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Abstract. Expository notes which combine a historical survey of the develop-

ment of quantum physics with a review of selected mathematical topics in quan-

tization theory (addressed to students that are not complete novices in quantum

mechanics).

After recalling in the introduction the early stages of the quantum revolution,

and recapitulating in Section 2.1 some basic notions of symplectic geometry, we

survey in Section 2.2 the so called prequantization thus preparing the ground

for an outline of geometric quantization (Section 2.3). In Section 3 we ap-

ply the general theory to the study of basic examples of quantization of Kähler

manifolds. In Section 4 we review the Weyl and Wigner maps and the work

of Groenewold and Moyal that laid the foundations of quantum mechanics in

phase space, ending with a brief survey of the modern development of defor-

mation quantization. Sect. 5 provides a review of second quantization and its

mathematical interpretation. We point out that the treatment of (nonrelativistic)

bound states requires going beyond the neat mathematical formalization of the

concept of second quantization. An appendix is devoted to Pascual Jordan, the

least known among the creators of quantum mechanics and the chief architect

of the “theory of quantized matter waves”.

PACS codes: 03.65.-w, 01.65.+g

1 Introduction: Historical Remarks

Quantum mechanics – old and new – has been an active subject for nearly a

century. Even if we only count textbooks the number is enormous – and keeps

growing. My favourite is Dirac’s [D30]. These notes are addressed to readers

∗First part of a famous aphorism of Edward Nelson that ends with “but second quantization is a

functor”. To quote John Baez [B06] “No one is a true mathematical physicist unless he can explain”

this saying. Bures-sur-Yvette preprint IHES/P/12/01.
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with a taste in the history of the subject and in its mathematical foundations. An

early monograph on the mathematical meaning of quantum mechanics is John

von Neumann’s [vN]. For more recent texts – see [FY, Mac, T] among many

others. The latter book also contains a well selected bibliography. Sources on

the history of the subject include [MR, Dar, Sch, PJ07].

1.1 First Steps in the Quantum Revolution

Quantum theory requires a new conceptual basis. Such a drastic change of the

highly successful classical mechanics and electrodynamics was justified by the

gradual realization at the turn of 19th century that they are inadequate in the

realm of atomic phenomena. Four theoretical breakthroughs prepared the cre-

ation of quantum mechanics.

1900: Following closely the Rubens-Kurlbaum experiments in Berlin Max

Planck (1858-1947) found the formula for the spectral density ρ(ν, T ) of the

black-body radiation as a function of the frequency ν and the absolute tempera-

ture T :

ρ(ν, T ) =
8πhν3

c3
1

eβhν − 1
, β =

1

kT
. (1.1)

Here k is Boltzmann’s1 constant, h is the Planck’s constant representing the

quantum of action (that becomes a hallmark of all four breakthroughs reviewed

here). It looks like a miracle that such a formula should have been found empiri-

cally. At the time of its discovery nobody seems to have realized that it is closely

related to the well known generating function of the Bernoulli2 numbers, and,

more recently, to modular forms. (For a derivation based on the theory of free

massless quantum fields on conformally compactified space that emphasizes the

relation to modular forms – see [NT]; it has been also related to index and signa-

ture theorems – see e.g. [H71] Section 2.) Planck did not stop at that. He found

the prerequisites for its validity (wild as they sounded at that time). First he

assumed that the energy consists of finite elements, quanta proportional to the

frequency ν of the light wave, ǫ = hν. Secondly, he recognized that the quanta

should be indistinguishable, thus anticipating the Bose-Einstein statistics, dis-

covered more than two decades later (see [P] Section 19a).That is how Planck,

conservative by nature, started, at the age of 42, the scientific revolution of the

20th century.

1905: Albert Einstein (1879-1955) was the first to appreciate the revolutionary

character of Planck’s work. The light-quantum is real: it may kick electrons

1Ludwig Boltzmann (1844-1906) founded the statistical interpretation of thermodynamics which

Planck originally tried to overcome. The expression for the entropy in terms of probability S =
k log W is carved on Boltzmann’s gravestone in Vienna (see [Bl]).

2Jacob Bernoulli (1654-1705) is the first in the great family of Basel’s mathematicians. The

Bernoulli numbers appear in his treatise Ars Conjectandi on the theory of probability, published

posthumously, in 1713.
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out of a metal surface, thus giving rise to the photoelectric effect. One can

judge how far ahead of his time Einstein went with his bold hypothesis by the

following comment of Planck et al. who recommended him, in 1913, for mem-

bership in the Prussian Academy: “In sum, ... there is hardly one among the

great problems in which modern physics is so rich, to which Einstein has not

made a remarkable contribution. That he may sometimes have missed the tar-

get, as, for example, in his hypothesis of light-quanta, cannot really be held too

much against him ...” ( [P], 19f). Robert Milikan (1868-1953) who confirmed

Einstein’s prediction in 1915 (Nobel Prize in 1923) could not bring himself to

believe too in the “particles of light”. Even after Einstein was awarded the Nobel

Prize in 1921 “especially for his work on the photoelectric effect” leading physi-

cists (like Bohr, Kramers3 and Slater) continued to feel uncomfortable with the

wave-particle duality.

1911-13: As Ernest Rutherford (1871-1937) established in 1911 the planetary

atomic model: light electrons orbiting around a compact, massive, positively

charged nucleus, a highly unstable structure according to the laws of classical

electrodynamics, it became clear that atomic physics requires new laws. Niels

Bohr realized in 1913 that the emission and absorption spectra, the fingerprints

of the atoms ( [B05]), can be explained as transitions between stationary states4

and he derived Balmer’s formula for the spectrum of the hydrogen atom (see

[P86] 9(e)). In the words of the eloquent early textbook on quantum mechanics,

[D30], “We have here a very striking and general example of the breakdown

of classical mechanics - not merely an inaccuracy of its laws of motion but an

inadequacy of its concepts to supply us with a description of atomic events.”

1923-24: Inspired by the coexistence of wave-particle properties of light quanta,

Louis-Victor, prince de Broglie (1892-1987) predicted the wave properties of all

particles. His prediction was confirmed in 1927 by two independent experiments

on electron diffraction. De Broglie was awarded the Nobel Prize in Physics in

1929.

1.2 The Glorious Years: 1925-1932

Whenever we look back at the development of phys-

ical theory in the period between 1925 and 1930 we

feel the joy and the shock of the miraculous.

Rudolf Haag

Quantum mechanics appeared in two guises: Werner Heisenberg (1901-1976)

and Paul Dirac (1902-1984) thought it as a particle theory, Louis de Broglie and

Erwin Schrödinger (1887-1961) viewed it as a wave mechanics [Sch]. Although

3The Dutch physicist Hendrik Anthony (“Hans”) Kramers (1894-1952) was for nearly 10 years,

1916-26, the senior collaborator of Niels Bohr (1885-1962) in Copenhagen.
4In 1910 the Austrian physicist Arthur Haas (Brno, 1884 – Chicago,1941) anticipated Bohr’s

model in his PhD thesis. His result was originally ridiculed in Vienna. Bohr received the Nobel

Prize for his model of the atom in 1922.
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their equivalence was recognized already by Schrödinger, only the transforma-

tion theory provided a general setting for seeing the competing approaches as

different representations/pictures of the same theory. It was developed chiefly

by Pascual Jordan and Dirac (see Appendix).

In July 1925 a hesitating Heisenberg handed to his Göttingen professor Max

Born (1882-1970) the manuscript of a ground breaking paper5 “Quantum the-

oretical reinterpretation of kinematic and mechanical relations” (for an English

translation with commentary – see [SQM]) – and left for Leyden and Cambridge.

Heisenberg ends his paper with an invitation for “a deeper mathematical study of

the methods used here rather superficially”. Born soon recognized that Heisen-

berg was dealing without realizing it with matrix multiplication. He shared his

excitement with his former assistant, Wolfgang Pauli (1900-1958), asking him to

work out together the proper mathematical reformulation of Heisenberg’s idea,

but Pauli answered in his customary irreverent style: “Yes, I know, you are fond

of tedious and complicated formalism. You are only going to spoil Heisenberg’s

physical ideas with your futile mathematics.” ( [Sch] p. 8). Only then Born made

the right choice turning to the 22-year-old Jordan. It was Jordan who, following

the idea of his mentor, first proved what is now called “the Heisenberg commu-

tation relation”, 2πi(pq − qp) = h – and is carved on the gravestone of Born.

Dirac, who discovered it independently during the same 1925, related it to the

Poisson6 bracket {q, p} = 1. Unlike his friend Pauli, Heisenberg welcomed the

development of the apparatus of matrix mechanics. Decades later he speaks of

the lesson drawn from revealing the nature of noncommutative multiplication:

“If one finds a difficulty in a calculation which is otherwise quite convincing, one

should not push the difficulty away; one should rather try to make it the centre of

the whole thing.“ ( [MR] 3, III.1). Before Born-Jordan’s paper was completed he

began participating in the work – first with letters to Jordan from Copenhagen.

The collaboration (Dreimännerarbeit – the work of the three men [BHJ]) was

fruitful albeit not easy. Heisenberg believed that they should start with physi-

cally interesting applications rather than first expanding the apparatus, including

the theory of the electromagnetic field, as Born and Jordan were proposing. He

insisted that they just postulate the canonical commutation relations (CCR) for

a system of n degrees of freedom ( [MR] 3, III.1)7:

i[pj , qk] = ~δjk (~ =
h

2π
) , [pj , pk] = 0 = [qj , qk] , j, k = 1, 2, ..., n , (1.2)

rather than to try to derive them from the Hamiltonian equations of motion, fol-

lowing the wish of his coauthors. After a quarter of a century, Wigner8 returned

5Conceived (after a 7 months stay at Copenhagen) while he was recovering from hay fever on

Helgoland, a tiny island in the North Sea - see [T05].
6Siméon-Denis Poisson (1781-1840) introduced in his Traité de mécanique, 1811, the notion of

momentum p = ∂T/∂q̇, T being the kinetic energy.
7The reduced Planck’s constant ~ was introduced by Dirac in his book [D30].
8Jeno (later Eugene) Wigner (Budapest, 1902 – Princeton, 1995) was awarded the Nobel Prize

in Physics in 1963.
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to the question ”Do the equations of motion determine the quantum mechan-

ical commutation relations?” (Phys. Rev. 1950). It triggered the discovery of

parastatistics (by Green, Messiah, Greenberg) and their super Lie-algebraic gen-

eralization (by Palev). The last section, devoted to radiation theory, was written

by Jordan alone ( [MR] 3, IV.2). It contains the first quantum mechanical deriva-

tion of Planck’s black-body-radiation formula, a topic belonging to the realm of

quantum electrodynamics. Decades later, in 1962, talking to Van der Waerden

(the editor of [SQM], 1903-1995), Jordan says that this is his single most impor-

tant contribution to quantum mechanics, a contribution that remained unknown

and unappreciated.

A week before the appearance of [BHJ], on January 27, 1926, in the wake of

an inspiring vacation, Schrödinger submitted the first of a series of four papers

entitled “Quantization as an eigenvalue problem”. Just because his formulation

of wave mechanics based on an “wave equation” is looking quite different from

the picture, drown by Heisenberg, Born, Jordan and Dirac, it widened the scope

of quantum theory and made it ultimately more flexible.

1.3 Beginning of a Mathematical Understanding

Mathematicians are like Frenchmen: whatever you

tell them they translate into their own language and

forthwith it becomes something entirely different.

J.W. Goethe (1749-1832)

After Dirac discovered the simple relation between commutators and Poisson

brackets (PB) of coordinates and momenta,

[q, p] = i~{q, p} (= i~), (1.3)

it appeared tempting to postulate a similar relation for more general observables

(that is, real functions on phase space9). This leads immediately to an ordering

problem. The simple commutation relation (CR)

1

2
[q2, p2] = i~(qp+ pq) (1.4)

suggests using suitably symmetrized products10. This indeed allows to fit the

simple-minded quantization rule in the case of second degree polynomials of p
and q. For general cubic polynomials, f(p, q), g(p, q) (and canonical PB – see

Section 2.1) one cannot always have a relation of the type

[f, g] = i~{f, g} (1.5)

9The story of the appearance of the concept of phase space in mechanics, or rather, the tangled

tale of phase space is told in [N].
10A systematic completely symmetrized ordering (see Section 4.1) was introduced in [We] by

Hermann Weyl (1885-1955), a student of David Hilbert (1862-1943), whose fame as one of the last

universal mathematicians approaches that of his teacher.
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no matter how f, g and the right hand side are ordered.11 The property of be-

ing quadratic (or linear), on the other hand, is not invariant under canonical

transformations. “One cannot expect to be able to quantize a symplectic man-

ifold without some additional structure” [GW]. (A general result of this type

was established over two decades after the discovery of quantum mechanics –

see [G46, V51].) One can at best select a subset of observables for which (1.5)

is valid. If the problem admits a continuous symmetry then it is wise to choose

its Lie algebra generators among the selected dynamical variables. The above

mentioned example of (symmetric) quadratic polynomials in p and q is of this

type: for a system of n degrees of freedom these polynomials span the Lie al-

gebra sp(2n,R) corresponding to a projective representation of the real sym-

plectic group Sp(2n,R) that is a true representation of its double cover12, the

metaplectic group Mp(2n), the authomorphism group of the CCR (1.2). It is a

noncompact simple Lie group whose nontrivial unitary irreducible representa-

tions (UIR) are all infinite dimensional. Another physically important example,

considered by Jordan and Heisenberg in [BHJ] is the angular momentum – the

hermitean generators of the Lie algebra so(3) of the (compact) rotation group

(and of its two-fold cover SU(2) that gives room to a half-integer spin13 s):

M = r × p + s , [Mx,My] = i~Mz etc. (Mz = xpy − ypx + sz). (1.6)

The following elementary exercise recalls how the representation theory of com-

pact Lie groups and the CR (1.6) can be used to compute the joint spectrum of

Mz and M2 := M2
x +M2

y +M2
z (which commute among themselves).

Exercise 1.1 (a) Use the form

[Mz,M±] = ±~M± , [M+,M−] = 2~Mz for M± = Mx ± iMy (1.7)

of the CR (1.6) to prove that the spectrum of Mz in any irreducible (finite di-

mensional) representation of SU(2) has the form

(Mz−m~)|j,m〉 = 0 , m = −j, 1−j, . . . , j−1, j , j = 0,
1

2
, 1,

3

2
, . . . (1.8)

(b) Use the relation

M2 = M2
z +

1

2
(M+M− +M−M+) = M2

z + ~Mz +M+M− (1.9)

to prove that (M2 − j(j + 1)~2)|j,m〉 = 0.

(Hint: use the relation M−|j,−j〉 = 0(= M+|j, j〉).)
11The equation (1.5) does have a solution in terms of vector fields that will be displayed in Sec-

tion 2.2 below; we shall also explain why this solution is physically unsatisfactory.
12That is not a matrix group; more about Mp(2n) and its applications can be found in the mono-

graphs [F, deG] as well as in Sections 3 and 4 of [T10] and references therein.
13The story of spin is told in [Tom]; for its relation to Clifford algebras – see [T11].
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In general, however, there is no “optimal algorithm” to quantize a given classical

system. That’s why it is often said that quantization is an art14 Here are three

examples in which we know what quantization means. The most familiar one is

M = R
2n equipped with the canonical symplectic form

ω = dp ∧ dq =

n
∑

j=1

dpj ∧ dqj , (1.10)

with a given choice of affine structure in which pi and qj are linear functions on

M . Another important example is a cotangent bundleM = T ∗Q, equipped with

a contact form θ = pdq, q ∈ Q, p ∈ T ∗
q Q, which can be quantized in a natural

way in terms of a half-density on Q. Similarly, there is a natural procedure to

quantize a Kähler 15 manifold (see Section 2.1) by taking holomorphic sections

of the appropriate line bundle. These examples partly overlap. We may, for

instance, introduce a complex structure on R
2n setting

√
2zj = qj − ipj ⇒ dp ∧ dq = idz ∧ dz̄. (1.11)

These two ways of viewing the classical phase space are not exactly equivalent,

however. Each new structure reduces the natural invariance group of the theory.

If the group preserving the affine structure of R
2n is GL(2n,R), the symmetry

group of the Kähler form (1.11) is its subgroup U(n) - the intersection of the

orthogonal and the real symplectic subgroups of GL(2n,R) : U(n) ≃ O(2n)∩
Sp(2n,R).

2 Introduction to Geometric Quantization

We begin with Baez’s explanation [B06] why quantization is a mystery.

“Mathematically, if quantization were ’natural’ it would have been a func-

tor from the category Symp whose objects are symplectic manifolds (=phase

spaces) and whose morphisms are symplectic maps (=canonical transforma-

tions) to the category Hilb whose objects are Hilbert spaces and whose mor-

phisms are unitary operators.” Actually, there is a functor from Symp to Hilb
which assigns to each (2n-dimensional) symplectic manifold M (or (M,ω)) the

Hilbert space L2(M) (with respect to the measure associated with the symplec-

tic form ω on M , given by (1.10) in the simplest case of an affine phase space).

14Words Ludwig Faddeev used in the discussion after Witten’s talk on [GW] in Lausanne, March,

2009, alluding to the Lax ordering in the quantization of integrable systems [F]. A year later Witten’s

student used the same words as a title of Section 2 of [G10].
15The German mathematician Erich Kähler (1906-2000) introduced his hermitean metric in 1932

while at the University of Hamburg. See about his work and personality R. Brendt, O. Riemenschnei-

der (eds), E. Kähler, Mathematical Works, de Gruyter, Berlin 2003; see in particular the articles by

S.-S. Chern and by R. Brendt and A. Bohm. The quantization of Kähler manifolds is a lively subject

of continuing interest – see, e.g. [AdPW,Hi,GW,W10,G10]. We shall survey it in Section 3, below.
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This is the so called prequantization which will be sketched in Section 2.2 be-

low.16

2.1 Elements of Symplectic Geometry

Hamiltonian Mechanics is geometry in phase space.

Vladimir Arnold (1937-2010), 1978.

The language of categories. The reader should not be scared of terms like cat-

egory and functor: this language, introduced by Eilenberg and MacLane and

developed by Grothendieck and his school, has become quite common in mod-

ern mathematics and appears to be natural for an increasing number of prob-

lems in mathematical physics - including quantization (and homological mirror

symmetry - cf. [G10]). For a friendly introduction - see [B06]; among more

advanced mathematical texts the introductory material of [GM], including the

first two chapters, is helpful. We recall, for reader’s convenience, a couple of

informal definitions. A category C consists of a class of objects, X,Y ∈ C
and of non-intersecting sets of maps Hom(X,Y ), called morphisms and de-

noted as ϕ : X → Y whose composition is associative. We note that the def-

inition of a category only involves operations on morphisms, not on objects.

A functor F : C → D between two categories is a map X → F (X) be-

tween objects, together with a map ϕ → F (ϕ) between morphisms, such that

F (ϕψ) = F (ϕ)F (ψ) whenever ϕψ is defined; in particular, F (idX) = idF (X).

An important example is the fundamental group which may be viewed as a func-

tor from the category of topological spaces to the category of groups (with the

corresponding homomorphims as morphisms).

We proceed to defining some basic notions of symplectic differential geometry,

a subject of continuing relevance for mathematical physics, with a wealth of

competing texts – see, for instance, [Br, CdS, deG, F, M, V].

The tangent bundle TM of a differentiable manifold M is spanned by vector

fields or directional derivatives, – i.e., first order homogeneous differential op-

erators Xi(x)∂i that are linear combinations of the derivatives ∂i := ∂
∂xi in the

neighbourhood of each point with local coordinates xi. The cotangent bundle

consists of 1-forms, spanned by the differentials dxi viewed as linear functionals

on vector fields, such that

dxi(∂j) = (dxi, ∂j) = δi
j (δi

j = diag(1, ..., 1)), for ∂j =
∂

∂xj
. (2.1)

16For a reader’s friendly review of various quantization methods (and a bibliography of 266 ti-

tles) – see [AE]. For later more advanced texts on prequantization – see [WZ, ZZ]; prequantization

is the first step to the geometric quantization [Wo] of Kostant and Souriau that grew out of Kirillov’s

orbit method [K99]. It is reviewed in the very helpful lecture notes [B], available electronically,

and is the subject of recent research [H90, AdPW]; it is also briefly discussed among other modern

approaches to quantization in [GW, G10].
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One also assumes that ∂i anticommutes with dxj . Denoting the contraction with

a vector field X by X̂ we shall have, for instance,

∂̂qdp ∧ dq = −dp. (2.2)

We note that a contraction of a vector field X with a differential form ω is more

often written as iXω. One also uses the notion of a tensor field T r
s (x) (con-

travariant of rank r and covariant of rank s) defined as an element of the tensor

product (TxM)r ⊗ (T ∗
xM)s (smoothly depending on x). In constructing higher

rank exterior differential forms we use the anticommutativity of d with odd dif-

ferentials; if r is the rank of the form ωr, then:

d(ωr ∧ α) = (dωr) ∧ α+ (−1)rωr ∧ dα (d2 = 0). (2.3)

We say that ωr is a closed form if dωr = 0; it is called exact if there exist an

(r−1)-form θ such that ωr = dθ. Denoting the additive group of closed r-forms

by Cr and its subgroup of exact forms (boundaries) by Br we define the r-th

cohomology group as the quotient group

Hr(M)(= Hr(M,R)) = Cr/Br. (2.4)

Another important concept, the Lie17 derivative LX along a vector fieldX (for a

historical survey - see [Tr]), can be defined algebraically demanding that: (1) it

coincides with the directional derivative along X on smooth functions: LXf =
Xf ; (2) it acts as a derivation (i.e., obeys the Leibniz rule) on products of tensor

fields:

LXS ⊗ T = (LXS) ⊗ T + S ⊗ LXT ; (2.5)

(3) it acts by commutation on vector fields: LXY = [X,Y ]; (4) acting on a

differential form it satisfies Cartan’s18 magic formula

LXω = X̂dω + dX̂ω, in particular, LXdω = dLXω. (2.6)

A symplectic manifold: is defined as a manifold with a non-degenerate closed

2-form. (A non-degenerate 2-form ω on a 2n-dimensional manifold is char-

acterized by the fact that the corresponding Liouville19 volume form ω∧n is

nonzero.) If one writes the symplectic form in local coordinates as ω =
1
2ωijdx

i ∧ dxj , ωij = −ωji then the skew-symmetric matrix (ωij) is invert-

ible and its inverse, (Pij), defines Poisson brackets among functions on M :

{f, g} = Pij∂if∂jg for ∂i =
∂

∂xi
, Pikωkj = δi

j . (2.7)

17The Norvegian mathematician Sophus Lie (1842-1899) devoted his life to the theory of contin-

uous transformation groups.
18Élie Cartan (1869-1951) introduced the general notion of antisymmetric differential forms

(1894-1904) and the theory of spinors (1913); he completed in his doctoral thesis (1894) Killing’s

classification of semisimple Lie algebras.
19Joseph Liouville (1809-1882) proved that a Hamiltonian time evolution is measure preserving.

His contributions to complex analysis and to number theory are also famous.
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Each symplectic manifold is even dimensional and orientable. In the neighbour-

hood of each point it admits local Darboux20 coordinates (pi, q
j) in which the

symplectic form ω is given by the canonical expression (1.10).

To each function f on the symplectic manifold (M,ω) there corresponds a

Hamiltonian21 vector field Xf such that X̂fω := ω(Xf , .) = df(.). In the

above affine case it is given by:

Xf =
∂f

∂q

∂

∂p
− ∂f

∂p

∂

∂q
. (2.8)

The Poisson bracket between two functions on M is expressed in terms of the

corresponding vector fields as

{f, g} = Xfg = −Xgf = ω(Xg,Xf ) =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
. (2.9)

It follows that the commutator algebra of vector fields provides a representation

of the infinite dimensional Lie algebra of Poisson brackets:

[Xf ,Xg] = X{f,g}. (2.10)

A smooth manifold M equipped with a Poisson bracket (that is skew-symmetric

and satisfies the Jacobi identity) is called a Poisson manifold. It is clear from

(2.9) that the PB gives rise to a derivation on the algebra of smooth functions on

M which obeys the Leibniz22 rule, thus defining a Poisson structure:

{f, gh} = {f, g}h+ g{f, h}. (2.11)

Poisson manifolds (which are symplectic if and only if the matrix P that de-

fines a Poisson bivector is invertible) are the natural playground of deformaton

quantization (surveyed in Section 4 below).

A compact symplectic manifold should necessarily has a nontrivial second co-

homology group. It follows that a sphere S
n only admits a symplectic structure

for n = 2.

Exercise 2.1 Demonstrate that the 1-form

η1 = i
zdz̄ − z̄dz

2zz̄
=
xdy − ydx

x2 + y2
(2.12)

20Jean-Gaston Darboux (1842-1917) established the existence of canonical variables in his study

of the Pfaff problem in 1882.
21William Rowan Hamilton (1805-1865) introduced during 1827-1835 what is now called Hamil-

tonian but also the Lagangian formalism unifying mechanics and (geometric) optics. He invented

the quaternions (discussed in Section 3.3 below) in 1843.
22Gottfried Wilhelm Leibniz (1646-1716), mathematician-philosopher, a precursor of the sym-

bolic logic, codiscoverer of the calculus - together with Isaac Newton (1642-1727).
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in the punctured plane C
∗ = {z = x + iy, (x, y) ∈ R

2; r2 := x2 + y2 > 0}
is closed but not exact, albeit locally, around any non-zero point (x, y), it can be

written as a differential of a multivalued function,

η1 = dϕ forϕ = arcsin
y

r
= arccos

x

r
= arctan

y

x
. (2.13)

Prove that if η is an arbitrary element of H1(C∗), i.e. if
∫

S1 η = b 6= 0 then the

1-form η − b
2πη1 is exact. (Hint: use the fact that the integral of dϕ along the

unit circle is 2π.)

A (pseudo)Riemannian23 manifold is a real differentiable manifold M equipped

with a nondegenerate quadratic form g at each point x of the tangent space

TM that varies smoothly from point to point. We shall be mostly interested

in the case of Riemannian metric in which the form g is positive definite. An n-

dimensional complex manifold can be viewed as a 2n dimensional real manifold

equipped with an integrable complex structure - i.e., a vector bundle endomor-

phism J of TM (that is a tensor field of type (1, 1)) such that J2 = −1.

Such an endomorphism (i.e. a linear map of TM to itself) of square −1 is called

an almost complex structure. An almost complex structure J and a Riemannian

metric g define a hermitean24 structure if they satisfy the compatibility condition

g(JX, JY ) = g(X,Y ). (2.14)

Every almost hermitean manifold admits a nondegenerate fundamental 2-form

ω(= ωg,J):

ω(X,Y ) := g(X,JY ) ⇒ ω(X,Y ) = ω(JX, JY )

= g(JX, J2Y ) = −g(JX, Y ) = −g(Y, JX) = −ω(Y,X). (2.15)

If the almost complex structure is covariantly constant with respect to the Levi-

Civita25 connection then the fundamental form is closed (and hence symplectic):

▽J = 0 ⇒ dωg,J = 0 (2.16)

(and, moreover, the so called Nijenhuis tensor NJ (of rank (2, 1)), related to J ,

vanishes; this provides an integrability condition which is necessary and suffi-

cient for the almost complex structure to be a complex structure).

The endomorphism J of the tangent bundle TM defines an integrable complex

structure if M is a complex manifold with a holomorphic atlas (including holo-

morphic transition functions) on which the operator J acts as a multiplication

23The great German mathematician Bernhard Riemann (1826-1866) introduced what we now call

Riemannian geometry in his inaugural (in fact test) lecture in 1854. More about Riemann and his

work can be found in [Mo].
24Named after the French mathematician Charles Hermite (1822-1901), the first to prove that the

base e of natural logarithms is a transcendental number.
25The Italian mathematician Tullio Levi-Civita (1873-1941) is known for his work on absolute

differential (tensor) calculus.
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by i. A Kähler manifold is a Riemannian manifold with a compatible complex

structure. (Introductory lectures on complex manifolds in the context of Rie-

mannian geometry are available in [V]. For a more systematic study of Kähler

manifolds the reader may consult the lecture notes [Ba] and [M]. We shall deal

with the quantization of C
n as a Kähler manifold in Section 3.)

Complex forms admit a unique decomposition into a sum of (p, q)-forms that

are homogeneous of degree p in dzi and of degree q in dzj . The differential d
can be decomposed into Dolbeault differentials ∂ and ∂̄ which increase p and q,

respectively:

∂ = dz ∧ ∂

∂z
, ∂̄ = dz̄ ∧ ∂

∂z̄
(d = ∂ + ∂̄). (2.17)

Similarly, one defines the Dolbeault cohomology groups Hp,q .

2.2 Prequantization

We shall see that even this first, better understood step to quantization does not

always exist: it imposes some restrictions on the classical mechanical data; on

the other hand, it requires the addition of some extra structure (a comlex line

bundle) to it, whose properties may vary. In other words, when prequantization

is possible, it is not, in general, unique.

The functions on M play two distinct roles in the prequantization: first, the real

smooth functions f(p, q) span the Poisson algebra A of (classical) observables;

second, the “prequantum states” are vectors (complex functions Ψ(p, q) on M ,

square integrable with respect to the Liouville measure) in a Hilbert space H.

The prequantization requires to equip M with a complex line bundle L. An-

other fancy way to state this is to say that the wave function (both quantum

and “prequantum”) is a U(1)-torsor – only relative phases (belonging to U(1))
have a physical meaning. (For an elementary, physicist-oriented, introduction

to the notion of torsor – see [B09].) We are looking for a prequantization map

P : A → PA where PA is an operator algebra of “prequantum observables”

acting on H and satisfying:

(i) P(f) is linear in f and P(1) = 1 (the identity operator in H);

(ii) it maps the Lie algebra of Poisson brackets into a commutator algebra:

[P(f),P(g)] = i~P({f, g}) . (2.18)

(One may also assume a functoriality property - covariance under mapping of

one symplectic manifold to another - see e.g. requirement (Q4) in Section 3

of [AE].) The vector fields P(f) = i~Xf obey (2.18) but violate condition (i)

(since X1 = 0). There is, however, a (unique) inhomogeneous first order differ-

ential operator which does satisfy both properties for the affine phase space:

P(f) = i~Xf + f + θ(Xf ) , θ = pdq (ω = dθ) . (2.19)
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Exercise 2.2 Verify (using θ(Xf ) = −p∂f
∂p ) that

[P(f),P(g)] = P({f, g}). (2.20)

If we identify f with the classical Hamiltonian H then the term added to XH

is nothing but (minus) the Lagrangian: H − p∂H/∂p = −L. Viewing H as

the generator of time evolution and integrating in time we see that the resulting

phase factor in the wave function is highly reminiscent to the Feynman path

integral.

For the coordinate and momentum Eq. (2.19) gives, in particular,

P(q) = q + i~∂/∂p , P(p) = −i~∂/∂q . (2.21)

We observe that our prescription sends real observables f to hermitean opera-

tors26 (a requirement hidden in the correspondence with (1.3)):

(iii) P(f)∗ = P(f) for real smooth functions f(p, q).

The association f → P(f) is, nevertheless, physically unsatisfactory since it

violates simple algebraic relations between observables. For instance, the pre-

quantized image of the kinetic energy of a nonrelativistic particle,

H0 =
p2

2m
, p2 = p2

1 + p2
2 + p2

3, (2.22)

is

P(H0) = −i~∂pH0∂q −H0 6= H0(P(p)). (2.23)

The operator P(H0) violates, in particular, energy positivity.

The definition (2.19) applies whenever M is a cotangent bundle, M = T ∗Q, so

that the symplectic form is exact, ω = dθ. This is never the case for a compact

phase manifold (that would have had otherwise a zero volume). In general,

prequantization requires that ω/2π~ represents an integral cohomology class in

H2(M,R) – i.e., that its integral over any closed (orientable) 2-surface in M is

an integer. These are, essentially, the Bohr-Sommerfeld(- Wilson)27 quantization

conditions, discovered in 1915, before the creation of quantum mechanics. For

instance, a 2-sphere of radius r,S2
r is (pre)quantizable (for a fixed value of the

Planck constant ~) iff r = n~/2, n ∈ Z. In either case, the symplectic form does

not change if we add an exact form df to the contact form θ, satisfying (locally

or globally) dθ = ω. Such a change can be compensated by multiplying the

elements of our Hilbert space L2(M,ω) by the phase factor exp(if/~). This

26One actually needs selfadjoint operators in order to ensure reality of their spectrum but we

won’t treat here the subtleties with domains of the resulting unbounded operators.
27Bohr’s model was further developped by Arnold Sommerfeld (1868-1951). Four among his

doctoral students in Munich won the Nobel Prize in Physics. Sommerfeld himself was nominated

for the prize 81 times, more than any other physicist. The British physicist William Wilson (1875-

1965) discovered independently the quantization conditions in 1915.
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suggests that it is more natural to regard P (f) as acting on the space of sections

of a complex line bundle L overM equipped with a connection D of the form:

D = d− i

~
θ , d = dxi∂i , ∂i ≡

∂

∂xi
⇒

DX = X − i

~
θ(X) (X = Xi∂i , θ = θidx

i ⇒ θ(X) = θiX
i) , (2.24)

where X is an arbitrary (not necessarily Hamiltonian) vector field, xi are local

coordinates on M (and we use the summation convention for repeated indices).

The curvature form of this connection coincides with our symplectic form ω:

R(X,Y ) := i([DX ,DY ] −D[X,Y ]) =
1

~
(Xθ(Y ) − Y θ(X) − θ([X,Y ]))

=
1

~
dθ(X,Y ) =

1

~
ω(X,Y ). (2.25)

In order to get an idea how an integrality condition arises from the existence

of a hermitean connection compatible with the symplectic structure on a general

phase manifold we should think of an atlas of open neighbourhoods Uα covering

the manifold M . The quantum mechanical wave function is substituted by a

section of our complex line bundle. It is given by a complex valued function Φα

on each chart Uα and a system of transition functions gαβ for each non-empty

intersection Uαβ = Uα ∩ Uβ , such that Φα = gαβΦβ on Uαβ . Consistency for

double and triple intersections requires the cocycle condition:

gαβgβα = 1, gαβgβγgγα = 1. (2.26)

If the contact 1-forms θα are related in the intersection Uαβ of two charts by

θα = θβ +duαβ then the hermiticity of the connection and the cocycle condition

imply integrality of the (additive) cocycle of uαβ :

gαβ = exp(i
uαβ

~
) ⇒ uαβ + uβγ + uγα = hnαβγ where nαβγ ∈ Z. (2.27)

The theorem that the above stated integrality condition for the symplectic form

is necessary and sufficient for the existence of a hermitian line bundle L with a

compatible connection D whose curvature is ω goes back (at least) to the 1958

book of André Weil (1906-1998) [W].)

Looking at the example of the 2-sphere one can get the wrong impression that the

integrality condition for ω ∈ H2(M,R) can be always satisfied by just rescaling

the symplectic form. The simple example of the product of two spheres S
2
r × S

2
s

with incommensurate radii (i.e. for irrational r/s) shows that this is not the case:

there are (compact) symplectic manifolds that are not prequantizable.

The equivalence classes of prequantizations (whenever they exist) are given by

the first cohomology group of M with values in the circle group U(1) or equiv-

alently by the (U(1)-valued) characters of the fundametal group of M :

H1(M,U(1)) = π1(M)∗. (2.28)
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We shall illustrate this statement on the example of the cotangent bundle to the

circle, that is, on the cylindric phase space

M = T ∗
S

1 , ω = dp ∧ dϕ = dθ , θ = p dϕ , p ∈ R , 2πϕ ∈ R/Z. (2.29)

The fundamental group of the circle being π1(S
1) = Z the group of its charac-

ters coincides with U(1). We thus expect to have a continuum of inequivalent

prequantizations of (M,ω) labeled by elements of U(1). This can be realized

by adding to the connection D the closed form iλ dϕ (dϕ is not exact since

ϕ is not a global coordinate on the circle). Inserting this in (2.21) we find

Pλ(p) = ~λ − i~ ∂
∂ϕ which gives rise to λ-dependent inequivalent prequanti-

zations for λ ∈ [0, 1).

2.3 From Prequantization to Quantization

Now it doesn’t seem to be true that God cre-

ated a classical universe on the first day and

then quantized it on the second day.

John Baez [B06]

In spite of the necessary restrictions for its existence and of its non-uniqueness,

prequantization appears to provide a nice map from a sufficiently wide class of

complex line bundles over classical phase spaces to naturally defined operator

algebras on Hilbert spaces, so that our conditions (i), (ii) (involving Eq. (2.18))

and (iii) are indeed satisfied. This procedure does have a shortcoming of ex-

cess, however: the resulting prequantized algebra and the corresponding Hilbert

space are much too big. Matthias Blau, [B], includes in his list of desiderata the

following irreducibility requirement. Consider a complete set of classical ob-

servables, like pi and qj in the simplest case of an affine phase space, such that

every classical observable is a function of them; alternatively, we can character-

ize a complete set (f1, ..., fn) by the property that the only classical observables

which have zero Poisson brackets with all of them are the constants. Blau then

demands that their images (Q(f1), ..., Q(fn)) under the quantization map Q(f)
(from the algebra A of classical observables to the quantum operator algebra A~)

are operator irreducible, that is if an operator A in A~ commutes with all Q(fj)
then it should be a multiple of the identity. If we allow all operators in Hilbert

space L2(M,ω) then we see that the prequantization violates this condition: the

operator p − P(p) = p + i~ ∂
∂q commutes with all P(p),P(q) (without being

a multiple of the identity). One may disagree with this objection on the ground

that multiplication operator by p is not of the form P(f). The physical short-

coming, indicated in Section 2.2: the fact that the prequantized nonrelativistic

kinetic energy (2.23) is not proportional to the square of the prequantized mo-

mentum and is not a positive operator appears to be more serious. We shall

therefore look for a quantization map Q which satisfies – along with the condi-

tions (i), (iii) (and a weakened version of (ii)) – a condition that would guarantee
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the positivity of the quantum counterpart of the square of a real observable. The

following requirement appears to achieve this goal in a straightforward manner.

(iv) IfQ(f) is the image of the real observable f , then one should haveQ(f2) =
Q(f)2.

Remark 2.1 In the framework of (formal) deformation quantization – see Sec-

tion 4.2 – one can only assume such an equality up to terms of order ~
2. Ac-

cording to the Darboux theorem (generalized by Sophus Lie (1842-1899) – see

Section 4.2), every symplectic manifold admits canonical coordinates with a lo-

cally constant Poisson bivector. A weaker requirement that would be sufficient

to ensure the positivity of the kinetic energy on a cotangent bundle, consists in

just demanding the validity of (iv) for functions of the canonical momenta.

Baez [B06] conjectures that there is no positivity preserving functor from the

symplectic category to the Hilbert category. In fact, there is a result of this type

(of Groenewold and van Hove)28 for the algebra of polynomials of p and q in an

affine phase space. One has to settle to a weaker version of requirement (ii) only

demanding the validity of (2.18) (with P replaced byQ) for some “suitably cho-

sen” Poisson subalgebra of the algebra of observables. Quantization becomes an

art for the physicist and a mystery for the mathematician. To give a glimpse of

what else is involved in the geometric quantization we shall sketch the next step

in the theory, defining the notion of a polarization.

The quest for a mathematical understanding started after the art of quantiza-

tion was mastered and displayed on examples of physical interest. Rather than

following a mathematical intuition, geometric quantization attempts to extract

general properties of such known examples. The first observation is that the

state vectors should only depend on half of the phase space variables, like in

the Schrödinger picture. More precisely, one should work with wave functions

depending on a maximal set of Poisson commuting observables. The right way

to eliminate half of the arguments is to consider sections of our line bundle that

are covariantly constant along an n-dimensional “integrable” subbundle S of

vector fields. In other words, our wave functions Ψ should satisfy a system of

compatible equations:

DXΨ = 0 , X ∈ S ⇒ [DX ,DY ]Ψ = 0 for X,Y ∈ S . (2.30)

It is clear from (2.25) that if the subbundle S is closed under commutation (in

other words, if X,Y ∈ S ⇒ [X,Y ] ∈ S, that is, if the vector fields in S are in

involution) and if in addition the corresponding integral manifold is (maximally)

isotropic - i.e., ω(X,Y ) = 0 for X,Y ∈ S (and dimS = 1
2dimM = n), then

the compatibility (also called integrability) condition in (2.30) is automatically

28We shall say more about the Dutch theoretical physicist H.J. Groenewold and about his paper

[G46] in Section 4.1 below. In a pair of 1951 papers the Belgian physicist Leon van Hove (1924-

1990) refined and extended Groenewold’s result, showing effectively that there exists no quantization

functor consistent with Schrödinger’s quantization of R2n.
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satisfied. Such maximally isotropic submanifolds are called Lagrangian. We are

tacitly assuming here that the dimensionality of S does not change from point

to point. This is not an innocent assumption. For M = S
2 it means that a

polarization would be given by a nowhere vanishing vector field. On the other

hand, it is known that there is no such globally defined vector field on the 2-

sphere. (In fact, among the closed 2-dimensional surfaces only the torus has

one.) The way around this difficulty is to complexify the (tangent bundle of

the) phase space. Integrable Lagrangian subbundles are indeed more likely to

exist on TMC than on TM . Thus we end up with the following definition. A

polarization of a symplectic manifold (M,ω) is an integrable maximal isotropic

(Lagrangian) subbundle S of the complexified tangent bundle TMC of M .

We shall consider examples of two opposite types: real, S = S̄, and Kähler

polarizations, S ∩ S̄ = {0}, the types most often encountered in applications.

As real polarizations are the standard lore of elementary quantum mechanics we

shall mention them only briefly, while devoting a separate section to (complex)

Kähler polarizations.

A real polarization is encountered typically in a cotangent bundle, M = T ∗Q.

In local coordinates S is spanned by the vertical vector fields ∂/∂p, yielding the

standard Schrödinger representation in which the coordinates are represented as

multiplication by q (rather than by the prequantum operator P(q) (2.21)). When

Q involves a circle (on which there is no global coordinate) it is advantageous

to replace the multivalued coordinate ϕ by a periodic function as illustrated on

the simplest example of this type T ∗
S

1 with contact form θ = pdϕ. In this case

one can introduce global sections Ψ (satisfying ∂
∂pΨ = 0) as analytic functions

of e±iϕ. Then the spectrum of the momentum operator is discrete:

Q(p) = i~Xp = −i ∂
∂ϕ

⇒ (Q(p) − n~)einϕ = 0, n ∈ Z. (2.31)

There is no symmetry between coordinate and momentum in this example. As

discussed in [B] the momentum space picture does not always exist in T ∗Q and

when it does it may involve some subtleties.

The question arises how to define the inner product in the “physical Hilbert

space” of polarized sections, - i.e., of functions on Q. We cannot use the re-

striction of the Liouville measure since the integral over the fiber diverges (for

functions independent of p). If Q is a Riemannian manifold, if, for instance, a

metric is given implicitly via the kinetic energy, we can use the corresponding

volume form on it. In general, however, there is no canonical measure on the

quotient space M/S ∼ Q. The geometric quantization prescribes in this case

the use of a half density, defined in terms of the square root of the determinant

bundle DetQ = ΛnT ∗Q, the n-th skewsymmetric power of the cotangent bun-

dle (see [AE], [B]).
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3 Quantization of Kähler Manifolds

3.1 Complex Polarization. The Bargmann Space

A (pseudo)Kähler manifold can be defined as a complex manifold equipped with

a non-degenerate hermitean form whose real part is a (pseudo)Riemannian met-

ric and whose imaginary part is a symplectic form (see Section 2.1). Just as the

real affine symplectic space (R2n, ω = dp ∧ dq) serves as a prototype of a sym-

plectic manifold with a real polarization, the complex space C
n, equipped with

the hermitean form

dz ⊗ dz̄ (≡
n

∑

1

dzj ⊗ dz̄j) = g − iω , ω = idz ∧ dz̄ (3.1)

(g = 1
2 (dz ⊗ dz̄ + dz̄ ⊗ dz)), can serve as a prototype of a Kähler manifold.

More generally, locally, any (real) Kähler form can be written (using the notation

(2.17)) as

ω = i∂∂̄K, (K = K̄, d = ∂ + ∂̄). (3.2)

It is instructive to start, alternatively, with a real 2n-dimensional symplectic vec-

tor space (V = R
2n, ω). A complex structure is a (real) map J : V → V

of square −1 – see Section 2.1. (A 2-dimensional example is provided by the

real skewsymmetric matrix ǫ := iσ2 where σj are the hermitean Pauli matrices.)

Such a J gives V the structure of a complex vector space: the multiplication by

a complex number a+ ib being defined by (a+ ib)v = av+ bJv. The complex

structure J is compatible with the symplectic form ω if

ω(Ju, Jv) = ω(u, v) for all u, v ∈ V. (3.3)

Then g(u, v) := ω(Ju, v) defines a non-degenerate symmetric bilinear form

while the form h(u, v) = g(u, v) − iω(u, v) is (pseudo)hermitean. We shall

restrict our attention to Kähler (rather than pseudo-Kähler) forms for which g
and h are positive definite.

In our case (i.e. for ω appearing in (3.1)) the Kähler potential K and the contact

form θ are given by

K = zz̄, θ =
i

2
(zdz̄ − z̄dz). (3.4)

The Hamiltonian vector fields corresponding to z and z̄ are then:

Xz = i
∂

∂z̄
, Xz̄ = −i ∂

∂z
⇒ {z, z̄} = i. (3.5)

We define the complex polarization in which Q(z) = z by introducing sections

annihilated by the covariant derivative (2.24)

D̄ := D(
∂

∂z̄
) =

∂

∂z̄
+

1

2~
(zdz̄ − z̄dz)(

∂

∂z̄
) =

∂

∂z̄
+

z

2~
. (3.6)
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The general covariantly constant section, - i.e., the general solution of the equa-

tion D̄Ψ = 0 is

Ψ(z, z̄) = ψ(z) exp(−K

2~
), K = zz̄, (3.7)

where ψ(z) is any entire analytic function of z with a finite norm square

||Ψ||2 =

∫

|ψ(z)|2 exp(−K
~

)d2nz <∞ (d2nz ∼ ωn). (3.8)

The Hilbert space B(= Bn) of such entire functions has been introduced

and studied by Valentine Bargmann (1908-1989), [B61], and we shall call it

Bargmann space. The multiplication by z plays the role of a creation operator

a∗. The corresponding annihilation operator has the form

a := Q(z̄) = i~Xz̄ +
∂

2∂z
K = ~

∂

∂z
+

1

2
z̄, (3.9)

the second term being determined by the condition that a commutes with the

covariant derivative D̄.

Exercise 3.1 Prove that a and a∗ are hermitean conjugate to each other with

respect to the scalar product in B defined by (3.8) and satisfy the CCR

[ai, aj ] = 0 = [a∗i , a
∗
j ] , [ai, a

∗
j ] = ~δij . (3.10)

Identify Bn with the Fock space of n creation and n annihilation operators with

vacuum vector given by (3.7) with ψ(z) = 1:

|0〉 = exp(−K

2~
), ai|0〉 = 0 = 〈0| a∗j . (3.11)

Remark 3.1 Recalling the change of variables (1.11) we observe that the quantum

harmonic oscillator Hamiltonian H0 corresponds to the symmetrized product of

a∗ and a:

H0 :=
1

2
(p2 + q2) =

1

2
(a∗a+ aa∗) = ~(z

∂

∂z
+
n

2
) +

1

2
zz̄. (3.12)

The additional term n
2 coming from the Weyl ordering reflects the fact that

the Fock (Bargmann) space carries a representation of the metaplectic group

Mp(2n) (the double cover of Sp(2n,R)) [W64] - see also [F], [deG], [T10] and

references therein. For another treatment of the harmonic oscillator, using half

forms, see [B].

3.2 The Bargmann Space B2 as a Model Space for SU(2)

We shall now consider the special case n = 2 of (3.1), that provides a model of

the irreducible representations of SU(2). This example is remarkably rich. In
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what follows we shall (1) outline the result of Julian Schwinger (1918-1994) [Sc]

and Bargmann [B62] (reproduced in [QTAM]) on the representation theory of

SU(2) as a quantization problem and will indicate its generalization to arbitrary

semi-simple compact Lie groups; (2) consider the constraint

zz̄(= z1z̄1 + z2z̄2) = ~N (3.13)

where N is any fixed positive integer and study the corresponding gauge theory

which gives rise to the quantization of the 2-sphere. (3) In the next subsection

we shall display the hyperkähler structure ( [Hi]) of C
2 thus introducing, albeit

in a rather trivial context, some basic concepts exploited recently – in particular,

by Gukov and Witten [GW, G10, W10].

To begin with, we note that any Bargmann space B splits in an (orthogonal) di-

rect sum of subspaces of homogeneous polynomials ψ(z) = hk(z) (hk(ρz) =
ρkhk(z)). Indeed, the associated wave functions Ψk (3.7) span eigensubspaces

ofH0 of eigenvalues (k+ n
2 )~, so that polynomials of different degrees k are mu-

tually orthogonal. For n = 2 the eigenvalues N of H0/~ comprise all positive

integers and give the dimensions of the corresponding eigensubspaces carrying

the irreducible representations of SU(2), each appearing with multiplicity one.

This construction extends to an arbitrary semi-simple compact Lie group G by

considering the subbundle of the cotangent bundle T ∗G obtained by replacing

the fibre at each point by the conjugate to the Cartan subalgebra of the Lie alge-

bra of G (treated in the case of G = SU(n) and its q-deformation in [HIOPT]).

We now proceed to the study of the finite dimensional gauge theory generated

by the constraint (3.13) that gives rise to the eigensubspaces of the oscillator’s

Hamiltonian (3.12). This Hamiltonian constraint is obviously invariant under

U(1) phase transformations generated by its Poisson brackets with the basic

variables. Using the PB (3.5) and the CCR (1.2) and regarding N of Eq. (3.13)

first as a classical and then as a quantum dynamical variable we find:

{N, z} = −iz, eiNαze−iNα = eiαz, eiNαae−iNα = e−iαa. (3.14)

For a fixed N Eq. (3.13) defines a 3-sphere S
3 in C

2 ∼ R
4; it can be viewed,

according to (3.14) as a U(1) fibration over the 2-sphere S
2(= S

2(~N)) (known

as the Hopf fibration).

Heinz Hopf (1894-1971) has introduced this fibration in 1931. It belongs to

a family of just three (non-trivial) fibrations in which the total space, the base

space, and the fibre are all spheres (and the following sequences of homomor-

phisms are exact):

0 → S
1 →֒ S

3 → S
2 → 0;

0 → S
3 →֒ S

7 → S
4 → 0

0 → S
7 →֒ S

15 → S
8 → 0.

(3.15)
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This fact is related to the theorem of Adolf Hurwitz (1859-1919) identifying the

normed division algebras with the real and the complex numbers, the quater-

nions and the octonions - see, e.g., [B02]. (The reals correspond to the sequence

S
0 →֒ S

1 → S
1 where S

0 = {±1}.)

In order to display (and quantize) the symplectic structure of S
2(~N)) it is ad-

vantageous to introduce three gauge invariant coordinates obeying one relation

(cf. our treatment of S
1 in Section 2.3):

ξj = zσj z̄, j = 1, 2, 3, ⇒ ξ2 = (zz̄)2 = (~N)2. (3.16)

The reduction of the form ω (3.1) to the 2-sphere (3.16) is expressed in terms of

the Poincaré29 residue of the meromorphic 3-form

ω3 :=
dξ1 ∧ dξ2 ∧ dξ3

f(ξ)
, f =

1

2
(ξ2 − ~

2N2) (3.17)

along the hypersurface f = 0. The Poincaré residue of a meromorphic n-form

ωn =
g(z)

f(z)
dz1 ∧ ... ∧ dzn, (3.18)

where f and g are holomorphic functions, is defined as a holomorphic (n-1)-

form on the hypersurface f(z) = 0 which possesses a local extension ρ to C
n

such that ωn = df
f ∧ ρ. If ∂f

∂zj
|f=0 6= 0 in some neighbourhood U of a point of

the hypersurface f = 0, then

Resωn = g(z)(−1)j−1 dξ1 ∧ ... ∧ dξj ∧ ... ∧ dξn
∂f
∂ξj

∣

∣

∣

∣

∣

f=0

(3.19)

in U.

Exercise 3.2 Compute the residue of the 3-form (3.17) in terms of the variables

ξ and in terms of the spherical angles θ, ϕ,

ξ1 + iξ2 = 2z1z̄2 = ~N sin θe−iϕ, (3.20)

ξ3 = z1z̄1 − z2z̄2 = ~N cos θ (2z1z2 = ~N sin θeiα).

Prove that the result coincides with the restriction of the form ω (3.1) to the

sphere (3.13) (with dN = 0). (Hint: prove that ω can be written as

ω =
~

2
(dN ∧ (dα− cos θdϕ) +N sin θdθ ∧ dϕ) (3.21)

in spherical coordinates.)

29Jules Henri Poincaré (1854-1912) introduced his residue in 1887 - see [Poincare], 11.
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Recalling that N is by assumption a positive integer (so that ~N belongs to the

spectrum of the oscillator Hamiltonian H0 (Eq. (3.12)) for n = 2 we conclude

that the integral of the symplectic form of the 2-sphere is quantized:

∫

Resω3

4π~
=
N

4π

∫

S2

sin θdθ ∧ dϕ = N(= 1, 2, ...), (3.22)

thus reproducing the integrality of the second cohomology group.

The quantum counterpart of the gauge invariant variables ξj are the components

of the angular momentum; more precisely (cf. Section 1.3),

Mj =
1

2
a∗σja ⇒ [M3,M±] = ±~M±, [M+,M−] = 2~M3 (3.23)

where M± = M1 ± iM2 = a∗σ±a (M+ = a∗1a2, M− = a∗2a1).

3.3 C
2 as a Hyperkähler Manifold

I then and there felt the galvanic circuit close; and the

sparks which fell from it were the fundamental equa-

tions between i, j and k...

W.R. Hamilton – letter to P.G. Tait, October 1858

Quaternions provide the real 4-dimensional space R
4 with a structure of a non-

commutative normed star division algebra. We set

q = q0 + q1I + q2J + q3K, q∗ = q0 − q1I − q2J − q3K,

I2 = J2 = K2 = IJK = −1 ⇒ qq∗ = q∗q = |q|2 =

3
∑

µ=0

(qµ)2. (3.24)

The imaginary quaternion units I, J,K can be defined as operators (real ma-

trices) IL, JL,KL in R
4 which provide a real representation of the Lie algebra

su(2):

Iq = −q1 + q0I − q3J + q2K, Jq = −q2 + q3I + q0J − q1K,
Kq = −q3 − q2I + q1J + q0K

⇒ IL =

(

−ǫ 0

0 −ǫ

)

= −1 ⊗ ǫ, 1 =

(

1 0
0 1

)

, 0 =

(

0 0
0 0

)

,

ǫ =

(

0 1
−1 0

)

(= iσ2) ;

JL =

(

0 −σ3

σ3 0

)

= −ǫ⊗ σ3, σ3 =

(

1 0
0 −1

)

;

KL =

(

0 −σ1

σ1 0

)

= −ǫ⊗ σ1, σ1 =

(

0 1
1 0

)

.

(3.25)
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The right multiplication by I, J,K gives rise to another set of operators

IR, JR,KR which commute with IL, JL,KL; the resulting six operators gen-

erate the Lie algebra so(4) ≃ su(2) ⊕ su(2).

One can introduce a complex symplectic form in C
2 ∼ R

4, setting

Ω = ωJ + iωK ,

ωJ = dz1 ∧ dz2 − dz̄1 ∧ dz̄2,

ωK = dz1 ∧ dz̄1 + dz2 ∧ dz̄2.

(3.26)

Viewing (dz1, dz2, dz̄1, dz̄2) as a basis in the (trivial) cotangent bundle on R
4

we can write:

ωJ =
1

2
(dz, dz̄) ∧ J

(

dz
dz̄

)

, J =

(

ǫ 0

0 −ǫ

)

= σ3 ⊗ ǫ,

dz = (dz1, dz2); (3.27)

ωK =
1

2
(dz, dz̄) ∧K

(

dz
dz̄

)

, K =

(

0 1

−1 0

)

= ǫ⊗ 1.

Here ωJ is a holomorphic form of type (2, 0) + (0, 2), ωK is of type (1, 1) with

respect to the complex structure defined by K. The form Ω (3.26), on the other

hand, is a holomorphic form of type (2, 0) in the complexification C
4 of R

4 with

respect to the complex structure I . This means that

Ω(X, (1 + iI)Y ) = 0, ∀X,Y ∈ TC
4. (3.28)

Exercise 3.3 Deduce (3.28) using the identity

(J + iK)(1 + iI) = 0. (3.29)

Note that while the algebra of real quaternions H has no zero divisors the above

example shows that its complexification admits such divisors: none of the two

factors in the lefthand side of (3.29) is zero while their product vanishes identi-

cally.

We observe that the form (3.26) can be written in I-holomorphic coordinates as

a manifestly (2, 0)-form:

Ω = dw ∧ dz forw = z1 − iz̄2, z = z2 + iz̄1. (3.30)

We are now prepared to give a general definition. A smooth manifoldM is called

hypercomplex if its tangent bundle TM is equipped with three (integrable) com-

plex structures I, J,K satisfying the quaternionic relation of (3.24). If, in addi-

tion, M is equipped with a Riemannian metric g which is Kähler with respect to

I, J,K, - i.e., if they are compatible with g and satisfy

▽I = 0, ▽J = 0, ▽K = 0, (3.31)
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where ▽ is the Levi-Civita connection, then the manifold (M, I, J,K, g) is

called hyperkähler. This means that the holonomy of ▽ lies inside the group

Sp(2n)(= Sp(n,H)) of quaternionic-Hermitian endomorphisms.

The converse is also true: a Riemannian manifold is hyperkähler if and only

if its holonomy is contained in Sp(2n). This definition is standard in differen-

tial geometry. (In physics literature, one sometimes assumes that the holonomy

of a hyperkähler manifold is precisely Sp(n), and not its proper subgroup. In

mathematics, such hyperkähler manifolds are called simple hyperkähler mani-

folds. In algebraic geometry, the word “hyperkähler” is essentially synonymous

with “holomorphically symplectic”, due to the famous Calabi-Yau theorem. The

notion of a hyperkähler manifold is of a relatively recent vintage: it has been in-

troduced in 1978 (16 years after Bargmann’s paper) by Eugenio Calabi.

The above hyperkähler space C
2 is closely related to the regular adjoint orbit of

sl(2,C):

−det

(

a b
c −a

)

= a2 + bc = λ 6= 0. (3.32)

The hyperkähler structure of (co)adjoint orbits of semisimple complex Lie

groups and the associated Nahm’s equation are being studied since over two

decades - see [Kr], [K96], as well as the lectures [Bi] and references therein.

4 Other Approaches. From Weyl to Kontsevich

We are leaving out one of the most important topics of quantum theory: the path

integral approach that would require another set of lectures of a similar size. A

94-page preprint of such lecture notes is available [Gr] with 93 references (up to

1992) including the pioneer work of Dirac (1933) and Feynman30 (1948). The

book [ZJ] is recommended as a highly readable introduction to the subject. For

a recent development in this area - see [W10].

We provide instead a brief historical introduction to deformation quantization

starting in Section 4.1 with the forerunners of the modern development. (Taking

a more expansionist point of view and relating path integrals to star exponentials

- see [S98], Section II.3.2.1 – one can pretend to incorporate the path integral

approach into the vast domain of deformation quantization.)

4.1 Quantum Mechanics in Phase Space

Prequantum mechanics lives in phase space - just like its classical antecedent.

The polarization or the choice of a maximal set of commuting observables, how-

ever, breaks, in a sense, the symmetry among phase space variables. Is that un-

avoidable? In 1927, in the wake of the appearance of quantum mechanics and of

30Richard Feynman (1918-1988) shared the Nobel Prize in Physics in 1965 with Julian Schwinger

(1918-1994) and Sin-Itiro Tomonaga (1906-1979).
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the Heisenberg uncertainty relations, Hermann Weyl [We] did propose a phase

space formulation of quantization in which coordinates and momenta are treated

on equal footing. Weyl maps any classical observable, i.e. any (smooth) function

f on phase space, to an operator U [f ] in a Hilbert space which provides a rep-

resentation of the Heisenberg-Weyl group of the CCR. In the simplest case of a

2-dimensional euclidean phase space with coordinates (p, q) the Weyl transform

reads:

U [f ] =
1

(2π)2

∫

...

∫

f(q, p)e
i
~
(a(Q−q)+b(P−p))dq dpdadb. (4.1)

Here P and Q are the generators of the Heisenberg Lie algebra (satisfying the

CCR) so that g(a, b, c) := ei( aQ+bP
~

+c) is an element of the corresponding

Heisenberg-Weyl group (introduced by Weyl and associated by mathematicians

with the name of Heisenberg) satisfying the composition law

g(a1, b1, c1)g(a2, b2, c2) = g(a1+a2, b1+b2, c1+c2+
1

2
(a1b2−a2b1)). (4.2)

Given any group representation U [g], the operator U [ei( aq+bp
~

+c)] (4.1) will give

the representation of the group element g(a, b, c).

The Weyl map may also be expressed in terms of the integral kernel matrix

elements of the operator,

〈x|U [f ]|y〉 =

∫ ∞

−∞

dp

h
eip(x−y)/~ f

(

x+ y

2
, p

)

. (4.3)

The inverse of the above Weyl map is the Wigner map [W32], which takes the

operator back to the original phase-space kernel function f,

f(q, p) = 2

∫ ∞

−∞

dy e−2ipy/~ 〈q − y|U [f ]|q + y〉 . (4.4)

The Wigner quasi-probability distribution in phase space corresponding to a

pure state with wave function ψ(x) is given by

F (x, p) :=
1

π~

∫ ∞

−∞

ψ∗(x+ y)ψ(x− y)e2ipy/~ dy (4.5)

The qualification “quasi” is necessary since the distribution F (x, p) may give

rise to negative probabilities. We refer to [M86], [Fe] (where more general non

positive distributions are considered - see below) and to the entertaining histor-

ical survey [CZ] for an explanation of how Heisenberg’s uncertainty relation is

reflected in the phase space formulation and prevents the appearance of physical

paradoxes for an appropriate use of Wigner’s distribution function. Someone,

accustomed with the standard Hilbert space formalism of quantum mechanics,
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may still wonder why should one deal with such a strange formalism in which

verifying a basic property like positivity of probabilities needs an intricate argu-

ment. Are there problems whose solution would motivate the use of the phase

space picture? Unexpectedly, a positive answer to this question has come from

outside quantum mechanics. A little thought will tell us that, if we view q as

a time coordinate and p as a frequency, then the Wigner function may serve

to characterize a piece of music (or, more generally a sound signal) much bet-

ter then having just a probability density of frequencies alone. Indeed, starting

with the 1980’s, applications of the Wigner distribution to signal processing has

become an industry - see the monograph [MH] and references therein. For an

application to the decoherent history approach to quantum mechanics – see [GH]

and references to earlier work cited there.

The Wigner distribution (4.5) is real and has the property that if integrated in

either p or x it gives the standard quantum mechanical (positive) probability

density with respect to the non-integrated variable; for instance,

∫

F (x, p)dp = |ψ(x)|2. (4.6)

Raymond Stora (private communication) has proposed another simple formula

for the quasi-probability distribution F = Fρ corresponding to a (positive) den-

sity operator ρ and a pair of (normalized) eigenstates |α〉, |β〉 labelled by the

eigenvalues of two (in general, non-commuting) hermitean operators which also

satisfies these relations:

Fρ(α, β)=
1

2
(〈α|β〉〈β|ρ|α〉+〈α|ρ|β〉〈β|α〉);

∑

β

Fρ(α, β)=〈α|ρ|α〉. (4.7)

This formula applies to operators like spin projections on two orthogonal axes

whose eigenvalues do not belong to an affine space, so that Wigner’s expres-

sion (4.4) would not make sense. The appearance of negative probability is a

common feature of all quasi-probability distributions consistent with Bell’s the-

orem31 (as discussed in [M86] and [SR] among others). The first to consider

negative probabilities (in the context of quantum theory) was none other than

Dirac. In his Bakerian lecture [D42] (p. 8) he stated “Negative energies and

probabilities should not be considered as nonesense. They are well defined con-

cepts mathematically, like a negative sum of money...” The Wigner transform

has the extra property to be inverse to Weyl’s which, in turn, is related to Weyl’s

(symmetric) ordering. There is, however, nothing sacred about such an ordering

(or about any other ordering, for that matter). As mentioned earlier – see foot-

note 16 – Lax ordering naturally appears instead of Weyl’s in the quantization

of some integrable systems.

31For a “probabilistic opposition” to the usual interpretation of Bell’s theorem – see [Kh].
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Using the Weyl form (4.2) of the CCR and the Weyl correspondence von Neu-

mann32 proved in 1931 [vN31] (see also [vN], [V58]) the essential uniqueness

of the Schrödinger representation in Hilbert space. For completeness’ sake, he

worked out the image of operator multiplication discovering the convolution rule

that defines the noncommutative composition of phase-space observables – an

early version of what came to be called ⋆-product. In fact, once having the Weyl

map f → U [f ] and its inverse and knowing the operator product U [f ]U [g] we

can define the star product f ⋆ g as the Wigner image of U [f ]U [g]. The result is:

f ⋆g=

∫

dx1dp1

π~

∫

dx2dp2

π~
f(x+x1, p+p1)g(x+x2, p+p2) exp(

2i

~
(x1p2−x2p1)).

(4.8)

In fact, Weyl and Wigner introduced their maps for different purposes and nei-

ther of them noticed that they were inverse to each other or thought of defining

a noncommutative star product in phase space. This was done independently by

two young novices during World War II (see for more detail [CZ], [ZFC]).

The first was the Dutch physicist Hilbrand (Hip) Groenewold (1910-1996). Af-

ter a visit to Cambridge to interact with John von Neumann (1934-5) on the links

between classical and quantum mechanics, and a checkered career, working in

Groningen, then Leiden, the Hague, De Bilt, and several addresses in the North

of Holland during World War II, he earned his Ph.D. degree in 1946, under

the Belgian physicist Léon Rosenfeld (1904-1974) at Utrecht University. Only

in 1951 was he offered a position in theoretical physics at his Alma Mater in

Groningen. It was his thesis paper [G46] that laid the foundations of quantum

mechanics in phase space. This treatise was the first to achieve full understand-

ing of the Weyl correspondence as an invertible transform, rather than as an

unsatisfactory quantization rule. Significantly, this work defined (and realized

the importance of) the star-product, the cornerstone of this formulation of the

theory, ironically often also associated with Moyal’s name, even though it is

not featured in Moyal’s papers and was not fully understood by Moyal. More-

over, Groenewold first understood and demonstrated that the Moyal bracket is

isomorphic to the quantum commutator, and thus that the latter cannot be made

to faithfully correspond to the Poisson bracket, as had been envisioned by Paul

Dirac. This observation and his counterexamples contrasting Poisson brackets

to commutators have been generalized and codified to what is now known as the

Groenewold—Van Hove theorem.

The second codiscoverer of the star product José (Jo) Moyal (1910-1998) was

born in Jerusalem, then in the the Ottoman Empire, and spent much of his youth

32The Hungarian born brilliant mathematician and polymath John von Neumann (1903-1957)

made substantial contributions in a number of fields. In a short list of facts about his life he submitted

to the National Academy of Sciences of the USA, he stated “The part of my work I consider most

essential is that on quantum mechanics, which developed in Göttingen in 1926, and subsequently in

Berlin in 1927-29. Also, my work on various forms of operator theory, Berlin 1930 and Princeton

1935-1939;” – see also [V58].
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in Palestine. After studying in France and Britain and working on turbulence

and diffusion of gases in Paris, he escaped to London (with the help of the physi-

cist/writer C.P. Snow (1905-1980)) at the time of the German invasion in 1940.

While working on aircraft research at Hartfield, Moyal developed his ideas on

the statistical nature of quantum mechanics and had an intense correspondence

with Dirac33, who refused to believe that there could be a ”distribution function

F (p, q) which would give correctly the mean value of any f(p, q)” even after

Moyal found out - and wrote to Dirac - that such a function was constructed by

Wigner, Dirac’s brother in law... Moyal eventually published his work in [M49],

three years after Groenewold. Subsequent work on this topic, done during the

next 15 years is reproduced in [ZFC]. The subject only attracted wider attention

another fifteen years later, after the work [BFLS] triggered the interest of math-

ematicians to deformation quantization. Even then only references to Moyal

surged dramatically while the work of Groenewold is still rarely mentioned (for

instance, the paper [G46] is not included among the 78 refernces of the 2008

survey [B08] of deformation quantization).

4.2 Deformation Quantization of Poisson Manifolds

The natural starting point for the study of quantization is a Poisson algebra A –

i.e., an associative algebra with a Poisson bracket that gives rise to a Lie algebra

structure and acts as a derivation (obeying the Leibniz rule) on A. In the case

of a classical phase space this is the (commutattive) algebra of functions on a

Poisson manifold. The aim is to deform the commutative product to a ~ depen-

dent noncommutative star (⋆-)product in such a way that the star-commutator

reproduces the Poisson bracket up to higher order terms in ~:

f ⋆ g − g ⋆ f = i~{f, g} +O(~2). (4.9)

Deformation quantization is computing and studying an associative star prod-

uct, defined as a formal power series in ~:

f ⋆ g = fg +

∞
∑

n=1

~
nBn(f, g), (4.10)

where Bn are bidifferential operators (bilinear maps that are differential oper-

ators in each argument) and B1 is restricted by (4.9). Given the product (4.10)

we can extend it to the algebra A[[~]] of formal power series in the parameter ~

(with coefficients in A) by bilinearity and ~-adic continuity:

(
∑

n≥0

fn~
n) ⋆ (

∑

n≥0

gn~
n) =

∑

k,l≥0, m≥1

Bm(fk, gl)~
k+l+m. (4.11)

33Feb 1944 - Jan 1946, reproduced in Ann Moyal Maveric Mathematician ANU E Press, 2006

(online).
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One considers [W94] gauge transformationsG(~) : A[[~]] → A[[~]] which pre-

serve the original Poisson algebra A; in other words, G(~) = 1 +
∑

n≥1Gn~
n

where Gn are (linear) differential operators. Two star products ⋆ and ⋆
′

are

equivalent if they differ by a gauge transformation – i.e., if

∑

j+k+l=n

Bl(Gj(f), Gk(g)) =
∑

l+m=n

Gm(B
′

l (f, g)), n = 1, 2, .... (4.12)

The problem, stated in [BFLS] (see also [W94]), is to find (cohomological) con-

ditions for existence of a star product and to classify all such products up to

gauge equivalence.

First of all, we note, following [K], that the associativity of the star product

implies the following relation for the first bidifferential operator B1 of the series

(4.10):

fB1(g, h) −B1(fg, h) +B1(f, gh) −B1(f, g)h = 0. (4.13)

If we view B1 as a linear map B1 : A ⊗ A → A then Eq. (4.13) shows that

it is a 2-cocycle of the cohomological Hochschild34 complex of the algebra A
(defined in Section 3.2.4 of [K]). Furthermore, one can annihilate the symmetric

part of B1 by an appropriate gauge transformation ( [K] Section 1.2) thus end-

ing up with B1(f, g) = i
2{f, g} - as a consequence of (4.9). More generally, in

attempting to construct recursively Bn one finds at each stage an equation of the

form δBn = Fn where Fn is a quadratic expression of the lower (previously de-

termined) terms. A similar equation arises for each Gn in the gauge equivalence

problem. The operator δ goes from bilinear to trilinear (or from linear to bilin-

ear) and is precisely the coboundary operator for the Hochschild cohomology

with values in A of the algebra A (see [W94]).

The simplest example of a star product is given by the Groenewold-Moyal prod-

uct (4.8), defined in terms of the Poisson bivector P (Section 2.1) with constant

coefficients which exists in an affine phase space. It is given by (4.10) with

Bn(f, g) =
1

n!
(
i

2
Pjk ∂

∂yj

∂

∂zk
)nf(y)g(z)|y=z=x. (4.14)

Exercise 4.1 Verify (using (4.9), (4.10) and (4.14)) the relation

pq =
1

2
(p ⋆ q + q ⋆ p) = qp (q ⋆ p− p ⋆ q = i~). (4.15)

Remark 4.1 In most mathematical texts, including [K], the i-factors in (4.9) and

(4.14) are missing. (The Bourbaki seminar [W94] is a happy exception. There

the parity condition Bn(f, g) = (−1)nB̄n(g, f) which uses complex conjuga-

tion is also mentioned.) To make formulas conform with physics texts one has

34Gerhard Hochschild (1915-2010), a student at Princeton of Claude Chevalley (1909-1984), in-

troduced the Hochschild cohomology in 1945.
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to substitute the formal expansion parameter by i~. If a similar discrepancy in

the writings of some of the founding fathers of geometric quantization could be

viewed as a negligence, in the case of deformation quantization it seems to be a

deliberate choice. Kontsevich is making the following somewhat criptic Remark

1.5 in [K]: In general, one should consider bidifferential operators with complex

coefficients... In this paper we deal with purely formal algebraic properties ...

and work mainly over the field R of real numbers. ... it is not clear whether

the natural physical counterpart for the ’deformation quantization’ for general

Poisson brackets is the usual quantum mechanics. It is definitely the case for

nondegenerate brackets, i.e. for symplectic manifolds, but our results show that

in general a topological open string theory is more relevant.

If the Poisson bivector P has a constant rank, then according to a classical theo-

rem by Lie (cited in [W94]) the Poisson manifold is locally isomorphic to a vec-

tor space with constant Poisson structure. Such regular Poisson manifolds are,

hence, locally deformation quantizable. The local quantization can be patched

together relatively easily if there exists a torsionless linear connection such that

P is covariantly constant [BFLS]. The more difficult problem to prove exis-

tence of deformation quantization for arbitrary symplectic manifolds which do

not admit flat torsionless Poisson connections has been solved by de Wilde and

Lecomte and by Fedosov in the 1980’s (see for reviews [W94] and [B08]). Wein-

stein ends his Bourbaki seminar talk [W94] by asking the fundamental question

”Is every Poisson manifold deformation quantizable?”. Three years later, Kont-

sevich [K] not only gave an affirmative answer to this question but provided a

canonical construction of an equivalence class of star products for any Poisson

manifold. This result was cited among his ”contributions to four problems of

geometry” for which he was awarded the Fields Medal in Berlin in 1998. The

quantum field theoretic roots of this work were displayed in a series of papers of

Cattaneo and Felder (see [CF] and earlier work cited there).

As stressed in [GW], the convergence problem for the formal power series in-

volved in the star-product is still only studied on a case by case basis.

The vitality of the subject is witnessed by a continuing flow of interesting pa-

pers – see e.g. [C07, CFR, LW] among many others.
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5 Second Quantization

... nothing gives greater pleasure to the conoisseur, ... even if he

is a historian contemplating it retrospectively, accompanied nev-

ertheless by a touch of melancholy. The pleasure comes from the

illusion and from the far from clear meaning; once the illusion is

dissipated, and knowledge obtained, one becomes indifferent... a

theory whose majestic beauty no longer excites us. A 1940 letter

of André Weil (from a French prison, to his sister Simone) on

analogy in mathematics,

Notices of the AMS 52:3 (2005) 334-341 (p.339).

The story of inventing second quantization is the story of understanding “quan-

tized matter waves”, and ultimately, of creating quantum field theory. Following

its early stages (with a guide like [Dar]) one may appreciate the philosophical

inclinations of the founding fathers which appear to be no longer in the spirit of

our days. It may also shed light on some of our current worries ( [S10]). But,

first of all, we realize how difficult it has been to come to terms with some ideas

which now appear as a commonplace. One such idea, put forward by Jordan in

1927 (following a vague suggestion by Pauli - see [Dar], p. 230, footnotes 75.

and 76.) and worked out in a final form by Jordan and Wigner35 by the end of

the year (l.c. pp. 231-232 and [JW28]), was the introduction of the canonical

anticommutation relations

[ai, aj ]+ := aiaj + ajai = 0 = [a∗i , a
∗
j ]+ , [ai, a

∗
j ]+ = δij (5.1)

as a basis of Fermi statistics (and indeed of the quantization of the electron-

positron field). The difficulty in accepting the canonical anticommutation rela-

tion stems from the fact that they seem to violate the correspondence principle:

for ~ → 0 they become strictly anticommuting (Grassmann) variables, never en-

countered before in a classical system. It was natural for Jordan to coin the term

second quantization since he was quantizing the (already quantum) Schrödinger

wave function (see Appendix). Dirac, on the other hand, was concerned with

quantizing a classical system: the electromagnetic radiation field, [D27]. This

should help us understand why even he, the codiscoverer of the Fermi-Dirac

statistics, was not ready to accept such a notion. In the Solvay congress of

1927 he “argues that [the Jordan-Wigner’s quantization] is very artificial from

a general point of view.” (see [Dar], p. 239). Nearly half a century later Dirac

remembers: “Bose statistics ... was connected ... to an assembly of oscillators.

There was no such picture available with the Fermi statistics, and I felt that was

a serious drawback.” (see [D], p. 140). Had Dirac applied the canonical anti-

commutation relations to his wonderful relativistic wave equation, he would not

35Jeno (later Eugene) Wigner (Budapest, 1902 - Princeton, 1995) was awarded relatively late (in

1963) the Nobel Prize in Physics “for ... the discovery and application of fundamental symmetry

principles”.
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have needed the “filled up infinite sea36 of negative-energy states”. Jordan in

fact anticipated the spin statistics theorem (which states that integer spin fields

locally commute while half-integer spin fields locally anticommute) formulated

and proven some 12 years later by Markus Fierz (1912-2006) and Pauli (for a

pedagogical discussion of this theorem, its history and understanding - see the

20-page-long paper [DS], available electronically, that contains over fifty origi-

nal references).

The mathematical formulation of second quantization is clean and elegant (and,

in the spirit of the above cited letter of Weil, hides much of the excitement).

Second quantization, in the narrow sense of quantizing the Schrödinger wave

function, can be viewed as an attempt to get a quantum description of a many-

particle system from the quantum description of a single particle. Starting from

a single particle Hilbert space H one forms the symmetric (or antisymmetric)

tensor algebra S(H) (orA(H)) and completes it to form a bosonic (or fermionic)

Fock space 37 F = F(H). More generally, one has a functor, called second

quantization from the Hilbert category to itself, which sends each Hilbert space

to its Fock space, and each unitary operator U to an obvious unitary map (built

out of tensor products of U ’s).

Here is a toy example of a bosonic Fock space presented by Bernard Julia to the

1989 Les Houches Winter School on Number Theory and Physics, which served

a starting point of an interesting mathematical development [BC] (which is still

continuing, [CC]). One introduces (Bose) creation and annihilation operators

a
(∗)
p , corresponding to the prime numbers, p = 2, 3, 5, 7, 11, .... The 1-particle

state space is spanned by (unit) vectors |p〉 corresponding to the primes while the

Fock space F is spanned by vectors |n〉 corresponding to all positive integers:

|vac〉 ≡ |1〉 , |n〉 =

∏

(a∗i )
ni

∏

(ni!)
1
2

|1〉 for n =
∏

(pi)
ni . (5.2)

Thus the vacuum corresponds to the number 1; the states |4 = 22〉, |6 = 2 × 3〉,
|9〉, |14〉, ... are 2-particle states etc. The number operator N such that (N −
n)|n >= 0 acts multiplicatively on product states:

N :=
∏

p

pa∗

pap ⇒ N |p1...pk〉 = p1...pk|p1...pk〉 . (5.3)

If one introduces furthermore a logarithmic Hamiltonian that is additive on prod-

uct states then the partition function of the system, corresponding to inverse

36A precise mathematical formulation of the Dirac sea, equivalent to the now standard quantum

theory of a Fermi field, has been only given recently, [D11].
37The Saint Petersburg’s physicist Vladimir Fock (1898-1974) is also known for his development

of the Hartree-Fock method and its relativistic counterpart, the Dirac-Fock equations, which led to

the work of Dirac-Fock-Podolsky on quantum field theory, a precursor of Tomonaga’s Nobel prize

winning formulation involving infinitely many times. His ground-breaking work [F32], duly cited

in the students’ paper [CF09], is oddly absent from the list of references of the major treatise [Sch].
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temperature β, will be the Riemann zeta-function:

H = lnN ⇒ Z(β) := trF (e−βH) =

∞
∑

1

1

nβ
= ζ(β) =

∏

p

(1 − 1

pβ
)−1 .

(5.4)

Remark 5.1 Rather than using symmetrized or antisymmetrized tensor products

of 1-particle spaces we could use higher dimensional irreducible representations

of the permutation group corresponding to more general permutation group or

parastatistics which appear in the classification of supersellection sectors in the

algebraic Doplicher-Haag-Roberts approach to local quantum physics (for a re-

view – see [H]). They can be reduced to the familiar Bose and Fermi statistics

(by the so called Green ansatz) at the expense of introducing some extra degrees

of freedom and a gauge symmetry.

The Fock space construction works nicely for free quantum fields as well as in

nonrelativistic quantum mechanics, whenever the Hamiltonian commutes with

the particle number. The tensor product construction is not appropriate even for

treating the nonrelativistic bound state problem. Consider, indeed, the tensor

product of the state spaces of two Galilean invariant particles. According to a

classical paper by Bargmann [B54] the quantum mechanical ray representation

of the Galilean group involves its central extension by the mass operator. Thus

the mass of the tensor product of two 1-particle representations, equals to the

sum of the masses of the two particles, should be conserved. On the other hand,

we know that the mass of a bound state differs from the sum of the constituent

masses by the (negative) binding energy 38(divided by c2). A similar contradic-

tion is reached by considering the energy conservation implied by the Galilean

invariance of the tensor product. This example suggests that in the presence of

interactions one should consider a nontrivial coproduct, such that a symmetry

generator like the total energy is not necessarily additive. Although the idea of a

Hopf algebra deformation of second quantization has been explored by a num-

ber of authors (see e.g. [CCT]), I am not aware of a work addressing the physical

bound-state problem in this manner.
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Appendix. Pascual Jordan (1902-1980)

Among the creators of quantum mechanics Pascual Jor-

dan is certainly the least known, although he con-

tributed more than anybody else to the birth of quantum

field theory. Olivier Darrigol [Dar]

Born in Hannover in a mixed German-Spanish family, well read in the natu-

ral sciences, Pascual Jordan dreamed at the age of 14 to write “a big book

about all fields of science”. He taught himself calculus while in the Gymna-

sium and ended up with a careful study of Mach’s Mechanik and Prinzipien

der Wärmelehre.39 Not satisfied with the teaching of physics at the Technische

Hohschule in Hannover he moved to Göttingen in 1923. The (experimental)

physics lectures there being too early in the morning, he recalled (in an inter-

view with T.S. Kuhn in 1963) to have become a physicist “who never attended

a course of lectures on physics”. By contrast he became an active student of

Richard Courant (1888-1972) and assisted him in writing parts of the famous

Courant-Hilbert’s book on Methods of Mathematical Physics. Jordan only de-

cided that he will pursue physics (rather than mathematics) after he met Max

Born (1882-1970), the newly appointed director of the Institute of Theoretical

Physics in Göttingen. “He was ... the person who, next to my parents, exerted

the deepest, longest lasting influence on my life.”, wrote Jordan in a brief eu-

logy after Born’s death ( [Sch], p. 7). In the beginning he was just helping his

teacher by inserting formulas in the manuscript of Born’s Encyclopaedia article

on the dynamics of crystal lattices (see [MR], footnote 60), but soon he started

working on his own on the then hot topic of light quanta (starting with his thesis

of 1924). In early 1925 he was able to predict the existence of two new spectral

lines in neon (to be soon observed by Hertz40 – these were times fecund in new

discoveries!).

Jordan’s activity during the years 1925-28 was truly remarkable: while Born

was on vacation he wrote the first draft of their article (submitted two months

after Heisenberg’s). Then came the famous “three-man-paper” with Born and

Heisenberg, submitted in November, in which Jordan was the sole responsible

for the part devoted to the radiation theory. As if that was not enough, by the end

of the year he submitted a paper on the “Pauli statistics”; Max Born, an editor

of Zeitschrift für Physik, took it with him on his way to the United States for

a lecture tour and ... forgot all about it until his return to Göttingen six months

later. In the meantime, its result was discovered independently by Fermi and by

39The Austrian physicist and philosopher Ernst Mach (1838-1916) had strong antimetaphysical

views that influenced his godson Pauli (as well as the young Einstein). Throughout his life Jordan

considered himself a disciple of Mach and referred to his positivistic theory of knowledge [Dar].

(Other sources on P. Jordan: [PJ07, Sch99, Me, S06].)
40Gustav Ludwig Hertz (1887-1975), Nobel Prize in Physics, 1925 (with James Frank), is a

nephew of Heinrich Hertz (1857-94), the discoverer of the electromagnetic waves.
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Dirac41. In the bibliography given in [PJ07] (pp. 175-206) one finds 8 titles (in-

cluding a book) with the participation of Jordan, published in 1926, 15 in 1927,

6 in 1928. Two of them are concerned with the transformation theory (one of

1926 and another of 1927, written in a friendly competition with Dirac – whom

he thanks in the printed version for mailing him his manuscript42). This work

laid in effect the mathematical and physical foundations of quantum mechanics.

Five other papers, the first two by Jordan alone [J27], the remaining three – with

Oskar Klein (1894-1977) [JK27], with Wigner (see footnote 33) [JW28] (on

the canonical anticommutation relations for fermions), and finally, with Pauli –

also of 1928, are concerned with the concept of second quantization, or in other

words, with the quantizaion of wave fields, thus laying the ground of quantum

field theory. It is difficult nowadays to fully appreciate the novelty and the sig-

nificance of this work. Why, for instance, should one quantize the wave function

of the already quantum Schrödinger equation? Here is an unexpected for us rea-

son. A problem that still worried physicists in the late 1920’s was the physical

interpretation of the wave function. Schrödinger was trying, in 1926, to give a

realistic physical meaning to his waves, to think of their modulus square, |ψ|2,

as a kind of density of electronic matter ( [Dar], p. 237). One of the obstacles to

such an interpretation (raised by the expert critic Pauli) was the necessity to in-

troduce a multi-dimensional configuration space to deal with several-body prob-

lems. Regardingψ as a field operator, Jordan restored in a way the 3-dimensional

picture for treating an arbitrary (even a changing) number of particles. Further-

more, Jordan and Klein [JK27] were happy to discover that normal ordering in

the operator formalism allowed to eliminate in a natural way the infinite self-

energy terms ( [Dar], pp. 234-235). (The even more revolutionary fermionic

second quantization and its uneasy reception was discussed in Section 5.)

So why did not Jordan share the fame of his Göttingen colleagues? Not

only he did not get a Nobel Prize (in spite of the fact that the authors of the

“Dreimännerarbeit” were proposed twice to the Nobel committee by Einstein

during the late 1920’s [S06]), he was the only major contributor to the develop-

ment of quantum theory who did not attend the glorious 1927 Solvay conference

(17 of whose 29 participants were or became Nobel laureats - see [Sch], p. 6);

during the 35 years he lived after the War he was all but forgotten. The reasons

for such a neglect are complex: they concern Jordan’s personality and politics

(and reflect the fact that our society praises scientists not just for their scientific

achievements).

41In the words of Stanely Deser, cited in [S06], we might have spoken about Jordanons instead of

fermions... Jordan himself used the term ”Pauli statistics”. A half a century older Jordan [J] recalls

that “in early discussions [Pauli] rejected the obvious idea of extending the scope of his law. Later,

as part of the Fermi-Dirac statistics, it attained the status of a ... fundamental law in physics.” (No

allusion to his priority!)
42As noted by Schroer [S06], there is a third nearly forgotten contributor to this subject, Fritz Lon-

don (1900-1954), better known for his study of the hydrogen molecule and the superconductivity;

London was the first to introduce, in 1926, the concept of a Hilbert space in quantum mechanics.
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To begin with, it has not been easy for the twenty-year-old newcomer to

Göttingen to withstand the brash and confident ways of his brilliant one or two

years older colleagues, Heisenberg and Pauli. According to Schweber, [Sch] p.

7, “Jordan was rather short and his presentation of self reflected his physical

stature.” Besides, he badly stuttered, this made it difficult for him to commu-

nicate with others and reinforced the impression of insecurity which he left.

The fact that he had affinity for mathematical problems and techniques (in-

cluding the study of Jordan algebras43 to which a joint work with von Neu-

mann and Wigner [JNW] (of 1934) is devoted) did not enhance his popularity

among physicists44 (or with the Nobel committee, for that matter: even the great

Poincaré (was nominated for but) did not receive the Nobel Prize). As observed

by Freeman Dyson, one has to stick long enough to the field of his greatest suc-

cess, if his aim is to get a Nobel Prize. By contrast, faithful to the dream of his

14-year-old self to embrace the whole of science, Jordan moved on in the 1930’s

to problems in biology, psychology, geology, and cosmology. He was one of the

very first scientists who subscribed before World War II to the big-bang hypoth-

esis45. If, thus, in the late twenties and early thirties the lack of full recognition

may be traced to Jordan’s insufficient self-assertiveness and his uncommonly

wide interests, the way he was ignored after the War has to do with his politics.

The resentment against the humiliating Versailles treaty and the economic hard-

ship aggravated by exorbitant reparations were a fertile soil for the springing of

nationalist feelings and for the rise of political extremism. To cite once more

Schucking [Sch99]: ”Jordan had been a conservative nationalist who published

his elitists views in the right wing journal Deutsche Volkstum (German Heritage)

under the pseudonym ’Domeier’. My Göttingen teacher Hans Kopfermann ...

wrote to Niels Bohr in May 1933: ’There is a tendency among the non-Jewish

younger scientists to join the movement and to act as much as possible as a mod-

erating element, instead of standing disapprovingly on the sidelines’.” Indeed,

Jordan was among the 8.5 million Germans to join the National-Socialist (NS)

Party after Hitler came to power; he even took part in its semimilitary wing SA

(the Storm Troopers or “brown shirts” who became largely irrelevant after the

”Blood purge” of 1934 against their leaders). Much like the last liberal British

Prime Minister Lloyd George (see [CMM]), Jordan thought that the spread of

communism from Soviet Russia was the greatest danger and a national-socialist

43It is a non-associative algebra characterized by the relation A2◦(A◦B) = A◦(A2◦B) (A2 =
A ◦ A) satisfied by the symmetric product A ◦ B := 1

2
(AB + BA).

44His post-war student Engelbert Schücking, [Sch99], recounts: “Jordan was looked down upon

by Pauli and Heisenberg as more of a mathematician than a physicist”, and ”Herr Jordan was always

a formalist”, Pauli once told me. Jordan, by contrast, has only praise for Pauli - see his insightful

essay [J].
45His cosmological ideas followed the theory of the Belgian priest and astronomer Monsignor

Georges Lemaı̂tre (1894-1966) whose discovery of the redshift-distance relationship was later as-

cribed to Edwin Hubble (1889-1953) – see [WN]. They were also inspired by Dirac’s 1937 large

number hypothesis). Jordan’s contributions were rediscovered and became popular (without credit-

ing their originator) decades later – see H. Kragh in [PJ07].
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Germany was the only alternative. Bert Schroer shares in [PJ07] the above cited

argument that Jordan had the naive hope to convince some influential people

in the NS establishment that modern physics, as represented by Einstein and

especially by the new Copenhagen version of quantum physics, was the best an-

tidote against “the materialism of the Bolsheviks”. This view is corroborated

by Jordan’s book [J36] which is inspired (and refers approvingly to) Bernhard

Bavink46. Bavink argues that modern physics was thoroughly anti-materialistic

and in far better agreement with Christian belief than classical physics (see H.

Kragh in [PJ07] and references therein). Not surprisingly, such views were not

welcome by the Nazi authorities, obsessed, as they were, by antisemitism. They

accepted Jordan’s support but never trusted him as he continued his association

with (and was ready to publicly praise) Jewish colleagues. He spent some 16

years, 1928-1944 in a relative isolation, at the small University of Rostock and

was never assigned an important war related task (as was, for instance, Heisen-

berg who did not join the party). Jordan did only inflict harm on his own rep-

utation: for two years after the war he did not have any work. Born refused to

witness on his behalf, citing (in a letter responding to his request) the names of

his relatives who perished during the Nazi rule (see [B05]). Jordan only passed

eventually the process of denazification with the help of Heisenberg and Pauli

(and had to wait until 195347 to be allowed to advise PhD candidates). Once re-

instated as a professor at the University of Hamburg, he created a strong school

of general relativity48(see [E09]). But Jordan did not follow Pauli’s advice to

stay away from politics. Opposing the manifesto of the “Göttingen eighteen”

(of April 1957, signed by Born and Heisenberg) - against the nuclear rearma-

ment of Germany - he wrote a counter article in support of Adenauer’s policy

claiming that the action of the eighteen endangered world peace and undermined

the stability in Europe. Max Born was irritated by Jordan’s article but did not

react in public. (His wife did not hide her anger: she collected and published

Jordan’s old political articles under the title “Pascual Jordan, propagandist on

the pay of CDU”.)

Eugene Wigner (Nobel Prize in Physics of 1963) nominated in 1979 (from

Princeton) his former colleague (and coauthor of [JW28]) for the Nobel Prize,

but to no avail: that year the Nobel Prize in Physics was shared among Sheldon

Glashow, Abdus Salam and Steven Weinberg - “three practitioners of the art that

Jordan had invented”, in the words of Schucking [Sch99].

46German physics teacher, philosopher of science and prolific author (1879-1947).
47The nationalist philosopher Theodor Haering (1884-1964), whose obscurantist views on modern

physics Jordan criticized in his book [J41] during the Nazi time, was rehabilitated two years earlier,

in 1951. (I thank K.-H. Rehren for this information.)
48His students included Jürgen Ehlers (1929-2008), who became in 1995 the founding director

of the newly created Max Planck Institute for Gravitational Physics (Albert Einstein Institute) in

Golm (Potsdam), and Schücking who ended his career in the New York University. In the hands of

the Hamburg group Dirac’s idea of a variable gravitational constant was transformed into the still

popular scalar-tensor theory of gravity, usually attributed to Brans-Dicke (who wrote their paper in

1961, two years after Jordan).
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Pascual Jordan died on July 31, 1980 in Hamburg, three months before reaching

78, still working on his scalar-tensor theory of gravity.
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