Applied Mathematical Sciences, Vol. 7, 2013, no. 24, 1191-1193
 HIKARI Ltd, www.m-hikari.com

The Minimum Test Collection Problem

Anna Gorbenko
Department of Intelligent Systems and Robotics
Ural Federal University
620083 Ekaterinburg, Russia
gorbenko.ann@gmail.com
Vladimir Popov
Department of Intelligent Systems and Robotics
Ural Federal University
620083 Ekaterinburg, Russia
Vladimir.Popov@usu.ru

Abstract

In this paper we consider an approach to solve the minimum test collection problem. This approach is based on an explicit reduction from the problem to the satisfiability problem.

Keywords: minimum test collection problem, satisfiability, NP-complete

Investigation of different regularities plays an important role for the detection of various knowledge (see e.g. [1] - [8]). In particular, the minimum test collection problem can be used for rapid identification of unknown pathogens (see e.g. [9]). Let

$$
\begin{gathered}
D=\{D[1], \ldots, D[n]\} \\
T=\{T[1], \ldots, T[m] \mid T[i] \subseteq D\}
\end{gathered}
$$

The minimum test collection problem (MTC):
Instance: Given a set D and a positive integer d.
Question: Is there a set

$$
S \subseteq T
$$

such that $|S| \leq d$ and for any $1 \leq i<j \leq n$, there is $T[k] \in S$ such that

$$
|\{D[i], D[j]\} \cap T[k]|=1 ?
$$

Note that MTC is NP-complete (see e.g. [10]). Encoding hard problems as instances of SAT and solving them with different efficient satisfiability algorithms has caused considerable interest (see e.g. [11] - [15]). In this paper, we consider an approach to solve the MTC problem. Our approach is based on an explicit reduction from the problem to the satisfiability problem. Let

$$
\begin{gathered}
\varphi[1]=\wedge_{1 \leq i \leq d} \vee_{1 \leq j \leq m} x[i, j], \\
\varphi[2]=\wedge_{1 \leq i \leq d} \wedge_{1 \leq j[1]<j[2] \leq m}(\neg x[i, j[1]] \vee \neg x[i, j[2]]), \\
\varphi[3]=\wedge_{1 \leq i \leq d} \wedge_{1 \leq j \leq m} \wedge_{1 \leq k \leq n, D[k] \in T[j]}(\neg x[i, j] \vee y[i, k], \\
\varphi[4]=\wedge_{1 \leq i<j \leq n} \vee_{1 \leq k \leq d} z[i, j, k], \\
\varphi[5]=\wedge_{\substack{1 \leq i<j \leq n \\
1 \leq k \leq d}}((\neg z[i, j, k] \vee y[k, i] \vee y[k, j]) \wedge(\neg z[i, j, k] \vee \neg y[k, i] \vee \neg y[k, j])) .
\end{gathered}
$$

Let $\xi=\wedge_{i=1}^{5} \varphi[i]$. It is easy to check that there is a set $S \subseteq T$ such that $|S| \leq d$ and for any $1 \leq i<j \leq n$, there is $T[k] \in S$ such that $|\{D[i], D[j]\} \cap T[k]|=1$ if and only if ξ is satisfiable. It is clear that ξ is a CNF. So, ξ gives us an explicit reduction from MTC to SAT. Now, using standard transformations (see e.g. [16]) we can obtain an explicit transformation ξ into ζ such that $\xi \Leftrightarrow \zeta$ and ζ is a 3-CNF. Clearly, ζ gives us an explicit reduction from MTC to 3SAT. In papers $[17,18]$ the authors considered some satisfiability algorithms. Our computational experiments have shown that these algorithms can be used to solve MTC.

ACKNOWLEDGEMENTS. The work was partially supported by Analytical Departmental Program "Developing the scientific potential of high school" 8.1616.2011.

References

[1] V. Popov, The approximate period problem for DNA alphabet, Theoretical Computer Science, 304 (2003) 443-447.
[2] A. Gorbenko and V. Popov, Multiple Occurrences Shortest Common Superstring Problem, Applied Mathematical Sciences, 6 (2012) 6573-6576.
[3] V. Popov, Approximate Periods of Strings for Absolute Distances, Applied Mathematical Sciences, 6 (2012) 6713-6717.
[4] V. Popov, The Approximate Period Problem, IAENG International Journal of Computer Science, 36 (2009) 268-274.
[5] V. Popov, Multiple genome rearrangement by swaps and by element duplications, Theoretical Computer Science 385 (2007) 115-126.
[6] A. Gorbenko and V. Popov, The Binary Paint Shop Problem, Applied Mathematical Sciences, 6 (2012) 4733-4735.
[7] V. Yu. Popov, Computational complexity of problems related to DNA sequencing by hybridization, Doklady Mathematics, 72 (2005) 642-644.
[8] A. Gorbenko and V. Popov, Self-Learning Algorithm for Visual Recognition and Object Categorization for Autonomous Mobile Robots, Lecture Notes in Electrical Engineering, 107 (2012), 1289-1295.
[9] G. Lancia and R. Rizzi, The approximability of the String Barcoding problem, Algorithms for Molecular Biology, 1 (2006), 12.
[10] M.R. Garey and D.S. Johnson. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman \& Co., New York, NY, USA, 1979.
[11] A. Gorbenko and V. Popov, The Far From Most String Problem, Applied Mathematical Sciences, 6 (2012) 6719-6724.
[12] A. Gorbenko and V. Popov, The set of parameterized k-covers problem, Theoretical Computer Science, 423 (2012) 19-24.
[13] A. Gorbenko and V. Popov, The Longest Common Parameterized Subsequence Problem, Applied Mathematical Sciences, 6 (2012) 2851-2855.
[14] A. Gorbenko and V. Popov, On the Longest Common Subsequence Problem, Applied Mathematical Sciences, 6 (2012) 5781-5787.
[15] A. Gorbenko and V. Popov, The Hamiltonian Alternating Path Problem, IAENG International Journal of Applied Mathematics, 42 (2012) 204-213.
[16] A. Gorbenko and V. Popov, The c-Fragment Longest Arc-Preserving Common Subsequence Problem, IAENG International Journal of Computer Science, 39 (2012), 231-238.
[17] A. Gorbenko and V. Popov, Computational Experiments for the Problem of Selection of a Minimal Set of Visual Landmarks, Applied Mathematical Sciences, 6 (2012), 5775-5780.
[18] A. Gorbenko and V. Popov, Task-resource Scheduling Problem, International Journal of Automation and Computing, 9 (2012), 429-441.

Received: December 3, 2012

