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Abstract

This paper presents a general theory of the antenna near field in the spatial domain. The approach is based
on using the Wilcox expansion of the radiated field to define a set of asymptotic spherical regions covering
the entire exterior space of the antenna problem. Careful examination of the energy expression within this
picture revealed the rich and complex interaction mechanisms between the various spherical regions indicated
above. The multipole expansion is then utilized to construct nonrecursively the full near field in the exterior
region starting from the far field only. The analysis led to interesting theorems regrading energy exchange
processes in the near zone and also to a completely analytical evaluation of the antenna reactive energy in
terms of the TE and TM modes of the antenna system.

1 The Structure of the Antenna Near Field in the Spatial Domain

We assume that an arbitrary electric current J(r) exists inside a volume V0 enclosed by the surface S0.
Let the antenna be surrounded by an infinite, isotropic, and homogenous space with permittivity ε and
permeability µ. The antenna current will radiate electromagnetic fields everywhere and we are concerned
with the region outside the source volume V0. We consider two characteristic regions. The first is the region
V enclosed by a spherical surface S and this will be the setting for the near fields. The second region V∞
is the one enclosed by the spherical surface S∞ taken at infinity and it corresponds to the far fields. The
complex Poynting theorem states that ∇ · S = −(1/2)J∗ · E + 2iω (wh − we), where the complex Poynting
vector is defined as S = (1/2)E×H∗ and the magnetic and electric energy densities are given, respectively,
by we = (1/4)εE · E∗ and wh = (1/4)µH · H∗, and ω is the radian frequency [2]. By eliminating the
source-field interaction (work) term in order to focus entirely on the fields, it is possible to obtain after some
manipulations the following well-known relation

∫

S

ds
1
2

(E×H∗) = Prad − 2iω

∫

V∞−V

dv (wh − we) , (1)

where the radiated power is defined as Prad = Re
∫

S
ds 1

2 (E×H∗). The result above will be taken up again
in Section 3. In the remaining part of this section we try to gain a more detailed insight into the nature of
the near field that goes beyond the simple picture presented by (1).

We consider the fields generated by the antenna lying in the intermediate zone, i.e., the interesting case
between the far zone kr → ∞ and the static zone kr → 0. We aim to attain a conceptual insight into the
nature of the near field by mapping out its inner structure in details. Since the fields in the exterior region
satisfy the homogenous Helmholtz equation, we can expand the electric and magnetic fields as [1]

E (r) =
eikr

r

∞∑
n=0

An (θ, ϕ)
rn

, H (r) =
eikr

r

∞∑
n=0

Bn (θ, ϕ)
rn

, (2)

where An and Bn are vector angular functions dependent on the far-field radiation pattern of the antenna
and k = ω

√
εµ is the wavenumber.1 Let us then divide the entire exterior region surrounding the antenna

into an infinite number of spherical layers. The outermost layer R0 is identified with the far zone while the
innermost layer R∞ is defined as the minimum sphere totally enclosing the antenna current distribution. In
between these two regions, an infinite number of layers exists, each corresponding to a term in the Wilcox

1The far fields are the asymptotic limits E (r) ∼
r→∞(eikr/r)A0 (θ, ϕ) , and H (r) ∼

r→∞(eikr/r)B0 (θ, ϕ) .

978-1-4244-6051-9/11/$26.00 ©2011 IEEE



expansion as we now explain. The boundaries between the various regions are not sharply defined, but
taken only as indicators in the asymptotic sense to be described momentarily.2 The outermost region R0

corresponds to the far zone. As we start to descend toward the antenna, we enter into the next region
R1, where the mathematical expression of the far field is no longer valid and has to be augmented by the
next term in the Wilcox expansion. Indeed, we find that for r ∈ R1, the electric field takes (approximately,
asymptotically) the form A0 exp (ikr)

/
r + A1 exp (ikr)

/
r2. Subtracting the two fields from each other, we

obtain the difference A1 exp (ikr)
/
r2. Therefore, it appears to us very natural to interpret the region R1 as

the “seat” of a field in the form A1 exp (ikr)
/
r2. Similarly, the nth region Rn is associated (in the asymptotic

sense just sketched) with the field form An exp (ikr)
/
rn+1. By dividing the exterior region in this way, we

become able to mentally visualize progressively the various contributions to the total near field expression
as they are mapped out spatially. To be sure, this spatial picture will remain a mere definition unless it is
corroborated by some interesting consequences. This actually turns out to be the case: It is possible to show
that certain theorems about the physical behavior of each layer can be proved. Better still, it is possible
to investigate the issue of the mutual electromagnetic interaction between different regions defined above.
It turns out that a general theorem (proved in [3]) can be established, which shows that exactly “half” of
these layers don’t electromagnetically interact with each other. In order to understand the meaning of this
remark, we need first to define precisely what is expressed in the term ‘interaction.’ Let us use the Wilcox
expansion (2) to evaluate the electric and magnetic energies. The result is3

we =
ε

4
E ·E∗ =

ε

4

∞∑
n=0

∞∑

n′=0

An ·A∗
n′

rn+n′+2
, wh =

µ

4
H ·H∗ =

µ

4

∞∑
n=0

∞∑

n′=0

Bn ·B∗
n′

rn+n′+2
. (3)

We rearrange the terms of these two series to produce the following illuminating form4

we (r) =
ε

4

∞∑
n=0

An ·A∗
n

r2n+2
+

ε

2

∞∑

n,n′=0
n>n′

Re {An ·A∗
n′}

rn+n′+2
, wh (r) =

µ

4

∞∑
n=0

Bn ·B∗
n

r2n+2
+

µ

2

∞∑

n,n′=0
n>n′

Re {Bn ·B∗
n′}

rn+n′+2
. (4)

The first sums in the RHS of (4) represent the self interaction of the nth layer with itself. Those are the
self interaction of the far field, the so-called radiation density, and the self interactions of all the remanning
(inner) regions Rn with n ≥ 1. The second sum in both equations represents the interaction between different
layers. Now because we are interested in the spatial structure of near field, it is natural to average over all
the angular information contained in the energy expressions (4). The radial energy density is given by

we (r) =
ε

4

∞∑
n=0

〈An,An〉
r2n+2

+
ε

2

∞∑

n,n′=0
n>n′

〈An,An′〉
rn+n′+2

, wh (r) =
µ

4

∞∑
n=0

〈Bn,Bn〉
r2n+2

+
µ

2

∞∑

n,n′=0
n>n′

〈Bn,Bn′〉
rn+n′+2

, (5)

where the mutual interaction between two angular vector fields F and G is defined as5

〈F (θ, ϕ) ,G (θ, ϕ)〉 ≡
∫

4π

dΩRe {F (θ, ϕ) ·G∗ (θ, ϕ)}. (6)

The total energy is obtained by integrating over the remaining radial variable, which is possible in closed
form as we will see later in Section 3. A particulary interesting observation, however, is that almost “half” of
the mutual interaction terms appearing in in (5) are exactly zero. Indeed, as we proved in [3], if the integer
n + n′ is odd, then the interactions are identically zero, i.e., 〈An,An′〉 = 〈Bn,Bn′〉 = 0 for n + n′ = 2k + 1
and k is integer. This represents, in our opinion, a significant insight on the nature of antenna near fields in
general.

2To be precise, by definition only region R∞ possesses a clear-cut boundary.
3Since the series expansion under consideration is absolutely convergent, and the conjugate of an absolutely convergent series

is still absolutely convergent, the two expansions of E and E∗ can be freely multiplied and the resulting terms can be arranged
as we please.

4In writing equations (4), we made use of the reciprocity in which the energy transfer from layer n to layer n′ is equal to
the corresponding one from layer n′ to layer n.

5In deriving (5), we made use of the fact that the energy series is uniformly convergent in θ and ϕ in order to interchange
the order of integration and summation.



2 Direct Construction of the Antenna Near-Field Starting from a Given
Far-field Radiation Pattern

The localization of the electromagnetic field within each of the regions Rn suggests that the outermost
region R0, the far zone, corresponds to the simplest field structure possible, while the fields associated with
the regions close to the antenna exclusion sphere, R∞, are considerably more complex. In this section we
show that the entire region field can be determined from the far field directly, i.e., nonrecursively, by a simple
construction based on the analysis of the far field into its spherical wavefunctions. Our point of departure
is the far-field expressions, where we observe that because A0(θ, ϕ) and B0(θ, ϕ) are well-behaved angular
vector fields tangential to the sphere, it is possible to expand their functional variations in terms of infinite
sum of vector spherical harmonics [2]. That is, we write

E (r) ∼
r→∞

η
eikr

kr

∞∑

l=0

l∑

m=−l

(−1)l+1 [aE (l,m)Xlm −aM (l,m) r̂ ×Xlm] , (7)

the series being absolutely-uniformly convergent. Here, η =
√

µ/ε is the wave impedance. aE(l,m) and
aM (l, m) stand for the coefficients of the expansion TElm and TMlm modes, respectively. Since the asymp-
totic expansion of the spherical vector wavefunctions is exact, the electromagnetic fields throughout the entire
exterior region of the antenna problem can be expanded as a series of complete set of of vector multipoles [2].
The upshot of our argument, which is very technical, is the unique determinability of the antenna near field in
the various spherical regions Rn by a specified far field taken as the starting point of the engineering analysis
of general radiating structures. Therefore, the Wilcox series can be derived from the multipole expansion and
the exact variation of the angular vector fields An and Bn are directly determined in terms of the spherical
far-field modes of the antenna [3].6 Antenna designers usually specify the goals of their devices in terms of
radiation pattern characteristics. It appears from our analysis that an exact analytical relation between the
near field and these design goals do exist in the form derived above. Since the designer can still choose any
type of antenna that fits within the enclosing region R∞, the results of this paper should be viewed as a
kind of canonical machinery for generating fundamental relations between the far-field performance and the
lower bound formed by the field behavior in the entire exterior region compatible with any antenna current
distribution that can be enclosed inside R∞.

3 Construction of the Reactive Energy Densities

We call any energy density calculated with the point of view of the imaginary part of (1) reactive densities.
When trying to calculate the total electromagnetic energies in the region V∞ − V , the result is divergent
integrals. However, condition (1) clearly suggests that there is a common term between we and wh which is
the source of the trouble. We postulate then that we ≡ w1

e + wrad, wh ≡ w1
h + wrad. Here w1

e and w1
h are

taken as reactive energy densities, which we prove to be finite. The common term wrad is divergent in the
sense

∫
V∞−V

dvwrad = ∞. Therefore, it is obvious that the integral of wh − we = w1
h − w1

e is finite. Next,
we observe that wh (r) ∼

r→∞
wrad (r) , we (r) ∼

r→∞
wrad (r) . In other words, the common term wrad is easily

identified as the radiation density at the far-field zone. It is well-known that the integral of this density is
not convergent and hence our original assumption is confirmed. The final step consists in showing that the
total energy is finite. To prove this, we make use of the Wilcox expansion in the energy densities expression.
It is found that

we (r) = wrad (r) +
ε

2
〈A0,A1〉

r3
+

ε

4

∞∑
n=1

〈An,An〉
r2n+2

+
ε

2

∞∑

n,n′=1
n>n′

〈An,An′〉
rn+n′+2

, (8)

6We bring to the reader’s attention the fact that this derivation does not imply that the radiation pattern determines the
antenna itself, if by the antenna we understand the current distribution inside the innermost region R∞. There is an infinite
number of current distributions that can produce the same far-field pattern. Our results indicate, however, that the entire field
in the exterior region, i.e., outside the region R∞, is determined exactly and nonrecursively by the far field.



and a similar equation for the magnetic energy density. By carefully examining the radial behavior of the total
energy densities, we notice that the divergence of their volume integral arises from two types of terms. The
first type is that associated with the radiation density wrad, which takes a functional form like 〈A0,A0〉

/
r2

and 〈B0,B0〉
/
r2. The volume integral of such terms will give rise to linearly divergent energy. The second

type is that associated with functional forms like 〈A0,A1〉
/
r3 and 〈B0,B1〉

/
r3. The volume integral of

these terms will result in energy contribution that is logarithmically divergent. However, we make use of the
fact proved in [3] stating that the interactions 〈A0,A1〉 and 〈B0,B1〉 are identically zero. Therefore, only
singularities of the first type will contribute to the total energy. Making use of the equality of the electric
and magnetic radiation densities in the far zone, the remaining singularities can be eliminated and we are
then justified in reaching the following series expansions for the reactive radial energy densities

w1
e (r) =

ε

4

∞∑
n=1

〈An,An〉
r2n+2

+
ε

2

∞∑

n,n′=1
n>n′

〈An,An′〉
rn+n′+2

, w1
h (r) =

µ

4

∞∑
n=1

〈Bn,Bn〉
r2n+2

+
µ

2

∞∑

n,n′=1
n>n′

〈Bn,Bn′〉
rn+n′+2

. (9)

Denote by a the radius in R∞ = {(r, θ, ϕ) : r ≤ a}. After integrating term by term, we finally arrive to the
following result for the total reactive energy7

W 1
e =

∞∑
n=1

(ε/4) 〈An,An〉
(2n− 1) a2n−1

+
∞∑

n,n′=1
n>n′

(ε/2) 〈An,An′〉
(n + n′ − 1) an+n′−1

, (10)

and a similar equation for the total magnetic energy. Therefore, the total reactive energy is finite. It
follows then that the definitions postulated above for the reactive energy densities w1

h and w1
e are consistent.

Moreover, from the results of [3], we now see that total reactive energies (10) are evaluated completely in
analytical form and that in principle no computation of infinite numerical integrals is needed here.8

4 Conclusion

We stress here that the contribution of the expressions (10) is not merely having at hand a means to
calculate the reactive energy of the antenna. The main insight here is the fact that the same formulas contain
information about the mutual dependence of 1) the quality factor Q (through the reactive energy), 2) the size
of the antenna (through the dependence on a), and 3) the far-field radiation pattern (through the interaction
terms and the results of [3].) The derivation above points to the relational structure of the antenna from
the engineering point of view in the sense that the quantitative and qualitative interrelations of performance
measures like directivity and polarization (far field), matching bandwidth (the quality factor), and the size
become all united within one outlook. The analysis of the antenna is not reduced to merely computing few
numbers, but rather understood by the elaborate interconnection of all performance measures within an
integral whole.
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