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Abstract 
 

The objective is to design an adaptive controller for a pressure tank using online identification to obtain the 
mathematical model of the system. The method considered nonparametric and parametric identification recursive 
least squares to obtain a ARMAX model of the system dynamics. An adaptive controller for controlling auto-
tuning pressure was developed. The simulation was carried out by two operating ranges. 
 

The results show that it has reached a convergence time of 1 s., an identification with extended least squares, a 
settling time of 10 s. and steady-state error of 3% for the controlled variable. Based on the study, it is concluded 
that the controller has an acceptable performance against the nonlinearities of the process and does not require 
re-tune the controller to significant changes in the model or due to perturbance. 
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Introduction 
 

At present have been used different control algorithms to improve the performance of processes nonlinear nature 
and time-varying due to the uncertainties and disturbances, also in many cases modeling is difficult especially 
when the process parameters change frequently, then control requires an accurate knowledge of the process 
model. One solution is to design a self- tuning controller in response to variations in the dynamics of the process 
as the adaptive self-tuning controller with on-line identification (Rodriguez, F. and Lopez, M. 1996). 
 

Pressure control is critical because many industrial processes that exhibit a strongly nonlinear behavior due to 
changes in operating conditions and nature of the variation in time (Slotine, E. and Weiping, L. 1991). 
 

Identification of dynamic systems is defined as obtaining a mathematical model using experimental data from 
measurements made at the input and output of the process, which reproduces the dynamics of the process and is 
presented as an iterative procedure to find the best model. When the identification is made at each sampling time, 
this identification is called online. 
 

Algorithm Recursive Identification of Least Squares Estimation in line that has been used is based on the 
acceptance of an initial structure of the mathematical model (this model has been obtained from the nonparametric 
and parametric identification offline), which parameters for a work area are known. Knowledge of delay of the 
system reduces computational time. 
 

Equipment and Materials 
 

For data acquisition used a data acquisition card PCI 6024E DAQ of NI and a personal computer PIII.  
 

The software package used was MatLab v6.5, Simulink and Real-Time Windows Target to generate executable 
code for real-time implementation. The figure 1 shows the equipment for data acquisition. 
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Figure 1. Diagram P&ID for Pressure Tank System. 
 

 
Methodology 
 

The experimental modeling considers the following steps: 
 

-Nonparametric ID, to know the response to the step signal, the response to the sinusoidal signal, system 
appropriate sampling time, etc. 
-Parametric ID, to know the response to the PRBS signal for obtaining the regression matrix input-output data 
with those obtained models plant considering disturbance. 
-Recursive Online, to estimate model parameters in real-time identification, methods of least squares and 
extended least squares estimates for the parameters of the model were applied. 
 

Experimental tests on the pressure tank was used to obtain the static characteristic, the nonparametric and 
parametric identification and identifying online where the parameter is updated in each sampling time. Before 
identification is necessary to analyze the recorded data and decide if they are the most appropriate for the 
estimation, especially if they have high frequency noise, those should be removed using Butterworth filters, etc. 
(Dávalos, J. 2005). 
 

 

Non Parametric Identification 
 

Spectral analysis was implemented by generating a sinusoidal signal of variable frequency in order to evaluate the 
response of the process for different frequencies (Aguirre, L. 2000).  
 

Considering the response of frequency to the sinusoidal signal of system was determined when the power spectral 
density took a very small value with  about 5 rad/s. 
 

The static characteristic curve allowed a corresponding lift each scalar value of the manipulated variable in the 
whole area of control. This signal must be large enough to observe the limits of linearity of the process. For 
purposes of evaluation it considered two linear sections: a zone 1 from 5 to 30% of valve opening and a zone 2 
from 35 to 50 % of valve opening. 
 

The transient analysis was performed using step signals. The figure 2 shows the step response of the plant to an 
opening pressure of valve 5 to 20 % and also 36 to 42%. 
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Figure 2. Step Response for valve opening of 5-20 % (Left) and 36-42 % (Right) 
 
 
 
 
 

For the step response of the plant will approximate it possible for a first-order system, where the system considers 
estimated air valve (actuator), tank (plant) and the pressure transmitter (sensor). With the magnitudes of the 
signals and the time corresponding to 63.2% and 28.4% of the final steady state value, must be for the linear zone 
1, the static gain K0.2262, the time delay L  0.5 s., constant time 10.8 s. and the settling time ts30 s. 
 

For linear zone 2, the static gain K 0.4937, the time delay L 0.5 s., the time constant 11.85 s. and settling 
time ts 30 s. Then, the non-parametric model of the system is: 
 
 

 s5.0
P e

1s8.10
0.2262)s(G 


                                                                                                            (1) 

 

Parametric Identification 
 

Parametric identification is based on structured model as ARX, ARMAX, OE, BJ, etc., and finite structure 
parameters. For the parametric identification is necessary to generate a signal of pseudo-random binary sequence 
(PRBS), these signals are periodic in nature, relatively short periods that are close to white noise with constant 
spectral density over a wide range of frequencies (Ljung, L. 1987). 
 

The response to a PRBS signal is designed to acquire data from input-output containing the best process 
information. Ten thousand samples were recorded with a time process of sampling 0.1 s, which are shown in 
figure 3. The PRBS signal amplitudes are defined by the ranges of valve opening. Previous knowledge of the 
process facilitates the choice of delay and order of system. 
 
 

 
   

Figure 3. Response to PRBS for opening valve 5-20% (Left) and 36-42 %( Right) 
 

 
The parametric identification was based on ARMAX model (Auto-Regressive Moving Average Controlled) that 
considers the deterministic and stochastic part of the process. The estimation or adjustment of parameters is 
formulated as an optimization problem where the criteria are the least squares to minimize the mean square error. 
We considered 70% of the acquired data for estimation and remaining 30 % for model validation. 
To estimate the model we have considered the 70 % of the acquired data. Figure 4 shows the measured output and 
the model output. The structure [2 2 2 5] is the most closely approximates the behavior of the system and the error 
in the estimate is 0.0036%. 
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Figure 4. Outputs on the estimate for the linear zone 1(Left) and linear zone 2(Right) 

 

 
The ARMAX model estimated for linear zone 1in transfer function pulse is: 
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The system has identified two real poles inside the unit circle (stable polar) and zero outside the unit circle, the 
system is non-minimum phase (Ogata, K. 1996). 
 

The ARMAX model estimated for linear zone 2 in transfer function pulse is: 
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This last step is to determine if the model obtained satisfies the process dynamics considering a compromise 
between accuracy in steady state and the relative stability of the system. For validation of the model was 
considered 30% of the data acquired but not used in the estimation (cross-validation), this remaining information 
is compared by simulation with the measured output. The figure 5 shows the good approximation of the model 
output and the measured output to the linear zone 1, the validation error is 0.0043%. The same applies to the 
model output and the measured output for linear zone 2, the validation error is 0.0037%. 
 

Residue analysis determines validity by graphics autocorrelation and cross correlation with the data obtained 
experimentally. This residue analysis is due to prediction errors obtained by calculating the difference between the 
observed and estimated output, these residues must be independent of the input. The range of confidence shows 
that the residuals are not entirely white. 
 

 

   
 

Figure 5.Outputs on validation for linear zone 1(Left) and linear zone 2(Right) 
 

Recursive Identification Online 
 

The online ID allows the calculation of the mathematical model at each sampling instant recursively without 
saving the data of the process, by constant updating of its parameters makes it possible to identify systems where 
the parameters vary in time (Soderstom, T. and Stoica, P. 1989). 
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The application of the method of recursive least squares (RLS) for ARX model and extended least squares method 
(RELS) for ARMAX model, dependent of perturbation model of white or colored noise, if that does not right 
should apply another method, especially if the relationship noise/signal is large. Recursive identification 
algorithm comprises a variable forgetting factor in the range from 0.96 to 1.  
 

It included lower and upper bound of the covariance matrix for the lower bound, to the matrix is added a constant 
matrix R and the upper bound, the trace of the matrix. The recursive least squares method takes data at time k to 
estimate parameters at time k+1. 
 

 

   
 

Figure 6: Parameters with RLS and RELS Algorithm in 36-42% of valve opening  
with Alpha 107(Left) and 1012(Right). 

 
 

The results of online simulations are shown, the convergence of the estimated parameters to the actual process. 
The figure 6 shows the results of online simulation:  =107, r =0.05, the initial forgetting factor is 0.98 and the 
minimum forgetting factor is 0.96. Furthermore, the maximum trace is 100000, the squared error ratio so is 
0.000001 and variance of gaussian noise is nearly zero. 
 

The recursive identification algorithm RLS converges faster than the RELS algorithm (RLS algorithm converges 
in 1s. and RELS in 2s). In addition, the adaptation of the estimated parameters is satisfactory, given that it’s using 
a different point of operating. To verify the design of the recursive least squares identification with least squares 
RLS extended RELS was implemented. The figure 7 shows the actual data of the online identification with the 
initial conditions: PRBS signal with a range of initial operation of 15-35% of valve opening. 
 

The following initial conditions for identifier is considered: theta, initial vector of parameters is zero , =109, r = 
0.05 , a factor of initial forgetting is 0.98, a factor of minimum missing 0.96, a peak trace of 100000 and the ratio 
of So squared error of 0.000001.  
 
 

 
 

Figure 7.Online ID with a PRBS Signal for a valve opening of 15-35 %( Left) and 60-80 % (Right)  
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The figure 7 shows the parameters converge in approximately 2 s. in identifying the recursive least squares RLS 
and about 1 s. in the recursive least squares identification RELS extended. The speed of adaptation of parameters 
is about 1 s., this convergence does not necessarily have to converge to the actual values of the model, but if you 
find a system stability despite this uncertainty. 
 

Adaptive Controller Design 
 

The objective of the adaptive control of self -tuning is to maintain consistent process performance in presence of 
uncertainties or variations in the parameters of the plant. The control is performed adaptively because the 
behavior of the process is nonlinear and time-varying (Astrom, J. and Wittenmark, B., 1996), so enable the 
adaptive control to obtain appropriate linear approximations for the operating range of the process. 
 

The figure 8 shows the block diagram of the adaptive controller of self- tuning by pole placement estimation 
applied to the plant. 
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Figure 8.System Self-Tuning Adaptive Control by Pole Assignment 

 
 

To develop the algorithm recursive least squares identification and RELS RLS have been based models offline 
identified (eq. 2 and 3). Is designed adaptive self- tuning controller with pole assignment (Dorf, R. 1989) forcing 
the entire resulting closed-loop system possesses a zero steady state error and stationary unit gain. The pole 
assignment method is intended that the closed-loop system considering the driver with specific dynamics.  
 
The transfer function of the closed-loop is: 
 

d1111

d11
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The control law can be expressed by: 
 

)k(y)z(S)k(w)z(T)k(u)z(R 111    (5) 
 

Results 
 

We proceeded to simulate the behavior of the controller for case 1(equ. 3) and the following specifications:  
damping factor of 0.8, tstime of settlement 10 s., natural frequency of 0.5 rad/sec and the factor of the observer 
poles =2.The figure 9 (left) shows the simulation results for the adaptive controller using the recursive least 
squares RLS identification, considering a desired path of 5 to 15% of desired pressure in the tank and a variance 
equal to 0.01 for generating the noise gaussian. The results of the simulation of case 1 show that the settling time 
is approximately 18s.The maximum percentage overshoot is about 5% and the steady-state error is 2%. The 
control law has a great control at the start, which is limited in magnitude in the program for implementation.  
The control law is susceptible to tuning parameters (due to the poles of the controller and the observer). 
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Figure 9.Response of controller for case 1 (Left) and case 2 (Right) 

 
 

We proceeded to simulate the behavior of the controller for case 2 (equ.5) considering specification:  damping 
factor of 0.85 , ts settling time of 5 s., nnatural frequency of 0.94 rad/sec and the factor observer poles is  = 1. 
The figure 9 (right) shows the simulation results given a desired trajectory 30 to 60% of the desired pressure in 
the tank, the online identification algorithm used is RELS, gaussian noise variance is 0.05. The simulation of case 
2 shows that the settling time is approximately 10s., the maximum overshoot of approximately 20% and the 
steady-state error is around 3%. 
 

To test the adaptive controller design in the plant was implemented for a desired trajectory of 15 to 35% of 
pressure in the tank, income constant air flow at 40%, the tank is a 15cm water level and outlet valve slightly 
open. The following specifications are considered: damping factor 0.85, ts settling time of 5 s.,n natural 
frequency of 0.94 rad/seg. and factor of the poles of the observer is =2. The pressure reaches the stability in 
about 10 s. as in the simulations, the steady state error in the pressure is 0.15% and the controller output (the 
control force) does not exceed to 10v. 
 

Conclusions 
 

The adaptive self- tuning controller using the method of allocation of poles for pressure tank, provided acceptable 
behavior to the requirements and considering the nonlinearities of the process, Not required to re-tune the 
controller before significant changes in the desired value or due to the presence of disturbances, Simulations show 
that the methods of recursive least squares RLS identification and extended least squares RELS adapt quickly and 
the convergence of the parameters is satisfactory allowing to get the parameters of the model, updating the 
parameters in each sampling time, Convergence time 2s. parameters was obtained for the recursive least squares 
identification RLS 1s. for identification RELS extended least squares. A time of 10 s. was obtained to stabilize the 
pressure in the tank, the pressure control error is 0.15%, these results are for the entire operating range of the 
system. Besides the control law does not exceed the ±10v (no saturation) and is updated in each sampling period. 
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