
INCOSE-UK Spring Symposium, May 2001 Page 1

Bridging the Communications Gap between
Systems and Software Engineering1

Joseph Kasser D.Sc., C.Eng., CM.
Systems Engineering and Evaluation Centre

University of South Australia
School of Electrical and Information Engineering F2-37

Mawson Lakes Campus
South Australia 5095

Telephone: +61 (08) 830 23941, Fax: +61 (08) 830 24723
Email: joseph.kasser@unisa.edu.au

Sharon Shoshany

School of Computer and Information Science
University of South Australia,

Mawson Lakes Campus,
Mawson Lakes, SA, 5095

Australia
Email Sharon.Shoshany@unisa.edu.au

Abstract. Kasser and Shoshany (2000) identified that differences in communications between systems and software
engineers were a cause of project failure2. This paper introduces a methodology for use by integrated process teams
(IPT) to bridge the communications gap between systems and software engineering.

The meta-model for the development process (Kasser and Shoshany 2000) shows that engineers use pattern
matching techniques. However, systems and software engineers tend to use different patterns. This paper shows
that the sharing of patterns may bridge the communications gap. For it is by sharing of mental patterns that the
engineers can understand and communicate the impact of a concept on their discipline. The paper also provides
some examples of how patterns may be shared in an integrated design team environment.

1 This work was partially funded from the DSTO SEEC Centre of Expertise Contract.
2 Failure is defined as cancellation or massive cost and schedule overruns.

BACKGROUND
The current trend towards integrated teams and
compliance to process standards means that systems
and software engineers are formally required to work
together in most of the phases of the system life cycle
(SLC). While working together and practicing “active
listening” the authors realized that a communications
gulf exists between systems and software engineers
and felt that the gulf
• Tends to be ubiquitous but is not recognized as

such.
• Is an unidentified but important contributor to

project failures.
• Should be identified and its existence brought to

the notice of the systems and software engineering
communities.

At this time, the authors also came to the realization
that much of the communication gap was due to
underlying barriers that included
• The Bodies of Knowledge for the professions
• The role of systems engineer in the SLC.
• Training and Background Differences
• A lack of respect for the other's profession.
• Semantics and the use of language
• Different Concepts.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357390786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Sharon.Shoshany@unisa.edu.au

INCOSE-UK Spring Symposium, May 2001 Page 2

A prior paper was written summarizing the analyses of
the barriers (Kasser and Shoshany 2000) and outlining
the causes of the barriers. This paper follows-on and
• Focuses on bridging the barriers raised by the use

of semantics and language as well as the difference
in concepts that may remain unknown due to the
apparent correctness of words in context.

• Introduces a simple but effective methodology for
bridging the gap and maximizing the transfer of
meaning between systems and software engineers3.
THE META-MODEL

While working together, after some heated discussion4

the authors developed a conceptual meta-model of the
system development process within the SLC (Kasser
and Shoshany 2000). The meta-model, which became
our Rosetta Stone, summarizes the development
process in the following manner:

When faced with the problem of meeting the
customer's needs, good engineering practice dictates
the use of one of two implementation choices
1. The problem is similar to other problems that

have been solved in the past. Thus this time
around, providing a similar solution may solve the
problem. The process then becomes one of
identifying the applicability of the solutions of the
past, to the problem of the present and applying
the elements of one or more solutions of the past to
solve the problem of the present.

2. The problem is unique so there are no known
solutions. The process then becomes one of
identifying a solution that makes the maximum use
of existing solutions to past problems
(components) and the minimum use of
components to be developed, so as to reduce the
risk of failure to deliver on time and within budget.

In addition, engineers don’t always reuse solutions or
components that worked in the past they reinvent them
or try to invent new ones. This practice may result in
them turning a ‘choice 1’ situation into a ‘choice 2’
situation with corresponding budget and schedule costs
while rediscovery takes place.

3 Note that while the scope of this paper is limited to
the gap between systems and software engineering,
there is a good probability that similar gaps exist
between many engineering disciplines, so that the
methodology described herein may be generally
applicable at meetings of the integrated teams.
4 No blood was shed in the process but we came close.

PATTERN MATCHING IS THE KEY
The key element in bridging the gap is to use active
listening enhanced by “pattern matching” during
discussions. For example, during a meeting discussing
a scenario, design issue or requirement, they can often
be seen to be similar to previous encounters.

The approach suggested in this paper is to enhance
active listening with pattern matching to improve
interpersonal communications. Thus when faced with a
problem, the project team should first review (Kasser
and Shoshany 2000) and then this paper. These papers
will sensitize them to the issues and the potential
barriers to communications. Only then should the
discussions take place. During these discussions
different people may recognize different similarities to
previous encounters. Let each take a turn in explaining
what pattern they recognize and why. Thus for example
• Systems engineering may recognize a Type A

scenario.
• Hardware engineering may recognize a Type B

situation.
• Software engineering may see it as a Type C.
• Reliability engineering may see it as a cross

between a Type B and a Type C.
Participants in the meeting should use active

listening techniques enhanced by pattern matching to
apply feed back to the communications process to
maximize the probability of sharing the meaning as
described below.

ACTIVE LISTENING
Active listening is a standard technique for applying
the feedback principle to inter-personal
communications to minimize errors in conveying the
meaning from one person to another. Active listening
first recognizes that during a conversation, most people
do not listen to what the other person is saying. They
are too busy planning what they will say when the
other person pauses. Standard active listening
comprises the following multi-step process
1. When the other person speaks give your them full

attention and look them straight in the eyes.
2. Begin iteration loop.
3. Listen to everything the other person says and try

to understand it fully.
4. Ask questions to clarify anything you don’t

understand and analyze the response.
5. Rephrase what you have heard in your own words

and ask the speaker if they meant what you are
about to say. Use words such as ”if I understand

INCOSE-UK Spring Symposium, May 2001 Page 3

you, then …….”, or “Do you mean…..” This is the
principle of applying feedback.

6. If, after you have rephrased what has been said and
the person says, "No that's not it!" or the
equivalent, then go back to step 4. You may need
to invoke the STALL technique at this time (see
below).

7. When the speaker finally agrees with you then you
have (most probably) actually communicated and
shared meaning.

In modifying active listening by the use of pattern
matching, change step 5 to incorporate the pattern by
adding words such as “this reminds me of the [Type A
Scenario]”, and “isn’t this similar to [Type B]” and
explain why you find a similarity in the current
situation.

During the conversation use the STALL approach
(Kasser 2001) to regulate matters5. STALL is an
acronym for

Stay calm
Think
Ask questions and analyze
Listen
Listen

SUMMARY
Active listening is a well-established technique for
bridging communications problems and sharing
meaning. This paper has proposed that enhancing
active listening with pattern matching may bridge some
of the barriers to communications between systems and
software engineers.

REFERENCES
Kasser J.E., Shoshany S., “Systems Engineers are from

Mars, Software Engineers are from Venus”,
Thirteenth International Conference "Software &
Systems Engineering & their Applications, Paris,
December 2000.

Kasser J.E., “STALL”, course notes from Software
Engineering Project Management, UniSA, 2001.

BIOGRAPHY
Joseph Kasser D.Sc. C.Eng, CM, has been a
practicing systems engineer for 30 years. He is the
author of "Applying Total Quality Management to
Systems Engineering" published by Artech House. Dr.
Kasser is both a DSTO Associate Research Professor at
the University of South Australia (UniSA) and a
Distance Education Fellow in the University System of

5 Stalling is a good way to deal with most problem
situations.

Maryland. He performs research into improving the
acquisition process. Prior to taking up his position at
UniSA, he was a Director of Information and Technical
Studies at the Graduate School of Management and
Technology at University of Maryland University
College. There, he developed and was responsible for
the Master of Software Engineering degree and the
Software Development Management track of the
Master of Science in Computer Systems Management
(CSMN) degree. He is a recipient of NASA’s Manned
Space Flight Awareness Award for quality and
technical excellence (Silver Snoopy), for performing
and directing systems engineering. Dr. Kasser also
teaches systems and software engineering via distance
education. British born, he lived in the United States of
America long enough to become sensitized to barriers
to communications. He is currently learning his third
dialect of English, namely Australian.
Sharon Shoshany M.Sc. (Electrical Engineering) has
been a software engineer for 16 years, developing and
managing the development of large real time systems
in the defense domain. Her background in electrical
engineering enables her to attempt to cross the gap to
systems engineering or at least be able to appreciate its
width.

