Abu Al-Rub and Voyiadjis (2004a,b)
and Voyiadjis and Abu Al-Rub (2004) proposed a dislocation mechanics-based ana-
lytical model of a solid being indented with a spherical or pyramidal indenters to ob-
tain values for the length scale parameter. The values of ‘ inferred from micro and
nano-hardness results for a number of materials lies within the range of 1/4 to 5 lm,
with the hardest materials having the smallest values of ‘.

Moreover, in spite of the crucial importance of the length scale parameter in gra-
dient theory, very limited work is focused on the physical origin of this length scale
parameter. The discrete dislocation origin of this length scale is rarely clear and its
value is a free parameter. Phenomenological expressions have been assumed for
the length scale parameter in gradient theory by Aifantis and co-workers (Konstan-
tinidis and Aifantis, 2002; Tsagrakis and Aifantis, 2002). However, initial attempts
have been made to relate ‘ to the microstructure of the material. Nix and Gao
(1998) identified ‘ as L2/b, where L is the average spacing between dislocation and
b is the magnitude of the Burgers vector. Moreover, Abu Al-Rub and Voyiadjis
(2004a,b) and Voyiadjis and Abu Al-Rub (2005) found ‘ to be proportional to the
mean path of the dislocation (L). Abu Al-Rub and Voyiadjis (2004b) also derived
an evolution equation for ‘ as a function of temperature, strain, strain rate, and a
set of measurable microstructural physical parameters.

However, it is questionable whether a unique value of the internal length scale
can describe the size effect for different problems. There are indications that a fixed
value of the material length scale is not always realistic and that different problems
could require different values. Aifantis and co-workers (e.g., Aifantis, 1999; Tsagra-
kis and Aifantis, 2002; Zaiser and Aifantis, 2003; Zbib and Aifantis, 2003) have
used different values of the length scale parameter for copper material to fit the
Fleck et al. (1994) micro-torsion test results and different values for nickel to fit
Stolken and Evans (1998) micro-bending test results. Haque and Saif (2003)
showed that the length scale parameter is not fixed and depends on the grain size.
Moreover, the findings of Abu Al-Rub and Voyiadjis (2004a,b), Voyiadjis and Abu
Al-Rub (2005), and Nix and Gao (1998) that the material length scale is propor-
tional with the mean free path indicate that ‘ is not a fixed material parameter
but changes with the deformation of the microstructure because of the variation
of the mean free path with dislocation evolution. The change in the magnitude
of ‘ is also physically sound since the continuous modification of material charac-
teristics with deformation. Abu Al-Rub and Voyiadjis (2004a) showed a depen-
dence of ‘ on the plastic strain level, as well as on the hardening level.
Moreover, Voyiadjis and Abu Al-Rub (2005) found that the length scale varies
with the course of plastic deformation, grain size, characteristic dimension of the
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specimen, and hardening exponent. Some authors also argued the necessity of a
length scale parameter in the gradient theories that change with plastic strain in
order to achieve an efficient computational convergence while conducting multi-
scale simulations (e.g., Pamin, 1994; de Borst and Pamin, 1996; Yuan and Chen,
2001).

In this work, the step of translating from the dislocation-based mechanics to a
continuum formulation is explored. The mechanism-based strain gradient (MSG)
plasticity theory (e.g., Nix and Gao, 1998; Gao et al., 1999a; Huang et al.,
2000a, 2004; Hwang et al., 2002, 2003; Qiu et al., 2003) and the Taylor-based non-
local theory (TNT) of plasticity (Gao and Huang, 2001; Guo et al., 2001) have
been founded on the Taylor-type flow stress as their starting point. However,
SSD density has not been treated explicitly in the aforementioned theories; instead,
their effects on mechanical behavior have been described by strength evolution
equations. In other words, if the flow stress, in the absence of strain gradients, de-
pends on the plastic strain ep it follows that the density of SSDs is proportional to
(ep)2. Then, strain gradients are incorporated into the higher-order theory by tak-
ing the flow stress dependence to be ((ep)2 + ‘oep/ox)1/2. This choice is tantamount
to assuming that the GNDs have no direct influence on the accumulation of the
SSDs. In this paper, we introduce a gradient plasticity theory for metals that is
based on strong basis of crystallographic dislocation mechanics. This theory is
based on the Taylor�s dislocation hardening model and assumes a simple addition
of the densities from SSDs and GNDs. Based on the approaches of Kocks (1966,
1976), Estrin and Mecking (1984), Kubin and Estrin (1990), Bammann (2001), and
Beaudoin and Acharya (2001), evolution equation for the densities of SSDs and
GNDs are utilized to establish the bridge between dislocation-based theories
and gradient continuum theories. The dislocation processes of generation, motion,
immobilization, recovery, and annihilation are considered in which the GNDs con-
tribute to the storage of SSDs. Moreover, a physically based expression for the
length scale parameter as a function of effective plastic strain, grain size, and a
set of macroscopic and microscopic parameters is derived. We use the proposed
model to investigate the micro-bending of thin beams, micro-torsion of thin wires,
and indentation size effect. We also show that the proposed gradient plasticity the-
ory provides accurate predictions when compared to the experimental results of
Stolken and Evans (1998) for micro-bending of annealed nickel thin films, of Shro-
triya et al. (2003) for micro-bending of LIGA nickel thin films, of Haque and Saif
(2003) for micro-bending of aluminum thin films, of Fleck et al. (1994) for micro-
torsion of copper thin wires, of McElhaney et al. (1998) for micro-indentation of
cold-worked copper, and of Poole et al. (1996) for micro-indentation of annealed
polycrystalline copper.

The layout of this paper is as follows: In Section 2, the physical and micromechan-
ical bases of the proposed gradient plasticity are presented. In Sections 3, the formu-
lation and the constitutive relations of the proposed gradient plasticity theory are
presented. Finally, in Section 4 we use the proposed gradient plasticity theory to
investigate the size effect phenomena encountered in micro-bending of thin films, mi-
cro-torsion of thin wires, and micro-indentation.
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2. Crystallographic dislocation density basis

From a microscopic point of view, plastic deformation in metallic materials re-
flects the collective behavior of a vast number of dislocations. Therefore, crystallo-
graphic dislocation densities, which are defined by their magnitude q measured in
line length per unit volume, are suitable measures of plastic deformation in metals.
The plastic strain is directly related to the motion of dislocations and the hardening
of metals is attributed to the interaction of dislocations with each other and with sur-
rounding crystal microstructure. The driving force behind these phenomena is the
dislocation multiplication mechanisms: cross-slip and double cross-slip, glide, climb,
etc. Moreover, dislocations can form loops, pile up on the grain boundaries and pre-
cipitate particles, and arrange themselves in various types of cells or substructures
called dislocation networks. These arrangements act as obstacles to the motion of
other dislocations, thus, providing the important mechanism of hardening. There-
fore, what determines the hardening of the material is the ease with which disloca-
tions are able to move and the simplest dislocation model should distinguish at
least two types of dislocations: mobile and immobile. Motion of mobile dislocations
carries the plastic strain, and immobile dislocations contribute to the plastic harden-
ing. With an increase in the immobile dislocations, the mobile dislocations begin to
have more interactions with the immobile dislocations such that movement becomes
more difficult and the stress required to produce additional plastic strain increases,
i.e., the material hardens.

The direct simulation of the dislocation processes, for example by using the dis-
crete dislocation dynamics, is costly and, hence, the average treatment of dislocation
processes is favorable and the concept of dislocation density is found useful. The dis-
location density concept links the macroscopic stresses and strain to the underlying
microstructural processes of plastic deformation and can be incorporated into the
continuum theories to bridge the length scales.

The critical shear stress that is required to untangle the interactive dislocations
and to induce a significant plastic deformation is defined as the Taylor flow stress,
s (Taylor, 1938). The Taylor flow stress can also be viewed as the passing stress
for a moving dislocation to glide through a forest of immobile dislocations without
being pinned. The Taylor hardening law, which relates the shear strength to the dis-
location density, has been the basis of the mechanism-based strain gradient (MSG)
plasticity theory (e.g., Nix and Gao, 1998; Gao et al., 1999a; Huang et al., 2000a;
Hwang et al., 2002; Qiu et al., 2003; Hwang et al., 2003; Huang et al., 2004) and
the Taylor-based nonlocal theory (TNT) of plasticity (Gao and Huang, 2001; Guo
et al., 2001). It gives a simple description of the dislocation interaction processes
at the microscale (i.e., over a scale which extends from about a fraction of a micron
to tens of microns). A generally accepted form for the Taylor�s hardening law is

s ¼ s0 þ aGb
ffiffiffiffi
qi

p
; ð1Þ

where qi is the immobile or forest dislocation density, G is the shear modulus, b is
the magnitude of the Burgers vector, and a is a material constant related to the
crystal and grain structure and usually ranging from 0.1 to 0.5 (Ashby, 1970).
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The stress s0 is the extrapolated stress to zero dislocation density (strain indepen-
dent friction stress).

Generally, it is assumed that the immobile or forest dislocation density, qi, repre-
sents the total coupling between two types of dislocations which play a significant role
in the hardening mechanism.Material deformation in metals enhances the dislocation
formation, the dislocation motion, and the dislocation storage. The dislocation stor-
age causes material hardening. The stored dislocations generated by trapping each
other in a random way are referred to as statistically stored dislocations (SSDs), while
the stored dislocations that maintain the plastic deformation compatibilities (continu-
ity) within the polycrystal (or various components of the material) caused by nonuni-
form dislocation slip are called geometrically necessary dislocations (GNDs). Their
presence causes additional storage of defects and increases the deformation resistance
by acting as obstacles to the SSDs (Ashby, 1970). Therefore, as far as the experimen-
tal findings up to date, one cannot assume that GNDs are similar to the SSDs since
both are different in nature and both contribute to the hardening and thus to the shear
flow stress s given by Eq. (1). SSD density is dependent on the plastic strain, ep, while
GND density is dependent on the plastic strain gradient, oep/ox (Ashby, 1970; Fleck
and Hutchinson, 1997; Arsenlis and Parks, 1999). In a continuum theory, these two
contributions can be combined in various ways for which there is little guidance from
dislocation mechanics (Fleck et al., 1994; Hutchinson, 2000). Abu Al-Rub and Voy-
iadjis (2004a,b) and Voyiadjis and Abu Al-Rub (2005) assumed that the forest dislo-
cation density increases in proportion to the measure ððepÞc1 þ ð‘oep=oxÞc2Þ1=c3 , where
c1, c2, and c3 are assumed as phenomenological material constants, termed there as
interaction coefficients. These coefficients are introduced in order to assess the sensi-
tivity of the predictions to the way in which the SSDs and GNDs are coupled. The
couple stress theory of Fleck et al. (1994) assumes that c1 = c2 = c3 = 2 based on
mathematical reasons and not physical ones. The work of Aifantis and his co-workers
(e.g., Aifantis, 1984, 1987; Zbib and Aifantis, 1988; Mühlhaus and Aifantis, 1991;
Aifantis, 1999; Tsagrakis and Aifantis, 2002; Zaiser and Aifantis, 2003; Zbib and
Aifantis, 2003) falls within the definition of c1 = c2 = c3 = 1. The MSG and TNT
plasticity theories assume c1 = c3 = 2, c2 = 1.

As the simplest possible relationship for the density of immobile (forest) disloca-
tions is the direct sum of the densities of SSDs and GNDs. This was the basic
assumption in formulating the couple stress gradient theory, the mechanism-based
strain gradient plasticity theory, and the Taylor-based nonlocal theory of plasticity,
such that Eq. (1) is written as

s ¼ s0 þ aGb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qS þ qG

p
; ð2Þ

where qS is the density of SSDs and qG is the density of GNDs.
The macroscopic shear stress s is related to the corresponding tensile flow stress

via the Taylor factor m as follows:

r ¼ r0 þ maGb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qS þ qG

p
; ð3Þ

where r0 = ms0 is the initial yield stress. The Taylor factor m acts as an isotropic
interpretation of the crystalline anisotropy at the continuum level; m ¼

ffiffiffi
3

p
for an
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isotropic solid and m = 3.08 for FCC polycrystalline metals (Taylor, 1938; Kocks,
1976). Eq. (2) constitutes the nonlocal micromechanical plasticity due to the presence
of GNDs.

The validity of the Taylor relationship has been verified by numerous theoretical
and experimental studies on metals and alloys (see, e.g., Hirsch, 1975) and, therefore,
one may indeed use Eq. (1) as a starting point. However, Mughrabi (2001) concluded
that, in the Taylor-type descriptions of the macroscopic flow stress, the simple super-
position of the density of GNDs on the density of SSDs is not well founded and they
are unambiguously related. Abu Al-Rub and Voyiadjis (2004a,b) and Voyiadjis and
Abu Al-Rub (2005) presented different forms of Eq. (2) that enhance nonlinear cou-
plings between qS and qG and they introduced three different interaction coefficients
in order to assess the sensitivity of predictions to the way in which the coupling be-
tween the SSDs and GNDs is enhanced during the plastic deformation process. Fur-
thermore, they showed that by incorporating these interaction coefficients in the
gradient plasticity theory a suitable remedy is given to the Nix and Gao (1998)
and Swadener et al. (2002) indentation size effect models in predicting the hardness
values from micro/nano-indentation tests.

Moreover, in spite of the considerable progress made in recent years in the field of
discrete dislocation modeling (see, e.g., Zbib et al., 1998), a detailed and realistic
description of the evolution of the distributions and interactions among large num-
ber of SSDs and GNDs of different strengths does not seem feasible at the present
time. Therefore, a more sophisticated description for the interaction between SSDs
and GNDs would have to be explored (Arsenlis et al., 2004). In view of the complex-
ity of this problem, the objectives of the present work, which is complementary to a
parallel publication (Abu Al-Rub and Voyiadjis, 2004a,b; Voyiadjis and Abu Al-
Rub, 2005) will be much more modest. In the present study, the problem outlined
above will be treated at a very simple level in terms of a physical continuum formu-
lation incorporating the evolutions of SSD and GND densities in order to accurately
describe the plasticity of the polycrystal at micron and sub-micron length scales.
Thus, it is necessary to have a model for strain hardening of a material that considers
dislocation generation, motion, immobilization, recovery, and annihilation. More-
over, it is necessary to have a model for strain hardening of a material that considers
the strain path dependence. All these physical features were not incorporated in the
derivation of the couple stress gradient theory of Fleck and co-workers, and in the
mechanism-based strain gradient (MSG) plasticity theory and the Taylor-based non-
local plasticity theory (TNT) of Gao and co-workers. Most commonly a kind of evo-
lution equation is derived for each type of dislocation density, which may generally
be expressed in the form of hardening term-recovery term

_q ¼ _qðþÞ � _qð�Þ; ð4Þ
where the superscripts (+) and (�) designate generation and recovery, respectively.

The evolution equation for the GND density, _qG, is easier to develop than that for
the SSD density, _qS, because it is closely connected to the nonhomogeneous nature of
plastic deformation. The GND density is related to the incompatibility of the plastic
deformation and to the curvature of the crystal lattice. In fact, it is that portion of
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the total density specifically needed to maintain the continuity of the crystal lattice
(Arsenlis and Parks, 1999; Arsenlis et al., 2004). However, GND density cannot
be spontaneously created or annihilated in a volume, as can SSD density. Instead,
GND density must be transported to/from other regions, or result from local geo-
metric reactions of existing GNDs (Arsenlis et al., 2004). If one considers a material
element subjected to an increment of effective (shear) plastic strain _cp and its gradient
o _cp=ox with associated increments of dislocation densities _qS and _qG, then GNDs
accumulate in proportion to the strain gradient such that _qG can be expressed as
(e.g., Ashby, 1970; Nix and Gao, 1998; Arsenlis and Parks, 1999; Gao et al.,
1999a,b, Huang et al., 2000a; Hutchinson, 2000; Svendsen, 2002)

_qG ¼ �r
b
o _cp

ox
; ð5Þ

where �r is the Nye factor introduced by Arsenlis and Parks (1999) to reflect the scalar
measure of GND density resultant from macroscopic plastic strain gradients. For
FCC polycrystals, Arsenlis and Parks (1999) have reported that the Nye factor
has a value of �r ¼ 1.85 in bending and a value of �r ¼ 1.93 in torsion.

Next we will consider the evolution of the SSD density, _qS, which has not been
treated explicitly in MSG and TNT plasticity theories; instead, their effects on
mechanical behavior have been described by strength evolution equations. In other
words, if the flow stress, in the absence of strain gradients, depends on the plastic
strain ep, then it follows that the density of SSDs is proportional to (ep)2. Conse-
quently, the strain gradients are incorporated into the higher-order theory by taking
the flow stress dependence to be ((ep)2 + ‘oep/ox)1/2. This choice is tantamount to
assuming that the GNDs have no direct influence on the accumulation of the SSDs.
However, in this work, the evolution of the SSD density, _qS, is the cumulative result
of their multiplication, mutual annihilation and trapping, and their immobilization
through interaction with other immobile dislocations (such as GNDs).

In fact, material hardening due to SSD accumulation is often described by means
of the so-called Kocks� model (e.g., Kocks, 1966, 1976; Estrin and Mecking, 1984;
Kubin and Estrin, 1990) with limited geometric information:

_qS ¼
k1
b

ffiffiffiffiffi
qS

p � k2qS

� �
_cp; ð6Þ

where k1 and k2 are functions to be determined later from basic dislocation princi-
ples. In the right hand side of Eq. (6), the dislocation storage/multiplication term
k1

ffiffiffiffiffi
qS

p
represents the combined rate at which mobile dislocations are immobilized

and annihilated, while the term k2qS represents dynamic recovery which measures
the probability by which immobile dislocations remobilize. Moreover, Eq. (6) shows
that the rate of SSDs, _qS, depends on the strain rate, which means that dislocations
are less mobile when the material hardens. Therefore, one can assume that the mo-
bile dislocation density is much smaller than the immobile dislocation density and it
is strain independent (Bergstrom and Hallen, 1982).

During plastic deformation, the density of SSDs increases due to a wide range
of processes that lead to production of new dislocations. Those new generated
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dislocations travel on a background of GNDs which act as obstacles to the SSDs.
Therefore, it is imperative to note that Eq. (6) does not take into account the effect
of GNDs, and thus cannot allow the incorporation of higher-order gradients.
Other authors (e.g., Bammann and Aifantis, 1982; Sluys and Estrin, 2000) model
the SSDs accumulation due to dislocation interaction and annihilation by means
of a reaction–diffusion system. In this approach, the dependence of the evolution
of SSD density on gradients of density is postulated and evolution equations for
mobile dislocation density and immobile (forest) dislocation density are also devel-
oped. However, the evolution of GNDs is not explicitly considered in these models.

Therefore, in order to complement the evolution of the SSD density, Eq. (6) must
be extended to include explicitly the effect of GNDs. This will allow us to combine
the evolution equations for the SSD and GND densities to form general dislocation
evolution equations applicable over a range of length scales. Based on basic princi-
ples in dislocation mechanics, Bammann (2001) and Beaudoin and Acharya (2001)
developed an evolution equation for the SSD density that incorporates explicitly
the effect of GND density, such that

_qS ¼ k0qG þ k1
b

ffiffiffiffiffi
qS

p � k2qS

� �
_cp; ð7Þ

where k0 is a material parameter. The first term in Eq. (7) is due to entanglement of
glide GNDs with the other forest dislocations identified by lattice incompatibility.
The second and third terms follow exactly the development of Kocks (1966, 1976),
Estrin and Mecking (1984), and Kubin and Estrin (1990). The generation terms
dominate the evolution of dislocation density at the low dislocation density levels
typical of annealed crystals at low strains. The recovery term becomes proportionally
larger as the dislocation density statistically accumulates, and it controls the satura-
tion level of the dislocation density (Arsenlis et al., 2004).

If L is the average distance traveled by a newly generated dislocation in an incre-
ment of time dt, then the rate of accumulation of plastic shear strain due to mobile
dislocation density, qm, scales with the Orowan relation, _cp dt / bqmL. Assuming
that the dislocation velocity between obstacles is so high that it can be neglected,
the average velocity of a mobile dislocation, t, is proportional to L/tw, where tw is
the waiting time spent at the obstacle. Then one can express _cp as

_cp ¼ bqmt. ð8Þ
Furthermore, Bammann and Aifantis (1982) generalized the increment in the plastic
strain tensor in the macroscopic plasticity theory, _epij, in terms of the effective plastic
shear strain increment, _cp, and the symmetric Schmidt�s orientation second-order
tensor, mij, as follows:

_epij ¼ _cpmij. ð9Þ

In expressing the plastic strain tensor at the macro level to the plastic shear strain at
the micro level, an average form of the Schmidt�s tensor is assumed since plasticity at
the macroscale incorporates a number of differently oriented grains into each contin-
uum point.
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The flow stress r in Eq. (3) is the conjugate of the effective plastic strain variable

_ep ¼
ffiffiffiffiffiffiffiffiffiffiffi
2
3
_epij _e

p
ij

q
in macro-plasticity. Hence, by using Eq. (9) one can write _ep as follows:

_ep ¼ 1

m
bqmt; ð10Þ

where m ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
mijmij

q
is the Schmidt�s orientation factor or the average Taylor fac-

tor. Equivalently, one can write the relationship _cp ¼ m_ep that relates the effective
plastic shear strain increment to the corresponding normal effective plastic strain.

It is clear from Eq. (10) that the Burgers vector and the dislocation spacing are
two physical length measures which control plastic deformation.
3. Theory formulation

3.1. Size-dependent plasticity

In this section, a nonlocal constitutive relation is developed based on the disloca-
tion based principals outlined in the previous section. Eq. (7) is the key idea of this
paper. By taking into consideration the dislocation processes of generation, motion,
immobilization, recovery, and annihilation in which the GNDs contribute to the
storage of SSDs, one is able to bridge the gap between continuum plasticity and dis-
location-based crystal plasticity. The following guiding principles in the present gra-
dient constitutive framework are used: (a) the flow stress obeys the Taylor hardening
relation of Eq. (3); (b) the evolutions of GND and SSD densities are calculated using
Eqs. (5) and (7), respectively.

Differentiating the flow stress in Eq. (3) with respect to time, one obtains

_r ¼ or
oqS

_qS þ
or
oqG

_qG ¼ or
oqi

ð _qS þ _qGÞ; ð11Þ

where _qi ¼ _qS þ _qG. Substitution of the evolution equations for _qS and _qG from Eqs.
(7) and (5), respectively, along with the relationship _cp ¼ m_ep yields

_r ¼ maGb
2

ffiffiffiffi
qi

p
k0m�r
b

oep

ox
þ k1

b
ffiffiffiffiffi
qS

p � k2qS

� �
m_ep þ m�r

b
o_ep

ox

� �
. ð12Þ

Let rS be the flow stress without gradients such that one can write Eq. (3) as follows:

rS ¼ r0 þ maGb
ffiffiffiffiffi
qS

p
. ð13Þ

Using Eqs. (3) and (13), one can write useful equations for qi and qS, respectively, as
follows:

qi ¼
r� r0

maGb

� �2

; qS ¼
rS � r0

maGb

� �2

. ð14Þ

Substituting the above relations into Eq. (12) yields

_r¼m3a2G2b�r
2 r�r0ð Þ mk0

oep

ox
_epþo_ep

ox

� �
þ rS�r0

r�r0

� �
m2aGk1

2
�k2m

2
ðrS�r0Þ

� �
_ep. ð15Þ
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With the absence of strain gradients, _r converges to _rS such that Eq. (15) reduces to

_rS ¼
1

2
m2aGk1 � k2mðrS � r0Þ
� 	

_ep. ð16Þ

In order to determine the coefficients k1 and k2 that appear in the above differential
equations, Eqs. (15) and (16), the strain rate hardening concept in the absence of
strain gradients is used here, h = drS/de

p. Thus, one can define the h–rS curve using
Eq. (16) as follows:

h ¼ m2aGk1 � k2mðrS � r0Þ
2 1þ 1

2
k2m_eptw


 � . ð17Þ

Defining h0 as the strain hardening rate that prevails at initial yield (ep = 0) or onset
of plastic flow and the saturation stress (h(rS = rsat) = 0) in the absence of gradients
effects, one can express k1 and k2 with the aid of Eq. (10) as follows:

k1 ¼
2h0

m2aGX
; k2 ¼

2h0
mðrsat � r0Þ

; ð18Þ

where X = 1 � (h0bqm0L)/m(rsat � r0) with qm0 is the initial mobile dislocation den-
sity. However, the work by Kubin and Estrin (1990) suggests that this value is very
small (on the order of 105 mm�2 for annealed materials) and can be neglected in this
work such that X � 1. The subscript sat in Eq. (18) denotes the state at which the
stress saturates, as estimated from an extrapolation of the h–rs curve. The initial
hardening modulus h0 and the saturated stress rsat are dependent on the strain rate
and temperature and can be determined through routine uniaxial test data such that
the effects of length scale are not significant (e.g., using the stress–strain diagrams of
a course grain material).

Substituting k1 and k2 from Eq. (18) into Eq. (16) yields the flow stress relation
without the presence of strain gradients as follows:

_rs ¼ h0
rsat � rs

rsat � r0

� �
_ep. ð19Þ

For uniaxial proportional loading the above equation can be integrated analytically
to yield the Voce stress–strain equation

rs ¼ rsat þ ðr0 � rsatÞ exp � h0
rsat � r0

ep
� �

. ð20Þ

Substituting k1 and k2 from Eq. (18) into Eq. (15) yields the flow stress relation with
the presence of strain gradients as follows:

_r ¼ h0
rs � r0

r� r0

� �
rsat � rs

rsat � r0

� �
_ep þ m3a2G2b�r

2 r� r0ð Þ mk0
oep

ox
_ep þ o_ep

ox

� �
. ð21Þ

It is obvious that the above equation degenerates to Eq. (19) in the absence of gra-
dient effects. After substituting Eq. (20), the above equation can be integrated ana-
lytically for uniaxial and proportional loading and leads to a gradient plasticity
model in the form
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r ¼ r0 þ rref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
p ðepÞ þ ‘ðepÞgp

q
; ð22Þ

where gp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rkeprkep

p
is the effective strain gradient and rref = rsat � r0 can be de-

fined as the saturation value of the isotropic hardening function r � r0. The nondi-
mensional function fp(e

p) is obtained as a function of ep as

fpðepÞ ¼ 1� exp � h0
rref

ep
� �

ð23Þ

and

‘ðepÞ ¼ m3a2b�r
G
rref

� �2

1þ mk0epð Þ ð24Þ

is identified as the intrinsic material length scale. Beaudoin and Acharya (2001)
showed that the parameter k0 accounts for the grain size dependency.

The expression for the flow stress in Eq. (22) is similar to that of the MSG
and TNT plasticity theories (e.g., Nix and Gao, 1998; Gao et al., 1999a,b; Huang
et al., 2000a; Gao and Huang, 2001). However, a different expression for ‘ is ob-
tained in formulating the MSG and TNT theories, ‘ = 18a2(G/rref)

2b, which indi-
cates that the length scale parameter is fixed and does not change with the course
of plastic deformation as suggested by Eq. (24). Voyiadjis and Abu Al-Rub
(2005) show that the current gradient plasticity theories do not give sound inter-
pretations of the size effects in micro-bending and micro-torsion tests if a definite
and fixed length scale parameter is used. They showed that ‘ is in the order of the
average distance between dislocations (i.e., that ‘ � L) which depends on the grain
size, d, and the effective plastic strain, ep. This result has been confirmed by the
micro-indentation comparisons of Begley and Hutchinson (1998) and Abu Al-
Rub and Voyiadjis (2004a) and by the micro-bending tests of Haque and Saif
(2003). Moreover, Nix and Gao (1998) pointed out that ‘ scales with ‘ � L2/b.
However, Gracio (1994) approximated the evolution of mean dislocation spacing
L as a function of the grain size, d, the effective plastic strain, ep, the hardening
exponent, n, and the characteristic dimension of the specimen, D (usually taken as
the smallest dimension, e.g., the thickness for micro-bending specimens and the
diameter for micro-torsion specimens), L = Dd/[D + d(ep)1/n]. Therefore, the mate-
rial length scale in metals can be considered by itself as an internal variable rep-
resenting the dislocation cell structure and grain size.

Therefore, the proposed unified expression of the flow stress in Eqs. (21)–(24)
is physically sound with strong dislocation mechanics-based interpretations.
Moreover, the phenomenological measure of the yield stress in uniaxial tension,
rref, and the microstructure length scale parameter, ‘, are now related to measur-
able physical parameters. Moreover, one can note that Eq. (24) implies that ‘
may vary with the strain rate and temperature for a given material for the case
rref, r0, rsat, and h0 being dependent on strain rate and temperature. However,
for most metals, the yield stress increases with the strain rate and decreases with
temperature increase. This causes ‘ to decrease with increasing strain rates, but to
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increase with temperature decrease (Abu Al-Rub and Voyiadjis, 2004b). This is
not the subject of this paper but more work needs to be done in this direction.

It is imperative to mention that, generally, there exist two frameworks of gradient
plasticity theories to model size effects at the micron and sub-micron scales. The first
framework involves higher-order stresses and higher-order (or additional) governing
equations and therefore requires extra boundary conditions, such as the couple stress
theory (e.g., Fleck and Hutchinson, 1993, 1997, 2001; Gurtin, 2002, 2003), and MSG
theory. The second framework does not involve the higher-order stresses and the
equilibrium equation remains the same as those of classical theory (e.g., Acharya
and Bassani, 2000; Bassani, 2001; Chen and Wang, 2002; Gao and Huang, 2001;
Abu Al-Rub and Voyiadjis, 2004a). Huang et al. (2000a) showed that the higher-or-
der stresses have a little or essentially no effect on the predictions of size effects in mi-
cro-bending, micro-torsion, micro-indentation, crack-tip, void growth, etc. In fact,
MSG theory was recently modified by Huang et al. (2004) such that it does not
involve the higher-order stresses and therefore falls into the second category of the
strain gradient plasticity that preserves the structure of conventional plasticity theo-
ries. Furthermore, Bazant and Guo (2002) argue that the asymptotic behavior at
small sizes is unreasonably strong in the first category of strain gradient plasticity the-
ories because of the presence of third-order stresses in these models. The theory pre-
sented in this paper falls in the second category, where no higher-order stresses are
involved. This feature would make the strain gradient plasticity theories very attrac-
tive in applications, since higher-order boundary conditions may not be uniquely
defined and/or can be difficult to satisfy if one uses the first category of strain gradient
plasticity theories. Moreover, we introduce here higher-order gradients of the plastic-
ity hardening state variable, which is the effective plastic strain, ep, into the constitu-
tive equation for the flow stress, while leaving all other features of classical plasticity
unaltered. This is different than the MSG theory, which introduces higher-order gra-
dients of the plastic strain tensor epij. Therefore, the two theories are different.

3.2. Deformation theory of gradient plasticity

The deformation theory of the proposed size-dependent plasticity assumes the
same structure as the classical plasticity theory (Hill, 1950). The strain tensor, eij,
is decomposed into a deviatoric part, e0ij, and a volumetric part, ekk, as

eij ¼ e0ij þ
1

3
ekkdij; ð25Þ

where dij is the Kronecker delta. The volumetric strain ekk is related to the hydro-
static stress rkk through the elastic bulk modulus K = E/3(1 � 2m), where E is the
Young�s modulus and m is the Poisson�s ratio, such that

ekk ¼
rkk

3K
. ð26Þ

The deviatoric strain tensor e0ij is proportional to the deviatoric stress tensor
r0
ij ¼ rij � 1

3
rkkdij through the von-Mises conventional plasticity, such that
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e0ij ¼
3ee
2re

r0
ij; ð27Þ

where ee ¼
ffiffiffiffiffiffiffiffiffiffiffi
2
3
e0ije

0
ij

q
is the effective strain and re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
r0
ijr

0
ij

q
is the effective stress.

The yield criterion is the same as given in Eq. (22), but the flow stress is set equal
to the effective stress, i.e., r = re, and re-written in terms of the effective strain ee and
the effective strain gradient g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rkeerkee

p
such that

re ¼ r0 þ rref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðeeÞ þ ‘ðeeÞg

p
. ð28Þ

Combining the above relations leads to the following constitutive equations for the
deformation theory of the current gradient plasticity:

rkk ¼ 3Kekk; r0
ij ¼

2ðr0 þ rref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðeeÞ þ ‘ðeeÞgÞ

p
3ee

e0ij; ð29Þ

where ‘ðeeÞ ¼ m3a2b�rðG=rrefÞ2ð1þ mk0eeÞ is given in Eq. (24) and f(ee) could be taken
as a power law f ðeeÞ ¼ e1=ne , where n P 1 is the work hardening exponent.

3.3. J2 flow theory of gradient plasticity

In the flow theory of the present gradient plasticity, the constitutive equations are
expressed in rate form. The strain rates can be decomposed into a deviatoric part and
a volumetric part as follows:

_eij ¼ _e0ij þ
1

3
_ekkdij; ð30Þ

where the volumetric strain rate is purely elastic and is related to the hydrostatic
stress rate _rkk as

_ekk ¼
_rkk

3K
. ð31Þ

The deviatoric strain rate, _e0ij, consists of an elastic part, _e0eij , and a plastic part, _epij,
such that

_e0ij ¼ _e0eij þ _epij; ð32Þ

where _epkk ¼ 0 and the elastic strain rate _e0eij is proportional to the deviatoric stress rate
_r0
ij ¼ _rij � 1

3
rkkdij through the shear modulus G = E/2(1 + m),

_e0eij ¼
_r0
ij

2G
. ð33Þ

The yield criterion is the same as that given in Eq. (22) such that

f ¼ re � r0 � rref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
p ðepÞ þ ‘ðepÞgp

q
� 0; ð34Þ

where re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
r0
ijr

0
ij

q
is the effective stress and fp(e

p) and ‘(ep) are given by Eqs. (23)
and (24), respectively.

The plastic strain rate _epij is proportional to the deviatoric stress r0
ij by the normal-

ity flow rule
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_epij ¼ _ep
of
orij

¼ 3_ep

2re

r0
ij; ð35Þ

where _ep ¼
ffiffiffiffiffiffiffiffiffiffiffi
2
3
_epij _e

p
ij

q
is the effective plastic strain rate. Combining Eqs. (32)–(35)

yields

_r0
ij ¼ 2G _e0ij �

3_ep

2re

r0
ij

� �
. ð36Þ

For the classical plasticity (i.e., plasticity with the absence of strain gradients), one
can re-write the Voce stress–strain relation that appears in Eq. (20) as follows:

rs ¼ r0 þ rreffpðepÞ; ð37Þ
where fp(e

p) is given by Eq. (23). Moreover, by combining Eqs. (21), (24) and (37),
one can re-write the rate of the flow stress as

_re ¼
rref

2ðre � r0Þ
2f pf

0
p þ ‘0gp

� �
_ep þ ‘

_gp

1þ mk0ep

� �� �
; ð38Þ

where the gradient variable _gp is given by

_gp ¼ rkeprk _e
p

gp
ð39Þ

and f 0
p ¼ ofp=oep and ‘

0
= o‘/oep are obtained from Eqs. (23) and (24), respectively,

as

f 0
p ¼

h0
rref

ð1� fpÞ; ‘0 ¼ m4a2b�r
G
rref

� �2

k0. ð40Þ

Differentiating the square of re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
r0
ijr

0
ij

q
with respect to time gives the consistency

condition

2re _re ¼ 3r0
ij _r

0
ij ð41Þ

Inserting Eqs. (36) and (38) into the above equation leads to

_ep ¼
6G re�r0

re

� �
r0
ij _e

0
ij � r2

ref‘
_gp

1þmk0ep

� �
6Gðre � r0Þ þ r2

refð2f pf 0
p þ ‘0gpÞ . ð42Þ

Finally, the constitutive equations for the flow theory of the present gradient plastic-
ity are assembled as follows

_rkk ¼ 3K _ekk ð43Þ

_r0
ij ¼

2G _e0ij � 3
2

r0ij
re

6G
re�r0
reð Þr0mn _e0mn�r2ref ‘

_gp

1þmk0e
p

� �
6Gðre�r0Þþr2

ref
ð2f pf 0pþ‘0gpÞ

2
4

3
5 if f ¼ 0 and _re P 0;

2G_e0ij if f < 0 and _re < 0.

8>>><
>>>:

ð44Þ
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It is emphasized that under proportional deformation, it can be shown that the
deformation theory presented in Section 3.2 coincides with the flow theory. More-
over, the consistency condition in the classical flow theory is used to derive a
point-wise relation between stress rate and strain rate, whereas the current gradient
theory has a nonlocal relation between the stress rates and strain rates.
4. Applications

This section presents some recent applications of gradient plasticity to handle size
effects observed in metals. We will use the proposed gradient plasticity theory pre-
sented in Section 3 to investigate the size-dependent behavior in micro-bending of
thin films, micro-torsion of thin wires, and micro-indentation.

4.1. Micro-bending of thin films

Stolken and Evans (1998), Shrotriya et al. (2003), and Haque and Saif (2003)
performed bending tests of thin films with different thicknesses and observed that
the bending strength of beams significantly decreased with the beam thickness in-
crease. This size effect cannot be explained using the classical plasticity theory
which does not possess an intrinsic material length scale. In this section, due
to the postulated proportional loading in the bending problem, we will use the
deformation theory of gradient plasticity presented in Section 3.2 to investigate
the strength of thin beams in pure bending. For simplicity, we assume that the
beam is under plane-strain deformation and we neglect the elastic deformation
such that the material is incompressible. Accordingly, no distinction is made be-
tween eij and e0ij.

Let x1 be the neutral axis of the beam and the bending occurs in the x1–x2 plane.
The curvature of the beam is designated as j, the thickness is h, and the width in the
out-of-plane (x3) direction is b. From classical strength of materials, the displace-
ment field of the beam under plane-strain bending (the out-of-plane width in the
x3 direction is much larger than the thickness in the x2 direction) can be defined
as follows:

u1 ¼ �jx1x2; u2 ¼ �j x21 þ x22

 �

=2; u3 ¼ 0. ð45Þ

The associated nonvanishing strain components are given by:

e11 ¼ �e22 ¼ jx2; e12 ¼ 0. ð46Þ

In the deformation theory of plasticity there is no formal distinction between elastic
and plastic components of strain and the change in the plastic strain can be formally

integrated. We can then express the effective strain, ee ¼
ffiffiffiffiffiffiffiffiffiffiffi
2
3
eijeij

q
, and the effective

strain gradients, g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rkeerkee

p
, using Eq. (46) as follows:

ee ¼
2ffiffiffi
3

p jjx2j; g ¼ 2ffiffiffi
3

p j. ð47Þ
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The nonvanishing deviatoric stresses can be obtained from Eq. (29)2 as

r0
11 ¼ �r0

22 ¼
reffiffiffi
3

p x2
jx2j

. ð48Þ

The nonvanishing stresses, rij ¼ r0
ij þ 1

3
rkkdij with rkk ¼ 3r0

11, can be expressed as:

r11 ¼
2reffiffiffi
3

p x2
jx2j

; r33 ¼
reffiffiffi
3

p x2
jx2j

; ð49Þ

where the flow stress in a power-law hardening material, can be expressed by substi-
tuting Eqs. (47) into Eq. (28), as follows:

re ¼ r0 þ rref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ffiffiffi
3

p jjx2j
� �2=n

þ 2‘0ffiffiffi
3

p 1þ 2mk0ffiffiffi
3

p jjx2j
� �

j

s
; ð50Þ

where ‘0 ¼ m3a2b�rðG=rrefÞ2 is the initial value of the material length scale (i.e., when
ee = 0). The pure bending moment M can be determined from the integration of the
normal stress r11 in Eq. (49)1 over the cross-section of the beam as:

M ¼ 2bffiffiffi
3

p
Z h=2

�h=2
rejx2j dx2. ð51Þ

Substituting Eq. (50) into the above equation with the aid of variable substitution
(i.e., y = x2/h), it follows:

M

bh2
¼ r0

2
ffiffiffi
3

p þ 4rrefffiffiffi
3

p
Z 0.5

0

4ffiffiffi
3

p esy
� �2=n

þ 4besffiffiffi
3

p 1þ 4mk0ffiffiffi
3

p esy
� �" #1=2

y dy; ð52Þ

where es = jh/2 is the surface curvature and b = ‘0/h. In the limit of h� ‘0, M
degenerates to that for classical plasticity, such that:

M0

bh2
¼ M0

bh2
ð‘0 ! 0 and k0 ! 0Þ ¼ r0

2
ffiffiffi
3

p þ cðesÞ1=n with c ¼ 21=nnrref

3ðnþ1Þ=2nð2nþ 1Þ
.

ð53Þ

Note that the moment–curvature relation in Eq. (52) differs from the corresponding
result for MSG plasticity derived by Huang et al. (2000a). This difference stems out
from the presence of higher-order stresses in the MSG plasticity which is already
proved by Huang et al. (2004) that the moment–curvature relation is insensitive to
the presence of these higher-order stresses. Moreover, this moment–curvature rela-
tion differs from the corresponding result of TNT plasticity derived by Gao and
Huang (2001) due to the dependence of the length scale in the present gradient plas-
ticity on the strain accumulation and on the grain size, Eq. (24).

In order to check the predictions of the present gradient plasticity with experimen-
tal results at the micron scale, use is made of three sets of micro-bending tests re-
ported by Stolken and Evans (1998) for bending of thin 99.994% pure Annealed
Nickel films, Shrotriya et al. (2003) for bending of thin LIGA Nickel films, and Ha-
que and Saif (2003) for bending of nano 99.999% pure Aluminum films. Note that it
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was reported in these tests that no damage occurred in the material such that the
measured strength data provides a true measure of the plastic properties of the spec-
imen. Micro-bending thus provide a convenient tool for the identification of the plas-
ticity intrinsic material length scale, when damage is avoided.

Fig. 1 compares the predictions from the present gradient plasticity with the mi-
cro-bending test of thin Ni films by Stolken and Evans (1998), with foil width
b = 2.5 mm, length L = 6 mm, and thicknesses h = 12.5, 25, and 50 lm. The exper-
imental results are fitted with rref = 1167 MPa, G = 84 GPa, n = 1, and r0 = 103, 75,
56 MPa for h = 12.5, 25, and 50 lm, respectively. The microstructural parameters
associated with the evolution of the length scale in Eq. (24) are m = 3.08,
�r ¼ 1.85, b = 0.25 nm, k0 = 2.5, and a = 0.3 which produces an expression for the
length scale ‘ = 6.3(1 + 7.7ee) lm with an initial value of ‘0 = 6.3 lm. The parameter
a estimated from the experimental data has the correct order of magnitude. Stolken
and Evans (1998) used an average value of the material length scale of ‘ = 5.2 lm to
fit these results; however, their fit is not as good as shown in Fig. 1.

Fig. 2 compares the predictions from the present gradient plasticity with the mi-
cro-bending test of thin LIGA Ni foils by Shrotriya et al. (2003), with foil width
b = 0.2 mm, length L = 1.50 mm, and thickness h = 25, 50, 100, and 200 lm. The
experimental results are fitted with rref = 1030 MPa, G = 63.5 GPa, n = 1, and
r0 = 400, 305, 218, 191 MPa for h = 25, 50, 100, and 200 lm, respectively. Different
values for r0 are used for different sizes in order to include the so-called Hall-Petch
behavior. The microstructural parameters associated with the evolution of the length
scale in Eq. (24) are m = 3.08, �r ¼ 1.85, b = 0.25 nm, k0 = 3.0, and a = 0.5 which
produces an expression for the length scale ‘ = 12.84(1 + 9.24ee) lm with an initial
value ‘0 = 12.84 lm. Again the parameter a estimated from the experimental data
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has the correct order of magnitude. Shrotriya et al. (2003) used an average value of
the material length scale of ‘ = 5.6 lm to fit these results; however, their fit is very
poor compared to the one that is shown in Fig. 2.

Fig. 3 compares the predictions from the present gradient plasticity with the mi-
cro-bending test of thin 99.99% pure aluminum films by Haque and Saif (2003), with
film width b = 10 lm, length L = 275 lm, and thicknesses h = 0.1, 0.2, and
0.485 lm. The experimental results are fitted with rref = 5717 MPa, G = 28.5 GPa,
n = 2.22, and r0 = 0 MPa. The microstructural parameters associated with the evo-
lution of the length scale in Eq. (24) are m = 3.08, �r ¼ 1.85, b = 0.286 nm, k0 = 5.0,
and a = 1.2 which produces an expression for the length scale ‘ = 0.55(1 + 15.4ee)
lm with an initial value ‘0 = 0.55 lm. Also, Haque and Saif (2003) used different val-
ues of ‘ to fit their experimental data, which confirms our previous conclusion that ‘
is not a fixed parameter but it depends on the evolution of the material
microstructure.

4.2. Micro-torsion of thin wires

A systematic experiment in reference to the size dependence of material behavior
in micro-torsion of high-purity thin copper wires has been reported by Fleck et al.
(1994) even though the experiments has never been repeated. In these experiments,
it is observed that the scaled shear strength increases by a factor of 3 as the wire
diameter decreases from 170 to 12 lm. However, Fleck et al. (1994) observed that
in simple tension tests the corresponding increase in work-hardening with decrease
of wire size is negligible. This size effect in torsion cannot be explained by the clas-
sical continuum plasticity theory, which possesses no intrinsic material length scale.
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In this section, due to the postulated proportional loading in the torsion problem,
one can use the deformation theory of the present gradient plasticity presented in
Section 3.2 to investigate the strength of thin wires in torsion.

The Cartesian reference frame is set such that the x1 and x2 are in the plane of the
cross-section of the wire, and the x3 axis coincides with the central axis of the wire.
The twist per unit length is designated j and the radius of the wire is a. The displace-
ment field as in the classical torsion problem can be assumed as follows:

u1 ¼ �jx2x3; u2 ¼ �jx1x3; u3 ¼ 0. ð54Þ
The associated strain components are given by:

e13 ¼ e31 ¼ � 1

2
jx2; e23 ¼ e32 ¼

1

2
jx1; e11 ¼ e22 ¼ e33 ¼ 0; ð55Þ

where the strain field is obtained by adopting the assumption of incompressibility.
One can express the local effective strain, ee, and the effective strain gradient, g, as
follows:

ee ¼
1ffiffiffi
3

p jr; g ¼ 1ffiffiffi
3

p j; ð56Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
is the radius in polar coordinates (r,h,z). Eq. (29) gives the non-

vanishing deviatoric stresses with rkk = 0 as follows:

r0
13 ¼ r0

31 ¼ � reffiffiffi
3

p j
x2
r
; r0

23 ¼ r0
32 ¼

reffiffiffi
3

p j
x1
r
; ð57Þ

where the flow stress in a power-law hardening material can be expressed by substi-
tuting Eq. (56) into Eq. (28) as follows:
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re ¼ r0 þ rref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffi
3

p jr
� �2=n

þ ‘0ffiffiffi
3

p 1þ mk0ffiffiffi
3

p jr
� �

j

s
; ð58Þ

where ‘0 ¼ m3a2b�rðG=rrefÞ2. The torque can be obtained from the integration over
the cross-section of the torques induced by the shear stresses r0

13 and r0
23 as

Q ¼ 2pffiffiffi
3

p
Z a

0

rer2 dr. ð59Þ

Substituting Eq. (58) into the above equation with the aid of variable substitution
(i.e., y = r/a), it follows:

Q
a3

¼ 2pffiffiffi
3

p r0

3
þ rref

Z 1

0

1ffiffiffi
3

p esy
� �2=n

þ besffiffiffi
3

p 1þ mk0ffiffiffi
3

p esy
� �" #1=2

8<
:

9=
;y2 dy; ð60Þ

where es = ja is the surface angle of twist and b = ‘0/a. In the limit of a � ‘0, Q
degenerates to that for classical plasticity, such that

Q
a3

¼ Q
a3

ð‘0 ! 0 and k0 ! 0Þ ¼ 2pr0

3
ffiffiffi
3

p þ cðesÞ1=n with c ¼ 2pnrref

3ðnþ1Þ=2nð3nþ 1Þ
.

ð61Þ

The torque–twist relation in Eq. (60) differs from the corresponding equation for
MSG plasticity derived by Huang et al. (2000a) and TNT plasticity derived by
Gao and Huang (2001) for the same reasons outlined in Section 4.1.

Fig. 4 compares the predictions of the present gradient plasticity theory with the
micro-torsion test of thin Copper wires by Fleck et al. (1994), with wire diameters
2a = 12, 15, 20, 30, and 170 lm. The experimental results are fitted with
rref = 226 MPa, G = 44 GPa, n = 5, and r0 = 0 MPa. In these experiments, the
Hall-Petch behavior of r0 is not significant as reported by Fleck et al. (1994). The
microstructural parameters associated with the evolution of the length scale in Eq.
(24) are m = 3.08, �r ¼ 1.93, b = 0.255 nm, k0 = 3.0, and a = 0.1 which produces an
expression for the length scale ‘ = 5.45(1 + 9.24ee) lm with an initial value
‘0 = 5.45 lm.

Fleck et al. (1994) found a range of 2.6–5.1 lm for ‘ that fitted well these exper-
imental data and assumed that a mean value of 3.7 lm should be satisfactory to refit
these data. It is noted that better predictions were obtained by Fleck et al. (1994)
model than the present model and the MSG and TNT models. This result is also ob-
tained by Voyiadjis and Abu Al-Rub (2005) and they found that the discrepancy be-
tween the predictions from MSG plasticity and this experiment is attributed to the
coupling between the local term fp and the gradient term ‘gp in Eq. (22). This cou-
pling is assessed by the interaction between the densities of the SSDs and GNDs in
the Taylor-type description of the microscopic flow stress, Eq. (3). Fleck et al. (1994)
model assume a mathematical expression for this coupling in the form of a simple
harmonic sum

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
S þ q2

G

p
, while a linear coupling in the form of qS + qG is assumed

in formulating the present gradient plasticity and the MSG and TNT plasticity.



0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1 1.2 1.4
s  = a

/
Q

a3
M(

p
a)

2a=170 m

2a=30 m

2a =20 m

2a=15 m

2a=12 m

◊ Experimental (Fleck et al., 1994)

Predictions with = 5.45(1+9.24 e) m

Fig. 4. Comparison of the present gradient theory with the micro-torsion experiment of copper thin wires
by Fleck et al. (1994).

R.K. Abu Al-Rub, G.Z. Voyiadjis / International Journal of Plasticity 22 (2006) 654–684 677
Moreover, since the exact form of coupling between strain hardening and strain gra-
dient hardening is not known, Abu Al-Rub and Voyiadjis (2004a,b) and Voyiadjis
and Abu Al-Rub (2005) assumed a dislocation-based coupling in the form of
½ðb2qSÞ

c1 þ ðb2qGÞ
c2 �1=c3 where c1, c2, and c3 are termed there as interaction coeffi-

cients. They found that setting c1 = c2 = c3 = 1 gives excellent agreement between
the predictions and the experiment for micro-bending and c1 = c2 = c3 = 2 for mi-
cro-torsion. Therefore, the simple superposition of the density of GNDs on the den-
sity of SSDs is not well founded as also inferred by Mughrabi (2001). This subject is
the focus of a current work by the authors, where the idea of the interaction coeffi-
cients is explored and implemented in the present framework.

4.3. Micro-indentation

It is well-known by now that the hardness values from micro-indentation of
metallic materials displays strong size effect. Indentation tests at scales on the order
of a micron or a submicron have shown that measured hardness increases signifi-
cantly with decreasing indent size (e.g., Stelmashenko et al., 1993; DeGuzman
et al., 1993; Ma and Clarke, 1995; Poole et al., 1996; McElhaney et al., 1998; Lim
and Chaudhri, 1999; Elmustafa and Stone, 2002; Swadener et al., 2002). Abu Al-
Rub and Voyiadjis (2004a,b) presented a thorough discussion on the interpretation
of the indentation size effect from conical/pyramidal (Berkovich and Vickers) and
spherical indenters. In the following application, we wish to assess the predictive
capability of the model presented herein to describe such a size effect.

Finite element method has been developed for the gradient plasticity theory. This
method is detailed in Abu Al-Rub and Voyiadjis (2005) and Voyiadjis and Abu
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Al-Rub (in press). However, in this section we use the same indentation model of
Begley and Hutchinson (1998) to simulate micro-indentation experiments with the
flow theory of the present gradient plasticity. Readers are referred to the above paper
for details.

The material properties for cold-worked polycrystalline copper are taken from the
micro-indentation experiments of McElhaney et al. (1998) by Vickers indenter:
rref = 408 MPa, G = 42 GPa, m = 0.3, n = 3.33, h0 = 16 GPa, and r0 = 0 MPa. The
microstructural parameters associated with the evolution of the length scale in Eq.
(24) are m = 3.08, �r ¼ 2, b = 0.255 nm, k0 = 1.5, and a = 0.2 which produces an
expression for the length scale ‘ = 6.32(1 + 4.62ep) lm with an initial value
‘0 = 6.32 lm, which is within the findings from micro-torsion for polycrystal copper.
Fig. 5 presents the micro-indentation hardness predicted by the present gradient
plasticity versus the indentation depth. Fig. 5 shows that the numerically predicted
hardness based on the present gradient plasticity agree remarkably well with the
experimentally measured micro-indentation hardness data. The classical plasticity
theory leads to a constant hardness of 0.834 GPa.

Fig. 6 compares the predictions with the micro-indentation test of Poole et al.
(1996) for annealed polycrystalline copper. Here, we have taken the following mate-
rial properties: rref = 283 MPa, G = 42 GPa, m = 0.3, n = 5, h0 = 11.5 GPa, and
r0 = 0 MPa. The microstructural parameters associated with the evolution of the
length scale in Eq. (24) are m = 3.08, �r ¼ 2, b = 0.25 nm, k0 = 2.0, and a = 0.1 which
produces an expression for the length scale ‘ = 3.22(1 + 6.16ep) lm with an initial
value ‘0 = 3.22 lm. Excellent agreement is shown between the predictions and the
experiment over a wide range of indentation depths, from 1 lm to several microm-
eters. The classical plasticity theory yields a constant hardness of 0.35 GPa.
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It can be seen from the results in Figs. 5 and 6 that as the depth of indentation h

becomes much larger than ‘, the gradient effects become smaller and the correspond-
ing hardness degenerates to the hardness in classical plasticity.

Moreover, the effect of the friction stress or the intrinsic lattice resistance, r0,
on the material behavior at the microscale is explicitly considered in predicting
the experimental results for nickel in Figs. 1 and 2, where different values of
r0 are used for different sizes. This variation in r0 is attributed to the grain size
effect or the so-called Hall-Petch behavior. The proposed gradient plasticity the-
ory cannot capture size effects encountered in uniaxial tests of polycrystalline
materials since the macroscopic gradients vanish and a homogeneous plastic
strain field reveals and hence the constitutive gradient-dependence would have
no influence. Modifications of the proposed gradient plasticity in order to include
the scale-dependence of the initial yield strength r0 can be achieved by incorpo-
rating the role of interfaces between grains in enhancing the yield strength of
polycrystals. The current gradient plasticity theory can be enhanced by the intro-
duction of an interfacial energy that incorporates the local plastic strain gradients
at the interfaces due to dislocation pile-ups. Another way to include the size effect
in r0 is by using the current gradient plasticity theory in a crystal plasticity
framework where the jumps in plastic strain at the interfaces of the grain bound-
aries are explicitly accounted for. Initial attempts in these directions have been
made by Acharya and Beaudoin (2000), Qiu et al. (2001), Arsenlis et al.
(2004), Evers et al. (2004), and Aifantis and Willis (2005). However, more studies
are needed to explore the effect of the friction stress or the intrinsic lattice resis-
tance on the material behavior at the microscale.
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5. Conclusions

In this work a gradient plasticity theory, which bridges the gap between contin-
uum and dislocation-based theories, is developed. This theory is based on the Tay-
lor�s dislocation hardening model that incorporates evolution equations of SSD and
GND densities and assumes a simple addition of the densities from SSDs and
GNDs. The key idea of this paper is the consideration of dislocation processes of
generation, motion, immobilization, recovery, and annihilation in which the GNDs
contribute to the storage of SSDs. These features are not considered explicitly in for-
mulating the current macroscopic gradient plasticity theories (e.g., the works of
Aifantis and co-workers, Fleck and co-workers, and Gao and co-workers). More-
over, the proposed theory falls within the essential structure of classical plasticity
theories.

For proportional and monotonic loadings, the expression for the flow stress is
similar to that of the MSG and TNT plasticity theories. However, a different expres-
sion for the material length scale parameter, ‘, is obtained which indicates that the
length scale parameter is not fixed and changes with the course of plastic deforma-
tion and grain size. Therefore, the material length scale in metals can be considered
by itself as an internal variable representing the dislocation cell structure and grain
size.

The proposed model is used to investigate the micro-bending of thin beams, mi-
cro-torsion of thin wires, and indentation size effect. The proposed theory provides
accurate predictions when compared to the experimental results.

The results from micro-torsion predictions indicate that, in the Taylor-type
descriptions of the macroscopic flow stress, the simple superposition of the density
of GNDs on the density of SSDs is not well founded. Therefore, more work is
needed to investigate the proper coupling between strain hardening and strain gra-
dient hardening. This requires elucidation from well designed experiments, physical
continuum theories at the single crystal level, and dislocation mechanics.
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