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The paper presents a new method, called the Polynomial Least Squares Method (PLSM). PLSM allows us to compute approximate
analytical solutions for the Brusselator system, which is a fractional-order system of nonlinear differential equations.

1. Introduction

In recent years, in many practical applications in various
fields such as physics,mechanics, chemistry, and biology (see,
e.g., [1–6]), the problems being studied are modeled using
fractional nonlinear equations.

Formost of such fractional nonlinear equations, the exact
solutions cannot be found and, as a consequence, a numerical
solution or, if possible, an analytical approximate solution of
these equations is sought.

Due to the complexity of this type of problems, a general
approximation algorithm does not exist and, thus, various
approximation methods, each with its strong and weak
points, were proposed, including, among others:

(i) the Adomian Decomposition Method [7–9],
(ii) the Homotopy Analysis Method [10–12],
(iii) the Homotopy Perturbation Method [13, 14],
(iv) the Laplace TransformMethod [15, 16],
(v) the Fourier TransformMethod [17],
(vi) the Variational Iteration Method [18–20].

The objective of our paper is to present the Polynomial
Least Squares Method (PLSM), which allows us to compute
approximate analytical solutions for the Brusselator system.

The fractional order Brusselator system was recently studied
by several authors [21–23] and can be expressed as follows.

We consider the following Brusselator system:

𝐷
𝛼
1

𝑡
𝑥 (𝑡) = 𝑎 − (𝜇 + 1) ⋅ 𝑥 (𝑡) + 𝑥 (𝑡)

2

⋅ 𝑦 (𝑡) ,

𝐷
𝛼
2

𝑡
𝑦 (𝑡) = 𝜇 ⋅ 𝑥 (𝑡) − 𝑥 (𝑡)

2

⋅ 𝑦 (𝑡) ,

(1)

together with the initial conditions:

𝑥 (0) = 𝑐
1
, 𝑦 (0) = 𝑐

2
, (2)

where 𝑎 > 0, 𝜇 > 0, 0 < 𝛼
1
≤ 1, 0 < 𝛼

2
≤ 1, 𝑐

1
, 𝑐
2
are real

constants, and𝐷
𝛼

𝑡
denotes Caputo’s fractional derivative [15]:

𝐷
𝛼

𝑡
=

1

Γ (1 − 𝛼)
⋅ ∫

𝑡

0

(𝑡 − 𝜁)
−𝛼

⋅ 𝑥
󸀠

(𝜁) 𝑑𝜁, 0 < 𝛼 ≤ 1. (3)

In the next section we will introduce PLSM for the
Brusselator system and in the third section we will compare
the approximate solutions obtained by using PLSM with the
approximate solutions from [20]. The computations show
that the approximations computed by using our method
present an error smaller than the error of the corresponding
solutions from [20].
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2. The Polynomial Least Squares Method

For problem ((1), (2)) we consider the remainder operators:

D
1
(𝑥 (𝑡) , 𝑦 (𝑡)) = 𝐷

𝛼
1

𝑡
𝑥 (𝑡)

− [𝑎 − (𝜇 + 1) ⋅ 𝑥 (𝑡) + 𝑥 (𝑡)
2

⋅ 𝑦 (𝑡)]

D
2
(𝑥 (𝑡) , 𝑦 (𝑡)) = 𝐷

𝛼
2

𝑡
𝑥 (𝑡) − [𝜇 ⋅ 𝑥 (𝑡) − 𝑥 (𝑡)

2

⋅ 𝑦 (𝑡)] .

(4)

We will find approximate polynomial solutions 𝑥(𝑡), 𝑦(𝑡)
of problem ((1), (2)) on the [0, 𝑏] interval, solutions which
satisfy the following conditions:

󵄨󵄨󵄨󵄨󵄨
D
𝑗
(𝑥 (𝑡) , 𝑦 (𝑡))

󵄨󵄨󵄨󵄨󵄨
< 𝜖, 𝑗 = 1, 2, 𝜖 > 0 (5)

𝑥 (0) = 𝑐
1
, 𝑦 (0) = 𝑐

2
. (6)

Definition 1. One calls an 𝜖-approximate polynomial solution
of problem ((1), (2)) an approximate polynomial solution
(𝑥(𝑡), 𝑦(𝑡)) satisfying relations ((5), (6)).

Definition 2. One calls a weak 𝛿-approximate polynomial
solution of problem ((1), (2)) an approximate polynomial
solution (𝑥(𝑡), 𝑦(𝑡)) satisfying the relations:

∫

𝑏

0

D
2

𝑗
(𝑥 (𝑡) , 𝑦 (𝑡)) 𝑑𝑡 ≤ 𝛿, 𝑗 = 1, 2, (7)

together with initial conditions (6).

Definition 3. One considers the sequence of polynomials:
𝑃
𝑗

𝑚
(𝑡) = 𝑎

𝑗

0
+ 𝑎
𝑗

1
𝑡 + ⋅ ⋅ ⋅ + 𝑎

𝑗

𝑚
𝑡
𝑚, 𝑎𝑗
𝑖
∈ R, 𝑖 = 0, 1, . . . , 𝑚, 𝑗 = 1, 2,

satisfying the conditions:

𝑃
1

𝑚
(0) = 𝑐

1
, 𝑃
2

𝑚
(0) = 𝑐

2
, 𝑚 > 1, 𝑚 ∈ N. (8)

One calls the sequence of polynomials 𝑃𝑗
𝑚
(𝑡) convergent

to the solution of problem ((1), (2)) if lim
𝑚→∞

D
𝑗
(𝑃
1

𝑚
(𝑡),

𝑃
2

𝑚
(𝑡)) = 0.

We will find weak 𝜖-polynomial solutions of the type:

𝑥 (𝑡) =

𝑚

∑

𝑘=0

𝑑
1

𝑘
⋅ 𝑡
𝑘

, 𝑦 (𝑡) =

𝑚

∑

𝑘=0

𝑑
2

𝑘
⋅ 𝑡
𝑘

, 𝑚 > 1, (9)

where the constants 𝑑
𝑗

0
, 𝑑
𝑗

1
, . . . , 𝑑

𝑗

𝑚
, 𝑗 = 1, 2 are calculated

using the steps outlined as follows.

(i) We attach to problem ((1), (2)) the following real
functional:

𝐽 (𝑑
1

2
, . . . , 𝑑

1

𝑚
, 𝑑
2

2
, . . . , 𝑑

2

𝑚
) =

2

∑

𝑗=1

∫

𝑏

0

D
2

𝑗
(𝑥 (𝑡) , 𝑦 (𝑡)) 𝑑𝑡, (10)

where 𝑑1
0
, 𝑑
2

0
are computed as functions of 𝑑1

1
, 𝑑
1

2
, . . . ,

𝑑
1

𝑚
, 𝑑
2

1
, 𝑑
2

2
, . . . , 𝑑

2

𝑚
by using initial conditions (6).

(ii) We computes the values of 𝑑
1

1
, 𝑑
1

2
, . . . , 𝑑

1

𝑚
, 𝑑
2

1
, 𝑑
2

2
, . . . ,

𝑑
2

𝑚
as the values which give the minimum of func-

tional (10) and the values of 𝑑
1

0
, 𝑑
2

0
again as functions

of 𝑑
1

1
, 𝑑
1

2
, . . . , 𝑑

1

𝑚
, 𝑑
2

1
, 𝑑
2

2
, . . . , 𝑑

2

𝑚
by using the initial

conditions.
(iii) Using the constants 𝑑

1

0
, 𝑑
1

1
, . . . , 𝑑

1

𝑚
, 𝑑
2

0
, 𝑑
2

1
, . . . , 𝑑

2

𝑚
thus

determined, we consider the polynomials:

𝑇
1

𝑚
(𝑡) =

𝑚

∑

𝑘=0

𝑑
1

𝑘
⋅ 𝑡
𝑘

, 𝑇
2

𝑚
(𝑡) =

𝑚

∑

𝑘=0

𝑑
2

𝑘
⋅ 𝑡
𝑘

, 𝑚 > 1. (11)

The following convergence theorem holds.

Theorem 4. The necessary condition for problem ((1), (2))
to admit sequences of polynomials 𝑃

𝑗

𝑚
(𝑡) convergent to the

solution of this problem is

lim
𝑚→∞

∫

𝑏

0

D
2

𝑗
(𝑇
1

𝑚
(𝑡) , 𝑇
2

𝑚
(𝑡)) 𝑑𝑡 = 0. (12)

Moreover, ∀𝜖 > 0, ∃𝑚
0

∈ N, such that, ∀𝑚 ∈ N, 𝑚 >

𝑚
0
, it follows that 𝑇𝑗

𝑚
(𝑡), 𝑗 = 1, 2, are weak 𝜖-approximate

polynomial solutions of problem ((1), (2)).

Proof. Based on the way the coefficients of the polynomials
𝑇
𝑗

𝑚
(𝑡) are computed and taking into account relations ((9)–

(11)), the following inequality holds:

0 ≤ ∫

𝑏

0

D
2

𝑗
(𝑇
1

𝑚
(𝑡) , 𝑇
2

𝑚
(𝑡)) 𝑑𝑡

≤ ∫

𝑏

0

𝑛

∑

𝑗=1

D
2

𝑗
(𝑃
1

𝑚
(𝑡) , 𝑃
2

𝑚
(𝑡)) 𝑑𝑡, ∀𝑚 ∈ N.

(13)

It follows that

0 ≤ lim
𝑚→∞

∫

𝑏

0

D
2

𝑗
(𝑇
1

𝑚
(𝑡) , 𝑇
2

𝑚
(𝑡)) 𝑑𝑡

≤ lim
𝑚→∞

∫

𝑏

0

𝑛

∑

𝑗=1

D
2

𝑗
(𝑃
1

𝑚
(𝑡) , 𝑃
2

𝑚
(𝑡)) 𝑑𝑡 = 0, ∀𝑚 ∈ N.

(14)

We obtain

lim
𝑚→∞

∫

𝑏

0

D
2

𝑗
(𝑇
1

𝑚
(𝑡) , 𝑇
2

𝑚
(𝑡)) 𝑑𝑡 = 0. (15)

From this limit we obtain that, ∀𝜖 > 0, ∃𝑚
0

∈ N such
that, ∀𝑚 ∈ N, 𝑚 > 𝑚

0
, it follows that 𝑇𝑗

𝑚
(𝑡) are weak 𝜖-

approximate polynomial solutions of problem ((1), (2)), 𝑗 =

1, 2.

Remark 5. Any 𝜖-approximate polynomial solutions of prob-
lem ((1), (2)) are also weak 𝜖

2

⋅ 𝑏-approximate polynomial
solutions, but the opposite is not always true. It follows that
the set of weak approximate solutions of problem ((1), (2))
also contains the approximate solutions of the system.
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Figure 1: Approximations for 𝑥(𝑡) in the case 𝛼
1
= 𝛼
2
= 0.98.

Taking into account the above remark, in order to find
𝜖-approximate polynomial solutions of problem ((1), (2)) by
PLSM we will first determine weak approximate polynomial
solutions, 𝑥(𝑡), 𝑦(𝑡). If |D

𝑗
(𝑥(𝑡), 𝑦(𝑡))| < 𝜖, 𝑗 = 1, 2, then

𝑥(𝑡), 𝑦(𝑡) are also 𝜖-approximate polynomial solutions of the
system.

3. Application: the Fractional-Order
Brusselator System

We consider the following fractional-order Brusselator sys-
tem [20]:

𝐷
𝛼
1

𝑡
𝑥 (𝑡) = −2 ⋅ 𝑥 (𝑡) + 𝑥 (𝑡)

2

⋅ 𝑦 (𝑡) ,

𝐷
𝛼
2

𝑡
𝑦 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡)

2

⋅ 𝑦 (𝑡) ,

(16)

together with the initial conditions:

𝑥 (0) = 1, 𝑦 (0) = 1. (17)

In [20] approximate solutions of (17) are computed using
the Variational Iteration Method (VIM) for the case 𝛼

1
=

𝛼
2

= 0.98. Also, a comparison with numerical solutions is
presented for the particular case 𝛼

1
= 𝛼
2
= 1, illustrating the

applicability of the method.

3.1. The Case 𝛼
1
= 𝛼
2
= 0.98. For the case 𝛼

1
= 𝛼
2
= 0.98,

using PLSMwith𝑚 = 3, we obtain the following approximate
polynomial solutions:

𝑥PLSM (𝑡) = 0.0243682 ⋅ 𝑡
3

+ 0.311138 ⋅ 𝑡
2

− 1.08655 ⋅ 𝑡 + 1

𝑦PLSM (𝑡) = − 0.184414 ⋅ 𝑡
3

+ 0.333424 ⋅ 𝑡
2

+ 0.0349127 ⋅ 𝑡 + 1.

(18)

In Figures 1 and 2 we compare these approximations
with the corresponding approximations of the same order
computed by VIM (relations (15) in [20]), obtaining a good

1.05

1.10

1.15

0.2 0.4 0.6 0.8 1.0

y(t) VIM
y(t) PLSM

Figure 2: Approximations for 𝑦(𝑡) in the case 𝛼
1
= 𝛼
2
= 0.98.
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Figure 3:The remainders corresponding to the first equation for the
case 𝛼

1
= 𝛼
2
= 0.98.

agreement. In Figures 3 and 4 we compare the expressions
of remainders (4) obtained by replacing the approximate
solutions back in the equations. It is easy to observe that the
errors obtained by using PLSM are smaller than the ones
obtained by using VIM.

3.2. The Case 𝛼
1

= 𝛼
2

= 1. For the case 𝛼
1

= 𝛼
2

= 1,
using PLSMwith𝑚 = 3we obtain the following approximate
polynomial solutions:

𝑥PLSM (𝑡) = 0.0750974 ⋅ 𝑡
3

+ 0.201028 ⋅ 𝑡
2

− 1.02827 ⋅ 𝑡 + 1

𝑦PLSM (𝑡) = − 0.180088 ⋅ 𝑡
3

+ 0.334087 ⋅ 𝑡
2

+ 0.0271107 ⋅ 𝑡 + 1.

(19)

In this case both approximations (VIM and PLSM)
consist of third-order polynomials.

We omitted the figures which compare our approxima-
tions with the ones given by VIM since they look almost the
same as the corresponding ones from the case 𝛼

1
= 𝛼
2
= 0.98.

However, in the case 𝛼
1
= 𝛼
2
= 1 it is possible to compute

the absolute error corresponding to an approximate solution
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Figure 4:The remainders corresponding to the second equation for
the case 𝛼

1
= 𝛼
2
= 0.98.
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Figure 5:The absolute errors corresponding to 𝑥(𝑡) for the case𝛼
1
=

𝛼
2
= 1.

as the difference in absolute value between the approximate
solution and the numerical solution (in this case computed
by using the Wolfram Mathematica software).

Figures 5 and 6 present the comparison between the abso-
lute errors corresponding to the approximate solutions from
[20] obtained by VIM and the absolute errors corresponding
to our approximate solutions.

Again, it is easy to observe that the errors obtained by
using PLSMare smaller than the ones obtained by usingVIM.

4. Conclusions

In this paper we present the Polynomial Least Squares
Method, which is a relatively straightforward and efficient
method to compute approximate solutions for the fractional-
order Brusselator system.

The comparison with previous results illustrates the
accuracy of the method, since we were able to compute more
precise approximations than the previously computed ones.

In closing we mention the fact that, due to the nature of
themethod, it is relatively easy to extendPLSM for the general

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.2 0.4 0.6 0.8 1.0

Absolute error of y(t) VIM
Absolute error of y(t) PLSM

Figure 6:The absolute errors corresponding to𝑦(𝑡) for the case𝛼
1
=

𝛼
2
= 1.

case of fractional systems of 𝑛 ≥ 3 nonlinear differential
equations.
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