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ABSTRACT: The relative performance of trial wave functions expressed as linear
combination of correlated exponentials has been tested on a variety of systems. The
results are compared against other correlated functions commonly used in the literature
to assess the capabilities of the proposed ansatz. A possible departure from the simple
exponential functional form used in previous works is discussed, along with its
advantages and drawbacks. We also discuss how to implement an efficient optimization
procedure for this correlated basis set. Q 1999 John Wiley & Sons, Inc. Int J Quant Chem 74:
23]33, 1999
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Introduction

ince the early developments of quantum me-S chanics, it was immediately recognized that
the accurate description of particles correlation is
an extremely difficult problem. Mean-field meth-
ods, like the Hartree]Fock method, neglect the

Correspondence to: G. Morosi.

instantaneous correlation between particles. They
often give quite good results and provide a quali-
tative description for many atomic and molecular
systems. However, in order to get accurate quanti-
tative results, the simple mean-field picture must
be abandoned in favor of methods that try to
accurately describe the electron correlation. The
most common way to include correlation into a
wave function is to start from the Hartree]Fock
picture, and to approximate the exact wave func-
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tion using multiconfiguration]self-consistent field
Ž . Ž .MC]SCF or configuration interaction CI expan-
sions. Unfortunately, methods based on the orbital
approximation converge very slowly to the exact
results. An alternative approach is the explicit in-
clusion of the interelectronic coordinates into an
approximate wave function; this is an old and
well-known method to build very accurate solu-

w xtions of the Schrodinger equation. Hylleraas 1
w xand James and Coolidge 2 computed very good

results for two-electron systems by including the
interelectronic distance r into the wave function12

and allowing the trial wave function to reproduce
the cusps of the exact one. These methods, how-
ever, are difficult to generalize for systems with
more than two electrons since the resulting inte-
grals are extremely difficult or impossible to eval-
uate analytically.

A popular and effective approach to building
compact explicitly correlated wave functions is to
multiply an SCF wave function by a correlation
factor, the most commonly used being a Jastrow

w xfactor 3 . The inclusion of the Jastrow factor does
not allow the analytical evaluation of the integrals,
so one has to turn to a numerical technique. Al-
though the inclusion of a Jastrow factor has been
shown to largely improve the simple SCF function,
using a more sophisticated determinantal part,
such as MC]SCF or truncated CI expansions, mul-

w xtiplied by a Jastrow factor 4, 5 , does not always
lead to large improvements in the quality of the
wave function. As a consequence the research so
far has focused mainly on developing better corre-

w xlation factors 6, 7 .
In this study we explore the possibility of ex-

panding the entire wave function, rather than the
correlation factor only, as a linear combination of
explicitly correlated functions, a field recently re-

w xviewed by Rychlewski 8 . The aim is toward the
development of a good correlated basis set. This
should allow a correct description of the cusp
conditions and should keep the number of terms
needed to obtain the desired accuracy small, alle-
viating the problem of the optimization of the
nonlinear parameters.

Trial Wave Function Form

We approximate the electronic wave function of
an atomic or molecular system with N electrons

and M nuclei with the linear expansion

L

Ž .C s c f , 1Ý i i
is1

where

Nˆ ˆ Ž . Ž . Ž .f s A Of R F r, k Q . 2½ 5i i i S , MS

ˆIn this equation A is the antisymmetrizer op-
ˆerator, O is an operator used to fix the space sym-

metry, when needed, F is a function of all the
electron]electron and electron]nucleus distances,
collected in the r vector, while k is the ith param-i
eter vector; Q N is an eigenfunction of the spinS, M s2̂ ˆoperators S and S of the correct spin multiplic-z

Ž .ity; f R is a function of the Cartesian electronici
Ž . Ž .x, y, z and nuclear X, Y, Z coordinates:

N M
a bi jk i jkŽ . Ž . Ž .f R s x y X y y YŁ Łi j k j k

js1 ks1

g i jk d i jkŽ . Ž .= z y Z r , 3j k jk

where a, b , g , and d are appropriate integers
greater than or equal to zero. The function F,
depending only on the interparticle distances, is
rotationally invariant. This means that it can de-
scribe only S states, with zero angular momentum.
To describe higher angular momentum states, it is

Ž .necessary to include a function f R with thei
correct rotational symmetry.

A linear expansion of the wave function on a
basis of correlated functions, with the choice of a

w xGaussian function as F, first suggested by Boys 9
w xand Singer 10 in 1960, is currently used by vari-

w xous researchers 11]15 . They have shown that
these explicitly correlated Gaussian functions can
give very accurate results on a variety of two-,
three,- and four-electron systems, provided that a
careful optimization of the nonlinear parameters is
performed. Unfortunately, this type of function

w xpoorly reproduces the cusp conditions 16 , i.e., the
behavior of the wave function when two particles
collide, and this has the unpleasant effect of slow-
ing down the convergence. As a result, a very
large number of functions is needed to reach high
accuracy, increasing the number of nonlinear pa-
rameters, and making their optimization a very
demanding task.

The only motivation for using a Gaussian func-
tion is the possibility to compute analytically all
the integrals needed to minimize the expectation

w xvalue of the energy 17 . The variational Monte
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Ž . w xCarlo VMC approach 18, 19 is a very powerful
technique that estimates the energy, and all the
desired properties, of a given trial wave function
without any need to analytically compute the ma-
trix elements. For this reason it poses no restric-
tions on the functional form of the trial wave
function, requiring only the evaluation of the wave
function value, its gradient, and its Laplacian, and
these are easily computed. Using the VMC algo-
rithm, essentially a stochastic numerical integra-
tion scheme, the expectation value of the energy
for any trial wave function form can be estimated
by averaging the local energy H CrC during a
random walk in the configuration space using a

w xMetropolis algorithm 20 or a Langevin algorithm
w x21 . In recent years, the VMC method has been
successfully used for this task with a variety of
explicitly correlated trial wave functions. So as

Ž .function F in Eq. 2 we are free to choose a more
suitable functional form than an explicitly corre-
lated Gaussian, getting faster convergence.

w xIn previous studies 22]24 we proposed to ex-
pand the solution of the electronic Schrodinger
equation as a linear expansion of explicitly corre-

Ž .lated exponentials, that is, we assumed F r ? k s
Ž .exp r ? k , an exponential of a linear combination

of all the interparticle distances. We showed that
the presence of the interparticle distances in the
exponent allows a good description of the cusp
conditions and reduces the number of terms
needed to obtain the desired accuracy by an order
of magnitude, in comparison with correlated
Gaussians expansions. The choice of the exponen-
tial was motivated by the fact that, at particles
coalescence, the wave function behaves as

1 ­ C
Ž .s c, 4

C ­ ri f r s0i j

where c is a constant, depending on the type of the
Ž .colliding particles. The local solution of Eq. 4

Ž . Ž .C s exp cr 5i f

suggests that an exponential of all the interparticle
distances might be a good choice.

This expansion was applied to some test sys-
tems and was shown to converge rapidly. Let us
briefly review the results we obtained.

For the hydrogen molecule in its ground state at
the equilibrium geometry, the convergence of the

w xexpansion is very fast 22 . One-term and two-term
functions already recover 87 and 98% of the corre-

lation energy, while the 20-term wave function has
an error in the energy of the order of 10y5 hartree.

For the 2Ýq ground state of the Heq molecularu 2
ion at a bond distance of 2.0625 bohrs we opti-
mized a series of functions of the form

L
yk ?rjˆ ˆŽ . Ž . Ž .C s c A 1 y i e aab y aba . 6ÝL j

j

A 1-term wave function is already able to re-
cover about 80% of the correlation energy, while a
12-term function gives better results than an exten-

w xsive full CI calculation 22 . A successive use of
these wave functions in a diffusion Monte Carlo
simulation allowed to estimate the exact ground-
state energy with high accuracy.

This basis was also applied to nonadiabatic sys-
w xtems: For the hydrogen molecular ion 23 a single

term of the expansion

L
2k r qk r qk r qk ri1 A i2 B i3 A B i4 A Bˆ Ž .C s c 1 q P e 7Ž .ÝL i A B

i

recovers 99.84% and a 2-term function already
recovers 99.97% of the exact energy, while the
10-term wave function has an error in the energy
of the order of 10y6 hartree. The linear expansion

Ž .in Eq. 7 works exceptionally well, giving a very
fast convergence.

These results are even more striking if we com-
pare them with linear expansions of explicitly cor-
related Gaussians: two terms of our expansion are
already better than Gaussian expansions with more

w xthan 200 terms 25, 26 . The improved quality of
our basis can be explained by the fact that Gauss-
ian functions poorly reproduce the cusps, while
the exponentials we use can account for them.

The positronium molecule Ps , formed by two2
electrons and two positrons and sometimes called

w x‘‘dipositronium,’’ was studied 23, 24 optimizing
a nonadiabatic trial wave function of the form

L
k r qk r qk r qk r qk r qk ri1 12 i2 13 i3 14 i4 23 i5 24 i6 34ˆ Ž .C s c Oe , 8ÝL i

i

where the numerical indices indicate the four par-
ticles. The energies are quickly convergent as the
number of terms increases, as evidenced from the
comparison with long expansions of Hylleraas-like

w x w xfunctions 27 and correlated Gaussians 26 . A
12-term wave function is within 0.00014 hartree
from the estimated exact energy. To recover the
remaining energy, a diffusion Monte Carlo calcula-
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tion was performed; the exact energy was com-
puted, putting to an end the long debate on the
ground-state energy of this system.

Having checked the very good performance of
this basis with the previously mentioned systems,
we decided to study different atomic and molecu-
lar systems, in order to extend the comparison of
its performances against other functional forms. In
this work we also explore the possibility of using,
instead of the simple exponential, different func-
tions F as basis set, in particular an electrons]elec-
tron Jastrow term:

Ž . ar i j rŽ1qbr i j. Ž .J r s e . 9i j

Generation of the Basis

Departing from the usual determinantal wave
function form can be very fruitful, as our previous
work has shown, but it is computationally much
more demanding. The bottleneck to the extension
of this method to many-electron systems is the
calculation of the N a!N b! terms generated by the
antisymmetrizer operator, N a and N b being the
number of alpha and beta electrons. For this rea-
son, special care must be taken of the design of an
efficient way of generating and optimizing the trial
wave function. These steps need to be done in the
most effective, fast, and efficient way available.
We describe here the procedure we have devel-
oped.

It is now well established that the best way to
optimize a trial wave function using VMC is not to
minimize the energy, but instead to minimize the
variance of the local energy, as described in detail

w xby Umrigar 6 , since this has been proved to be
numerically much more stable.

The optimization of the first term of the expan-
sion is usually performed starting from a trial
wave function with all the electron]electron pa-
rameters set to zero, and with the electron]nucleus
ones coming from some standard Slater orbital
basis or from a small basis set optimized at the
SCF level. In some cases, when the system may be
approximated as a sum of two fragments, the
starting wave function may be constructed by
combining the wave functions of the two parts.
Such a procedure was used, for example, in the
optimization of the LiH molecule. However, usu-
ally the initial parameters are not very important,

and even ‘‘reasonable’’ randomly chosen parame-
ters quickly converge to the optimum values.

The generation and optimization of additional
terms is a crucial point if one aims at a procedure
that systematically improves the trial wave func-
tion. In principle, one could generate an L-term
wave function by simultaneously choosing all the
parameters randomly, or by an educated guess,
and by performing a minimization of the variance
of the local energy. This procedure, however, is
doomed to failure, due to the enormous number of
local minima present in the nonlinear parameters
space.

Ž .Instead, we build the L q 1 -term wave func-
tion by adding an extra term to an optimized
L-term wave function. We have found this proce-
dure to be very efficient, and able to produce
high-quality basis functions. In practice, after hav-
ing optimized a L-term function C, we perform a
VMC simulation and generate an ensemble of

Ž . 2walkers on the order of thousands with C dis-
tribution. At this point a new term is included in
the basis, selecting it among a set of terms, all with
randomly chosen parameters. The term that gives
the largest decrease in the variance of the local
energy, estimated using the previously generated
fixed ensemble of walkers, is included in the basis,
and subsequently optimized using a nonlinear
minimization method. After the inclusion of the
additional term into the basis, we reoptimize all
the terms, one by one, as this leads to a much
better wave function, at least when the number of
terms is small.

The evaluation of the wave function is the most
expensive part of the optimization process. A con-
siderable speed up can be obtained when using a
basis with a large number of terms by noting the
trivial fact that, during the optimization of a single
term, all the others do not change, so a precompu-
tation of their values and of the local energy con-
tributions for each term and each walker gives a
substantial saving in CPU time. After the opti-
mization of a given term is completed, its contri-
butions are stored and the next term is optimized
in the same way. This process must be repeated
until the decrease of the variance is negligible.

Ž .This usually takes a few ‘‘sweeps’’ 3]10 of all the
terms.

The nonlinear parameters of each term to be
tested as candidate for inclusion in the basis are
randomly chosen within a given range: Usually
between 0 and yk, for the electron]nucleus terms,
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and between yh and h for the electron]electron
terms, for some reasonable positive k and h. The
linear parameters as well could be randomly cho-
sen in a given range; however, due to the
nonorthogonality of the basis, there is little clue on
what should be the best range, or even a reason-
able one. A better idea is to choose the linear
parameter for the candidate term with some guid-
ance.

We seek the conditions on C that minimize the
variance of the local energy

2 Ž . ² 2: ² :2s H s H y H
2

2 Ž .s CH C dR y CH C dR 10H Hž /
with the constraint that the wave function is nor-
malized: HC2 dR s 1. Using standard calculus of
variations, we find the differential equation that
must be satisfied by C. Calling l the Lagrange’s
undetermined multiplier and taking the functional
derivative, one easily gets

2 ² : Ž .H C y 2 H H C y lC s 0. 11

If we now expand C on a basis

L

Ž .C s c f 12ÝL i i
is1

Ž . Ž .substituting Eq. 12 into Eq. 11 and allowing the
linear parameters c to vary, but not the basisi
functions, we obtain a matrix equation than must
be solved to find the best linear parameters. Unfor-

² : Ž .tunately, the presence of H in Eq. 11 makes
the equation a nonlinear one: It can be solved, at

w xbest, by an iterative procedure 28 . However, if
we choose to minimize the second moment of the
Hamiltonian with respect to some fixed reference
energy E ,R

22 Ž . Ž .m H s C H y E C dRH R

22 Ž . Ž² : . Ž .s s H q H y E 13R

we obtain the linear equation in C

2 Ž .H C y 2 E H C y lC s 0, 14R

which, in turn, expanding C in a basis, gives the
linear system

Ž .c G y 2 E H q lS s 0, i s 1 . . . L,Ý j i j R i j i j
j

Ž .15

whose nontrivial solution is given by the secular
determinant

< < Ž .det G y 2 E H q lS s 0, 16i j R i j i j

where we have defined

2 Ž .Ž .G s w H w dR s Hw Hw dR,H Hi j i j j i

H s w Hw dR.Hi j i j Ž .17

S s w w dR.Hi j i j

Of course, the above integrals are evaluated
using the fixed ensemble of Monte Carlo walkers.
So, the linear parameter of the tentative term,
given all the nonlinear parameters randomly cho-

Ž . Ž .sen, can be selected by solving Eqs. 15 and 16 .
In this way we choose the best possible linear
parameter for a given set of nonlinear parameters.

Results and Discussion

TWO-ELECTRON SYSTEMS

The usual testing ground for any new proposed
trial wave function form is the helium atom: De-
spite its apparent simplicity with only two elec-
trons, it is already very difficult to treat, if one is
aiming at high accuracy. For this system, and for
any two electron atom, the integrals of the expo-
nential ansatz

L
k r qk r qk r1 1 2 2 3 12ˆ Ž .C s c 1 q P e 18Ž .Ý i 12

is1

are analytically computable, so were able to opti-
mize a rather large number of terms minimizing
the energy, a procedure that is not usually possible
in VMC calculations. The best energies obtained
for 1]19 terms are reported in Table I, while the
corresponding wave functions’ parameters for
these functions and all the other ones in the fol-
lowing can be obtained from the authors. The
generation of these basis functions was done ac-
cording to the scheme previously described. The
expansion has an amazingly fast convergence. A
two-term wave function recovers already 98.9% of
the correlation energy, while our best function has
an error in the energy of the order of 10y7 hartree.
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Considering the relative small number of terms,
this functional form gives a remarkable compact
and accurate description of the helium atom. This
behavior is partially explained by the high number
of nonlinear parameters that must be optimized,

TABLE I
Helium atom, analytic calculation.

( )Terms Energy hartree

1 y2.899534375
2 y2.903269243
3 y2.903640610
4 y2.903687268
5 y2.903713090
6 y2.903717300
7 y2.903720078
8 y2.903722779
9 y2.903723087

10 y2.903723798
11 y2.903723965
12 y2.903724020
13 y2.903724072
14 y2.903724095
15 y2.903724176
16 y2.903724231
17 y2.903724237
18 y2.903724238
19 y2.903724249

aHF limit y2.86168
bExact y2.903724377

a [ ]Ref. 29 .
b [ ]Ref. 30 .

so the compactness of the trial wave function is
paid with a more difficult optimization problem.

As already mentioned, a quite commonly used
correlation factor is the Jastrow factor, so it is
interesting to compare its performance when used
in place of the simple electron]electron exponen-
tial. It is not possible to analytically compute the
integrals needed to optimize the Jastrow factor, so
the optimizations were done using the VMC
method, as previously explained. To provide a fair
comparison, the one-term exponentials were reop-
timized using the VMC method. Both energies and
parameters of the one-term wave functions for Hy,
He, and Liq are reported in Table II. From this
simple comparison, it is clear that the Jastrow
factor describes the electron]electron part of the
wave function better than a simple exponential.
This result is not unexpected: The Jastrow factor is
a generalization of the exponential form, and set-
ting b s 0, we recover the previous functional
form.

A more complete comparison was performed
using the hydrogen molecule as testing ground.
We have optimized a series of functions of the
ground state at the equilibrium geometry using
the electron]electron Jastrow, to compare with our

w xprevious results with the exponentials 22 . The
superiority of the Jastrow in describing the elec-
tron]electron correlation is apparent from Table III
Ž .CE denoting the correlation energy , although this
effect becomes less pronounced as the number of
terms increases, the flexibility of the larger expan-
sion compensating for the better behavior, of the
single term.

TABLE II
One term functions for Hy, He and Li+. Energies in hartrees.

y +H He Li

( ) ( ) ( )Exponential y0.52285 13 k = y1.088 y2.89950 9 k = y2.227 y7.27474 4 k = y3.2881 1 1
k = y0.465 k = y1.507 k = y2.4572 2 2
k = 0.165 k = 0.254 k = 0.2623 3 3

( ) ( ) ( )Jastrow y0.52420 5 k = y 1.080 y2.90143 10 k = y2.200 y7.27625 14 k = y3.2971 1 1
k = y0.528 k = y1.428 k = y2.3942 2 2

a = 0.454 a = 0.452 a = 0.465
b = 0.248 b = 0.439 b = 0.686

aHF Limit y2.86168 y7.23641
bExact y0.52775 y2.90372 y7.27991

a [ ]Ref. 29 .
b [ ]Ref. 30 .
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TABLE III
H ground state, R = 1.4011 bohrs.a2

( ) ( )Terms Exponential CE % Jastrow CE %

( ) ( )1 y1.16943 19 87.64 y1.17282 5 95.95
( ) ( )2 y1.17362 5 97.85 y1.17398 2 98.78
( ) ( )3 y1.17393 5 98.59 y1.17412 2 99.12
( ) ( )4 y1.17412 4 99.07 y1.17421 1 99.34
( ) ( )5 y1.17417 5 99.25 y1.17433 1 99.64
( ) ( )6 y1.17429 2 99.54 y1.17436 1 99.71
( ) ( )7 y1.17433 1 99.65 y1.17439 1 99.78

bHF limit y1.133623
cExact y1.174476

a Energies in hartrees.
b [ ]Ref. 12 .
c [ ]Ref. 31 .

MANY-ELECTRON SYSTEMS

The ability of the proposed expansion to accu-
rately describe systems with more than two elec-

w xtrons was proved in previous works 22]24 . Here
we study the performances of our ansatz more

Ž .extensively. The lithium atom Table IV is an
interesting case: This is the first system we studied
where it was necessary to use a preexponential

w Ž .xfactor see Eq. 3 : The reason is that the exponen-
tial part of the wave function alone is not able to

Ždescribe the behavior of the outer electron the 2 s
.electron, in the atomic orbital language . A single

term without preexponential factor was highly un-
stable during the optimization and always gave
energies worse that the Hartree]Fock energy. The
best results were obtained multiplying the expo-

nentials by a single electron]nucleus distance:
ŽHaving adopted the spin eigenfunction ab y

.ba a, we allowed the third electron to be the
‘‘outer’’ electron, using r as prefactor. Again, the3
expansion is quickly convergent, albeit less than
for the two-electron case. Our best wave function
recovers 98.75% of the correlation energy, and this
result could be improved by including more and
more terms, at the expense, of course, of a more
difficult nonlinear optimization problem. To give
an idea of the computational effort, for lithium the
generation of the entire set of exponential func-
tions took about one week on a modern worksta-
tion, roughly 90% of the CPU time spent in the
optimization process, and the remaining 10% in
the VMC simulation. As previously remarked, this

TABLE IV
Lithium atom, ground state.a

b b c( ) ( ) ( )Terms Exponential CE % Jastrow CE % VQMC CE %

( ) ( ) ( )1 y7.46699 12 75.56 y7.47305 12 88.95 y7.4731 6 88.99
( ) ( )2 y7.47248 22 87.70 y7.47640 4 96.33
( )3 y7.47588 8 95.18
( )4 y7.47641 4 96.35
( )5 y7.47695 4 97.56
( )6 y7.47719 2 98.07
( )7 y7.47729 2 98.29
( )8 y7.47750 2 98.75

dHF Limit y7.43274
eExact y7.47806

a Energies in hartrees.
b Preexponential factor r .3
c [ ]Ref. 32 .
d [ ]Ref. 33 .
e [ ]Ref. 7 .
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large number of nonlinear parameters is in part
responsible for the compactness of the trial wave
function. It is interesting to note that our two-term
function gives an energy comparable with a more
standard trial wave function form used in VMC: A
Slater determinant of Hartree]Fock quality multi-

Žplied by a correlation factor in this case a general-
w x.ized Jastrow factor 7 . Given the good perfor-

mances with two-electron systems, we tried to use
the Jastrow factor instead of the exponential
for the description of the electron]electron part.
During the optimization we did not fix the a
parameter of the Jastrow factor to satisfy the cusp
conditions, as sometimes is common in VMC cal-
culations, since this would have increased the vari-
ational energy. A single term with Jastrow factors,

Žwith 9 optimizable parameters all the Jastrow
.factors are independent , gives a better energy

than two exponential terms, with 13 optimizable
parameters, and two Jastrow factors are equivalent
to 4 exponential terms. However, the optimization
of the Jastrow proved to be much more difficult
than the simple exponential. Most of the time the
addition of another term caused a reduction in the
variance of the energy, but an increase in the
energy. Even starting from the already optimized
parameters of the exponentials proved to be use-
less, the variance decreased, but the energy in-
creased. Despite considerable effort, we were not
able to add the third term of the expansion with a
corresponding decrease of the variational energy.

Moving to four-electron systems, we studied
the beryllium atom and the lithium hydride

Ž .molecule. The ground state of beryllium Table V
is a very interesting case: A single exponential
term recovers about 64% of the correlation energy,

almost the same percentage recovered by a Slater
determinant times a Schmidt and Moskowitz six-

w xterm correlation factor 7 , proving the good be-
havior of our exponential ansatz. Like in the
lithium case, we had to use a preexponential factor
in order to correctly describe the different electron
shells. We chose to put the third and fourth elec-
tron in the outer shell, resulting in a prefactor of
the form r r , i.e., we used a one-term function of3 4
the form

r r ek1 r1qk 2 r2qk 3 r3qk4 r4qk5 r12qk 6 r13qk 7 r14qk 8 r23qk 9 r24qk10 r34
3 4

w Ž . Ž . Ž . Ž .x= a 1 b 2 y b 1 a 2

w Ž . Ž . Ž . Ž .x Ž .= a 3 b 4 y b 3 a 4 . 19

We succeeded in adding three more terms with
the same prefactor, recovering 92% of the correla-
tion energy. At this point, we were unable to add
more terms of the same form: The selection pro-
cess always gave a new term with a negligibly
small linear coefficient, or a term that, after opti-
mization, worsened the energy. It is also interest-
ing to note that the same optimization problem
that we encountered with the Jastrow term in the
lithium case was also present here: We have never
been able to use more than one Jastrow, which is
equivalent to three exponentials.

It is a well-known fact that the near degeneracy
of the 2 s and 2 p orbitals must be taken into
account when expanding the ground state of the
beryllium atom in Slater determinants. A similar
thing happens with our linear combination of cor-
related exponentials: The inclusion of a term with
a prefactor of the form x x q y y q z z recov-3 4 3 4 3 4
ers 97% of the correlation energy. This term corre-

TABLE V
Beryllium atom, ground state.a

b b c( ) ( ) ( )Terms Exponential CE % Jastrow CE % VQMC CE %

( ) ( ) ( )1 y14.63309 57 63.55 y14.65171 15 83.25 y14.6332 8 66.67
( )2 y14.64424 55 75.35
( )3 y14.65247 24 84.06
( )4 y14.66002 13 92.02

d ( )5 y14.66490 13 97.00
eHF limit y14.57302

eExact y14.66736

a Energies in hartrees.
b Preexponential factor r r .3 4
c [ ]Ref. 7 .
d ( )Fifth term with preexponential factor x x + y y + z z .3 4 3 4 3 4
e [ ]Ref. 32 .
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sponds to the description of two electrons in two
2 p orbitals.

As a four-electron molecular case, we consid-
ered the LiH molecule, using the same singlet spin
function we used for the beryllium atom.

Here we have different choices for the preexpo-
nential factor. The best results were obtained mul-
tiplying the exponentials by the distance r . In3yLi

Ž .the atomic orbital AO language this would mean
that an electron has been ‘‘assigned’’ to a 2 s orbital
centered on the lithium atom. Roughly speaking,
our trial wave function tries to describe the LiH
molecule as composed by the Li and H fragments.
The description of the LiH molecule as composed
by the Liq and Hy ions would correspond to

Žusing no prefactors all electrons occupy 1s or-
. Žbitals , but this choice gives a higher energy see

Table VI.
The use of the Jastrow factor greatly improves

the energy of the single term, which is better than
the simple exponential term, but again we were

unable to add more terms with this correlation
function.

Lastly we considered a five-electron system: the
2 Ž .Boron atom in its P ground state Table VII . This

case is computationally quite demanding since the
antisymmetry requirement generates 48 permuta-
tions and furthermore a single term has 15 nonlin-
ear parameters. Nevertheless, we were able to re-
cover 52% of the correlation energy with a single
term which includes a preexponential factor r r x .3 4 5
We wish to point out that, to our knowledge, no
calculations using linear expansion of fully corre-
lated Gaussians has been published with more
than four electrons.

Using a Jastrow correlation function, the energy
improves, as already found for the other systems.
During the optimization process of the exponential
term, we observed that there are functions with a
considerably better energy, but a worse variance of
the local energy, than the final wave function ob-
tained from the optimization. We found, for exam-

TABLE VI
LiH ground state, R = 3.015 bohr.a

b( ) ( ) ( )Terms Exponential CE % Jastrow CE % VQMC CE %

c ( )1 y8.0416 1 65.65
d ( ) ( ) ( )1 y8.0481 4 73.38 y8.0573 1 84.79 8.0459 3 70.77
d ( )2 y8.0516 4 77.60
d ( )3 y8.0571 1 84.15

eHF limit y7.98735
f ( )Exact y8.07021 5

a Energies in hartrees.
b [ ]Ref. 34 .
c No preexponential factors.
d Preexponential factors: r .3 y L i
e [ ]Ref. 35 .
f [ ]Ref. 36 .

TABLE VII
Boron atom, ground state.a

b b c( ) ( ) ( )Terms Exponential CE % Jastrow CE % VQMC CE %

( ) ( ) ( )1 y24.5942 5 52.17 y24.6025 5 58.81 y24.6113 8 65.90
dHF limit y24.52906

dExact y24.65393

a Energies in hartrees.
b Preexponential factor r r x .3 4 5
c [ ]Ref. 7 .
d [ ]Ref. 32 .
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ple, a single exponential term with an energy of
Ž .y24.61260 5 , which recovers 66.90% of the corre-

lation energy, but with s s 4.38. The final wave
Ž .function instead has an energy of y24.5942 5 and

s s 1.07.
This observation can shed some light on the

optimization problems found also for the other
systems: It seems that, as the number of electrons
increases, the wave function with the best variance
of the local energy becomes increasingly different
from the function with the best energy, which
unfortunately cannot be obtained using the current
optimization methods. It is very likely that this is
the explanation for the observed difficulties found
with Jastrow functions: The addition of a term
sometimes is used by the optimization process to
decrease the sigma, at the expense of an increase
of the energy. This problem apparently becomes
more severe as the number of electrons increases:
in all many-electron systems we treated, except the
boron atom, a single optimized term with Jastrow
factor recovered more correlation energy that the
Slater determinant plus a generalized Jastrow fac-
tor, and this demonstrates the good quality of the
ansatz. For the boron case, as previously shown, it
is possible to recover more correlation energy, but
at the expense of the variance of the local energy.

Conclusions

We have shown that departing from the usual
determinantal wave function form can be very
fruitful, allowing an accurate and, at the same
time, compact description of few-electron atomic
and molecular systems. Very few terms are needed
to reach an accuracy comparable to more common
wave function forms, and the description can be
systematically improved by adding more terms
using the procedure we described. Comparing the
results for atoms, one realizes that the larger the
number of electrons, the less correlation energy is
recovered by a single exponential term and larger
expansions are required to reach the same level of
accuracy in the energy.

We investigated a possible improvement of the
electron]electron part using a Jastrow factor in-
stead of the simple exponential. We found this
choice at the same time promising and disappoint-
ing. It surely permits a greater percentage of corre-
lation energy to be recovered per number of non-

linear parameters, and this is a desirable property.
However its usefulness is severely hampered by
the difficulties found in its optimization. Further
investigation is necessary to better understand this
behavior; a possible explanation might be that the
variance optimization is responsible for this behav-
ior, permitting a higher reduction of the sigma at
the expense of the increase of the energy.
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