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The refuge strategy is used worldwide to delay the evolution of
pest resistance to insecticides that are either sprayed or produced
by transgenic Bacillus thuringiensis (Bt) crops. This strategy is based
on the idea that refuges of host plants where pests are not ex-
posed to an insecticide promote survival of susceptible pests. De-
spite widespread adoption of this approach, large-scale tests of the
refuge strategy have been problematic. Here we tested the refuge
strategy with 8 y of data on refuges and resistance to the insecti-
cide pyriproxyfen in 84 populations of the sweetpotato whitefly
(Bemisia tabaci) from cotton fields in central Arizona. We found
that spatial variation in resistance to pyriproxyfen within each year
was not affected by refuges of melons or alfalfa near cotton fields.
However, resistance was negatively associated with the area of
cotton refuges and positively associated with the area of cotton
treated with pyriproxyfen. A statistical model based on the first 4 y
of data, incorporating the spatial distribution of cotton treated and
not treated with pyriproxyfen, adequately predicted the spatial
variation in resistance observed in the last 4 y of the study, con-
firming that cotton refuges delayed resistance and treated cotton
fields accelerated resistance. By providing a systematic assessment
of the effectiveness of refuges and the scale of their effects, the
spatially explicit approach applied here could be useful for testing
and improving the refuge strategy in other crop–pest systems.
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Population growth will continue to favor agricultural intensi-
fication for decades. Because agricultural intensification is

associated with increased pest pressure, pesticides generally help
to increase yield (1–3). Although significant progress has been
made to reduce reliance on pesticides (4, 5), an increasing num-
ber of insects and mites exhibit field-evolved resistance to syn-
thetic pesticides, Bacillus thuringiensis (Bt) sprays, and transgenic
Bt crops (6, 7). Negative consequences of resistance include in-
creased pesticide use, disruption of food webs and ecosystem
services, increased risk to human health, and loss of profits for
farmers and industry (1, 3).
One of the main strategies for delaying resistance promotes

survival of susceptible pests by providing refuges, which are areas
of host plants where pests are not exposed to an insecticide.
Theory predicts that refuges will slow the evolution of resistance
by reducing the fitness advantage of resistant individuals (7–9).
Refuges can also reduce the heritability of resistance when sus-
ceptible individuals mate with resistant individuals surviving ex-
posure to an insecticide (7). Empirical support for the refuge
strategy was provided by short-term laboratory and greenhouse
experiments (10, 11). Although these experiments test the hy-
pothesis that mating between susceptible and resistant individ-
uals delays the evolution of resistance, they do not consider
several factors that affect resistance in the field (7–9), and thus

only provide partial support for effectiveness of the refuge
strategy in the field. Retrospective analyses of variation in re-
sistance evolution in the field also suggest that refuges have been
effective, but these previous tests have been based primarily on
comparisons among species, or qualitative comparisons within
species based on a limited number of widely separated geo-
graphic areas (12, 13). In such tests, factors that vary among
species or geographic areas can confound the effects of refuges.
Accordingly, large-scale field tests of the refuge strategy for
a single species within a geographic area where factors affecting
resistance are similar are needed to test the refuge strategy more
rigorously. Moreover, tests of predictive refuge strategy models
are required to determine if the refuge strategy can delay re-
sistance (14). Furthermore, to improve our ability to develop
efficient refuge strategies, empirical approaches are necessary to
characterize effects of refuges on resistance evolution (7, 15).
Here we tested the refuge strategy using 8 y of data on refuges

and resistance to the insecticide pyriproxyfen in 84 populations
of the sweetpotato whitefly (Bemisia tabaci) sampled in cotton
fields of central Arizona. We studied the B biotype of B. tabaci,
also known as the Asia Minor-Middle East 1 species, which is
a key pest of cotton and other crops in Arizona and worldwide
(16). The insect growth regulators pyriproxyfen (a juvenile hor-
mone analog) and buprofezin (a chitin synthesis inhibitor) are
selective insecticides that have been used for whitefly control in
Arizona cotton (Gossypium spp.) since 1996 (17, 18). A single
application of either insecticide on cotton when B. tabaci pop-
ulations start to increase has substantially reduced sprays of
broad-spectrum insecticides, helped to conserve natural enemies,
and restored farmers’ profits (18, 19). To deter rapid evolution of
resistance, farmers in Arizona generally have not used pyr-
iproxyfen to control B. tabaci on crops other than cotton (19, 20).
Although B. tabaci is polyphagous, few whitefly crops other than

cotton are available in central Arizona from June to September,
when pyriproxyfen is sprayed on cotton. In principle, crops that
could act as refuges include spring melons (Citrullus lanatus and
Cucumismelo), alfalfa (Medicago sativa) and cotton not treated with
pyriproxyfen (referred to hereafter as untreated cotton). B. tabaci
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movement from alfalfa and untreated cotton to treated cotton can
occur throughout the period when pyriproxyfen is applied and be-
yond. However, because spring melons are harvested in June and
July, most movement from melons to treated cotton takes place
during the first half of the period when pyriproxyfen is applied.
Laboratory and field experiments show dispersal dimorphism

in B. tabaci populations. When suitable crops are present, most
individuals move within fields or short distances from fields,
whereas ∼6% move 2–3 km from source fields (21–23). In sim-
ulation modeling that incorporated this dispersal dimorphism,
refuges of cotton and other whitefly host plants delayed B. tabaci
resistance, whereas pyriproxyfen-treated cotton accelerated the
evolution of resistance (24).
The B. tabaci populations monitored here for pyriproxyfen

resistance were sampled before mid-October, when cotton and
alfalfa suitable for B. tabaci occur throughout the landscape.
Thus, we expected that most immigrants in the sampled cotton
fields originated from fields within 3 km. To test the hypothesis
that the spatial distribution of refuges and treated cotton affects
the evolution of resistance to pyriproxyfen, we used Geographic
Information System (GIS) technology and remote sensing data
to map four types of whitefly host plants within 3 km of each of
the 84 field sites: treated cotton and three types of refuges (al-
falfa, melons, and untreated cotton). We used survival of B.
tabaci eggs at a discriminating concentration of pyriproxyfen (0.1
μg of pyriproxyfen per mL) as an index of resistance to pyr-
iproxyfen for each of the 84 field populations (see Methods). We
analyzed the first 4 y of data to determine the spatial scale at
which the crops affected resistance and formulate a statistical
model that best described the association between B. tabaci re-
sistance to pyriproxyfen and abundance of the host plant types
near each of 46 field sites sampled from 2002 to 2005. We ap-
plied the resulting statistical model to predict resistance to pyr-
iproxyfen in 38 populations sampled from 2006 to 2009. The
comparison of predicted versus observed resistance shows that
the model accurately predicted resistance evolution.

Results
In the four counties of central Arizona where B. tabaci was
sampled from 84 sites (Fig. 1), pyriproxyfen use varied extensively
among counties and through time (Table S1). No cotton was
treated with pyriproxyfen in Pima County, whereas the highest
abundance of treated cotton was in La Paz. The area of pyr-
iproxyfen-treated cotton declined from 2002 to 2009 in Maricopa
and Pinal, but not in La Paz (Table S1). Near the sampling sites
for B. tabaci, cotton and alfalfa were abundant, but melon was
rare and mainly found in Maricopa (Table S1 and Fig. 1).
Survival at the discriminating concentration of pyriproxyfen

was 0% from 1996 to 1998 (25). Average survival was 8.0% in
2002 and increased to 45.1% by 2009 (Fig. S1), showing that
resistance to pyriproxyfen progressed during this study (F7, 76 =
3.36, P = 0.0036). In Maricopa and Pinal, where most sites were
located, resistance increased progressively from 2002 to 2009
(Figs. S2 and S3) despite the temporal reduction in pyriproxyfen
use across these years (Table S1). Within-county variation in re-
sistance was extensive (Fig. 1 and Figs. S2 and S3), and resistance
did not differ significantly between the two counties except in
2009 (Fig. S2). Reflecting the differential use of pyriproxyfen
among counties, resistance tended to be low in Pima during the
3 y it was evaluated and high in La Paz in 2008 (Figs. S2 and S3).
We used the first 4 y of data to determine which host plant

types were associated with resistance and to assess the spatial
scale of their effects. The acreage of each of the four host plant
types was measured in 12 concentric rings around each B. tabaci
sampling site, with the radius of the rings ranging from 250 to
3,000 m (see Methods). To remove among-year variation in re-
sistance to pyriproxyfen (Fig. S2) and in areas of each crop at the
different spatial scales, we analyzed data with ANOVA and used
standardized residuals in subsequent analyses (see Methods). In
these analyses, the most resistant populations in a particular year
have the largest positive residuals for resistance and the least
resistant populations in that year have negative residuals for
resistance. Likewise, the residuals for area of a crop type were

Fig. 1. Cotton fields sampled for B. tabaci in central Arizona between 2002 and 2009. (Inset) Adjusted percentage of egg survival at the discriminating
concentration of pyriproxyfen (0.1 μg of pyriproxyfen per mL) in the 84 B. tabaci populations sampled from 2002 to 2009. The image shows the distribution of
crops that are whitefly host plants (alfalfa, cotton, melon) and nonhost crops near six sampled sites in Pinal County in 2005. A ring with a radius of 3 km is
traced around GPS points for sampled sites.
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most positive for sites surrounded by the highest area of that
crop type in a given year and were negative for sites surrounded
by the lowest area of that crop type in that year. In each sub-
sequent analysis, we used rank-based statistics to test for the
association between the residuals for resistance and the residuals
for crop area, accounting for spatial autocorrelation when
needed (see Methods). Thus, these analyses considered spatial
variation in resistance within years rather than changes in re-
sistance across years.
We first used stepwise regression to determine crops signifi-

cantly associated with resistance. Areas of alfalfa and melon were
not significantly associated with resistance to pyriproxyfen at any of
the 12 spatial scales from 250 to 3,000 m (one-tailed tests, P > 0.05
for each crop). However, at several spatial scales, area of treated
cotton was positively associated with resistance to pyriproxyfen and
area of untreated cotton was negatively associated with resistance
to pyriproxyfen (one-tailed tests, P < 0.05 for each).
Based on the results of the stepwise regression, we included

the residuals for the areas of treated and untreated cotton in
multiple regression models and excluded the data for melons and
alfalfa. The regression coefficient associated with area of un-
treated cotton was significant at 11 of the 12 scales, from 500 to
3,000 m (one-tailed tests, Table S2), indicating that refuges of
untreated cotton at these distances influenced resistance. The
regression coefficient associated with area of treated cotton was
significant at four scales (1,000, 1,250, 1,500, and 2,750 m; Table
S2). The average value of statistically significant coefficients as-
sociated with area of treated cotton (n = 4) was 0.35 (range 0.34,
0.37), whereas the average value of those associated with area of
untreated cotton (n = 11) was −0.62 (range −0.67, −0.51).
The multiple regression results show that the coefficient of

determination (R2) varied from 8.2 to 30.1% across the 12 spatial
scales (Fig. 2). The R2 was significant (one-tailed test, P < 0.05)
at 1,000–3,000 m, implying that resistance was significantly af-
fected by the combined effects of treated and untreated cotton at
this range of distances from sampled cotton fields.
In this type of analysis, as the area of rings begins to increase,

R2 is expected to increase if larger rings include an increasing
area of plants that affect B. tabaci resistance in the sampled
cotton fields. As the area of rings continues to increase, R2 is
expected to plateau when the land added to rings includes
roughly equal areas of plants affecting resistance and plants not
affecting resistance in the sampled cotton fields. Finally, R2 is
expected to decrease when the scale of analysis reaches the
distance at which the area of additional plants not affecting

resistance exceeds the area of additional plants affecting re-
sistance in the sampled cotton fields. The results show R2 in-
creased as the radius of rings increased from 250 to 1,750 m,
peaked at 30.1% at 1,750 m, and was similar or somewhat lower
at distances >1,750 m (Fig. 2). The peak in R2 at 1,750 m shows
that treated and untreated cotton located within this distance
best explained spatial variation in resistance.
The multiple regression model at 1,750 m (based on ranks for

all three parameters) is: resistance to pyriproxyfen = 31.6 + 0.32
(area of treated cotton) − 0.65 (area of untreated cotton) (df= 2,
22.4, one-tailed test, P = 0.015). In this model, the regression
coefficient was marginally significant for the area of treated cot-
ton (df = 28.1, one-tailed test, P = 0.055) and significant for the
area of untreated cotton (df = 22.3, one-tailed test, P = 0.005).
To test the multiple regression model derived from data at

1,750 m, we substituted the areas of treated and untreated cotton
within 1,750 m of the 38 sites sampled during the last 4 y of the
study into the model to predict resistance to pyriproxyfen. As in
the analysis of the first 4 y of data described above, the analysis of
the last 4 y of data used residuals from ANOVA to remove
among-year variation in abundance of crop types and resistance.
The residuals for resistance reflect the variation in observed
resistance to pyriproxyfen. Rank-based simple regression showed
that the association between predicted and observed resistance
to pyriproxyfen was positive and significant (Fig. 3, R2 = 16.1%,
F1,36 = 6.93, one-tailed test, P = 0.0062, spatial autocorrelation
was not significant in this analysis). Thus, the model formulated
with the first 4 y of data adequately predicted spatial variation in
the evolution of resistance in the last 4 y of the study.
Variation among counties in pyriproxyfen use and in the dis-

tribution of whitefly host plants could have contributed to the
observed associations between resistance and host plant type. To
exclude any such effects of variation among counties, we re-
peated all analyses using two-way ANOVA with county and year
as classification factors to obtain standardized residuals. Such
residuals are not affected by variation among counties or among
years in resistance to pyriproxyfen and in area of each crop type
at the 12 scales. Results from these two-way ANOVAs (SI Text
and Table S3) confirm the main conclusions of the results de-
scribed above from one-way ANOVAs.

Discussion
Our results show that the spatial distributions of melon and al-
falfa were not associated with pyriproxyfen resistance in the
sampled B. tabaci populations. Furthermore, the proportion of
variation in resistance to pyriproxyfen accounted for by the
model incorporating areas of treated and untreated cotton was

Fig. 2. Coefficient of determination (R2) in multiple regression analyses
performed at 12 scales. The response variable was resistance to pyriproxyfen
(based on ranks for survival at the discriminating concentration) and ex-
planatory variables were the area of pyriproxyfen-treated and untreated
cotton (ranks) in concentric rings with a radius increasing from 250 to 3,000 m.
See Methods for statistical details.

Fig. 3. Rank-based simple regression between observed and predicted re-
sistance to pyriproxyfen in B. tabaci populations sampled in cotton fields
during the last 4 y of the study. See Methods for statistical details.
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similar at scales between 1,000 and 3,000 m, and the areas of
treated and untreated cotton within 2,750 and 3,000 m from
sampled sites were significantly associated with resistance, re-
spectively. This suggests that cotton refuges within 3,000 m from
sampled sites were effective in delaying resistance. This illus-
trates that our approach is suitable to identify habitats acting as
refuges and to determine the spatial scale at which such refuges
reduce the frequency of resistance, which are the critical elements
required for development of a refuge strategy. Information on the
areas of treated and untreated cotton within a certain distance
from sampled sites (i.e., 1,750 or 2,500 m in the first and second
analyses, respectively) was sufficient to predict spatial variation in
resistance. This provides a large-scale field test of predictive ref-
uge strategy models. The significant predictive success of these
models confirms that resistance of B. tabaci to pyriproxyfen in
central Arizona was delayed by cotton refuges and accelerated by
treated cotton fields.
The refuge strategy was mandated by the US Environmental

Protection Agency in 1996 to manage the evolution of resistance
in some sexually-reproducing, diploid insect pests targeted by Bt
corn and cotton. Simulation results suggest that the refuge
strategy is useful for such pests and for parthenogenetic or
haplodiploid pests such as B. tabaci (26). Simulation models
show that three factors contribute in delaying resistance irre-
spective of pest reproductive mode: large refuges, low initial
frequency of resistance alleles, and recessive inheritance of re-
sistance. Nevertheless, additional factors are required to observe
extensive delays when implementing a refuge strategy for hap-
lodiploid and parthenogenetic pests (26). These factors are fit-
ness costs, which occur when fitness of resistant individuals is
lower than fitness of susceptible individuals in absence of a pes-
ticide, and incomplete resistance, which occurs when fitness of
resistant individuals is lower in the presence of a pesticide than
in its absence (7, 27).
In haplodiploid pests such as B. tabaci, the evolution of re-

sistance is primarily driven by selection for resistant haploid
males, and reduced fitness of resistant males promotes the lon-
gest delays in resistance (26, 28, 29). In previous field experi-
ments with pyriproxyfen-susceptible and resistant strains of B.
tabaci, we found that males and females were equally susceptible
to pyriproxyfen, resistance was partially recessive to completely
dominant depending on the time elapsed between spraying and
exposure, and effects of incomplete resistance were minimal
(29). Furthermore, a selection experiment conducted in the
laboratory did not reveal fitness costs of resistance, suggesting
that costs may be absent under field conditions (30). Simulation
results based on these parameters indicated that refuges of un-
treated cotton and other crops would delay resistance if they
provided enough susceptible individuals to mate with individuals
surviving exposure to pyriproxyfen (24). Nevertheless, because
costs and incomplete resistance were absent, resistance evolved
in <20 y in many simulations, which is consistent with the in-
crease in survival to pyriproxyfen observed in Arizona.
Pyriproxyfen remains effective for the control of B. tabaci in

Arizona. However, in central Arizona where non-cotton refuges
do not appear to significantly delay resistance, reduced use of
pyriproxyfen following the introduction of novel selective insec-
ticides over the past decade may have been a key reason for
sustained efficacy of pyriproxyfen (24). B. tabaci individuals
surviving exposure to pyriproxyfen are subject to high predation
rates because pyriproxyfen contributes in preserving natural
enemies (18, 19). This may also have contributed in reducing the
fitness advantage of resistant individuals on treated cotton and in
delaying resistance.
Spring melons grown in California were previously found to be

a source of B. tabaci for cotton fields up to a distance of 2.75 km,
although melons were a significant source of whiteflies in only 1
of the 2 y investigated (23). This suggests that refuges of melons

were not effective in central Arizona because they were relatively
rare. However, B. tabaci populations are regularly monitored on
melons in central Arizona and suppressed with insecticides when
needed. Furthermore, as noted previously, B. tabaci emigration
from melons to cotton primarily occurs during the first half of the
period when pyriproxyfen is applied on cotton (i.e., June to July).
Both of these factors could have diminished the efficacy of ref-
uges of melons. Alfalfa typically does not produce many B. tabaci
adults from June to September in Arizona and California, pos-
sibly because harvest at close intervals during that period pre-
vents many eggs and nymphs from completing development (31).
Nevertheless, because alfalfa is rarely treated with insecticides, it
was proposed that large acreages of this crop could contribute to
delaying B. tabaci resistance to insecticides in some regions (32).
Although alfalfa was as abundant as untreated cotton near
sampled sites, refuges of untreated cotton delayed resistance but
refuges of alfalfa did not.
Agronomic practices, abiotic and biotic ecological factors,

metapopulation dynamics, and pest behavior, life history, and
genetics interact to determine the trajectory of resistance evo-
lution (7, 8, 27). When modeling the evolution of resistance,
these numerous variables can be described by a limited number
of parameters: the fitness of individuals with and without re-
sistance alleles in refuges and fields where a pesticide is used,
and migration and gene flow between patches (7). However,
even these few parameters are not easily measured in the field.
The strength of selection for resistance in a region is expected to
be positively associated with the area of fields treated with
a pesticide and negatively associated with the area of refuges,
suggesting that areas of these habitats represent a relevant basis
to model the evolution of resistance. Accordingly, the statistical
approach applied here evaluated the spatial scale of effects of
refuges and treated fields on pyriproxyfen resistance. This ap-
proach uses variables that are relatively easy to measure, and
thus has the potential to improve refuge strategies for many
pests. However, before concluding that this approach can gen-
erally provide a tractable evaluation of the global effects of rel-
evant biological processes, additional tests are needed to see if
resistance can be predicted in other species and agroecosystems.
Application of our approach for the development of refuge

strategies requires spatially explicit data on resistance, location
of putative refuges, and of fields where pesticides are used.
Resistance monitoring data are often routinely collected for key
pests (25, 33). Furthermore, the US Department of Agriculture’s
Natural Resources Conservation Service provides remote sens-
ing data on crops and uncultivated habitats in most US states
(34), which provides a basis to determine the spatial distribution
of putative refuges. Nevertheless, spatially explicit data on pes-
ticide-treated fields or Bt crops are often lacking (35). As such
data become more accessible, we will be in a better position to
improve refuge strategies for critical pests and to mitigate the
economic, environmental, and social impacts of arthropod re-
sistance to pesticides (36).

Methods
Field Sites and Pyriproxyfen Resistance. From 2002 to 2009, we sampled 84 B.
tabaci populations in cotton fields of central Arizona (Fig. 1) from August to
mid-October (mean = 10.5 populations per year, range = 8–13 populations per
year, Table S1). Position of sampled fields was determined with a Global Po-
sitioning System (GPS). Cotton fields from four counties were sampled (La Paz,
Maricopa, Pima, and Pinal), although in any given year B. tabaci populations
originated from two or three counties (Table S1). Only one of the fields
sampled during the course of the study was sampled twice (in 2003 and 2005).

Adult whiteflies were collected with a Makita Cordless Vacuum and
brought to the laboratory within 8 h. Adults were released in cages with
young cotton plants. Bioassays of the F1 progeny of these adults were
conducted within 36 h of field collection by exposing newly laid eggs to
various concentrations of pyriproxyfen (25). We used the adjusted percent-
age of eggs surviving a diagnostic concentration of 0.1 μg of pyriproxyfen
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per mL as an index of resistance. For each of the 84 populations sampled, we
calculated adjusted survival (%) as survival (%) at 0.1 μg of pyriproxyfen per
mL divided by survival (%) at 0 μg of pyriproxyfen per mL, which is equiv-
alent to adjusting for control mortality with Abbott’s method. We use the
term “resistance to pyriproxyfen” to refer to the adjusted percentage of
eggs surviving the diagnostic concentration of pyriproxyfen. Resistance to
pyriproxyfen was 0% from 1996 to 1998 and increased thereafter (Fig. S1
and ref. 25).

CropMapping. Location and shape of agricultural fields in the study areawere
determined with GPS or microsurveyors at a resolution of 10–100 m (37).
Location of cotton fields in each year was mapped with a Geographic In-
formation System (GIS) by the grower-funded Arizona Cotton Research and
Protection Council (ACRPC), using information collected from producers and
from the ground. When we validated the resulting GIS maps by checking
identity of a random sample of cotton fields on the ground, we found that
maps of cotton fields were 100% accurate in central Arizona (37).

We retrospectively identified alfalfa and melon fields surrounding the
sampled sites with remote sensing. Crop classification maps were created
with a two-step Classification and Regression Tree (CART) algorithm using
the SEE 5.0 software and ERDAS Imagine (38, 39). Maps of field boundaries
and three to six Landsat Thematic Mapper satellite images were used to
classify the crops in each year. The two-step classification procedure began
with a binary classification to separate alfalfa and melon fields. These classes
were then isolated and a second classification was performed to identify
alfalfa, corn, cotton, grain, fallow, orchards, and sorghum, after which the
melon class from the binary classification was reinserted into the classifica-
tion product.

We mapped crops from the ground in large areas of central Arizona in
2002, 2003, and 2007–2009. We used half of the data for a year to train the
classifier and the other half to assess classification accuracy. When field
knowledge was not available for 2004–2006, we used classification training
statistics from other years. To do this, the two-step classification procedure
was applied to image data from 2004 and 2005, using classification training
statistics from 2002, and to image data from 2006, using classification
training statistics from 2007. For the 5 y in which we had matching ground-
verified training data, we achieved classification accuracies >91% for alfalfa
and >70% for melon. When the classification was trained with off-year data
(e.g., training with 2007 data to classify 2008 data), we achieved accuracies
>90% for alfalfa and >55% for melon.

To improve classification accuracy of alfalfa and melon, corrections were
made to the digital classification maps produced through the CART classifier
based on expert knowledge of crop phenology patterns. We focused on all
fields <3 km from sampled sites, and distinguished crops based on growth
patterns depicted by sequential image data sets. The Normalized Difference
Vegetation Index (NDVI) (40) highlighted phenological differences among
crops that corresponded to harvesting dates (Fig. S4). We thus used the
change in NDVI, and assessed every field within a distance of 3 km to correct
for potential misclassification of alfalfa, cotton, and melon. This expert-
knowledge observational approach likely produced accuracies close to 100%
for identification of alfalfa, cotton and melon fields.

Landscape Analysis. The classified crop maps for each year were analyzed
using ArcGIS (41). In a few instances, the GPS point associated with a field
sampled for B. tabaci fell between two adjacent cotton fields on the GIS
map. As it was not possible to determine which cotton field had actually
been sampled in these cases, we used the GPS points as our best estimate of
the position of sampled sites. We drew 12 concentric rings around each GPS
point. The radius of each ring was 250, 500, 750, 1,000, 1,250, 1,500, 1,750,
2,000, 2,250, 2,500, 2,750, or 3,000 m. We measured the area (m2) of alfalfa,
cotton, and melon in each ring with ArcGIS.

For each year, we used the Arizona Pest Management Center’s Pesticide
Use Reporting (PUR) database (42) to calculate the total acreage of cotton
treated with pyriproxyfen in each county. For each year, we used the ACRPC
GIS maps of cotton fields to evaluate total acreage of cotton in each county.
For each year and county, acreage of cotton treated with pyriproxyfen was
divided by total cotton acreage to estimate the proportion of cotton acre-
age treated with pyriproxyfen (pCTP). For each sampled site, the area of
cotton in a ring was multiplied by pCTP to estimate the area of cotton
treated with pyriproxyfen, and by 1 − pCTP to estimate the area of
untreated cotton.

Statistical Analysis. Evaluation of crop effects and predictive regression model. To
characterize effects of crops on resistance and develop a predictive regression

model, we used data from the first 4 y (2002–2005, 46 populations, Table S1).
We used stepwise regression with forward selection and backward elimi-
nation to evaluate the association between resistance to pyriproxyfen and
the areas of four crop types: three refuges (alfalfa, melons, and cotton not
treated with pyriproxyfen) and pyriproxyfen-treated cotton. We performed
regressions at each of the 12 spatial scales based on rings surrounding each
sampled site with a radius of 250–3,000 m. To remove among-year variation
in resistance to pyriproxyfen and in area of each crop at the 12 scales, we
analyzed the data with one-way ANOVAs and used the standardized resid-
uals (i.e., centered data divided by the SD within each year) of resistance to
pyriproxyfen as the response variable and of the four crop areas as the ex-
planatory variables in all regressions. This allowed us to pool data from the
first 4 y to analyze the association between among-site variation in re-
sistance to pyriproxyfen and among-site variation in areas of the four crop
types near each sampled site. Explanatory variables that were significant
(P < 0.05) at one or more scales were retained in the final multiple regression
model, which was fitted at each of the 12 scales. In the stepwise and mul-
tiple regression analyses, we used rank-based statistics (15) that do not re-
quire the assumption of normality. We used one-tailed tests of significance
for each crop type, because we expected a negative association between
resistance and the area of the three refuge types and a positive association
between resistance and the area of pyriproxyfen-treated cotton.
Predicted versus observed pyriproxyfen resistance. We used the multiple re-
gression model built on the first 4 y of data (2002–2005) to predict spatial
variation in pyriproxyfen resistance during the last 4 y of the study (2006–
2009). We used the model based on rings with a radius of 1,750 m, because
this spatial scale yielded the highest coefficient of determination. Prediction
was performed by using data on the areas of cotton treated and not treated
with pyriproxyfen in the last 4 y. One-way ANOVAs with year as the classi-
fication factor were performed to remove among-year variations in the
areas of treated and untreated cotton within 1,750 m of each of the 38 sites
sampled from 2006 to 2009. Standardized residuals from these ANOVAs
were transformed to ranks, and these ranks were substituted in the multiple
regression model (fitted to data from the first 4 y) to calculate predicted
ranks of resistance to pyriproxyfen for the last 4 y. Similarly, standardized
ANOVA residuals of resistance to pyriproxyfen in the last 4 y were trans-
formed to ranks and used as observed values. A rank-based simple linear
regression and a one-tailed test of significance were used to assess the as-
sociation between predicted and observed resistance to pyriproxyfen.
Spatial autocorrelation. In each stepwise and multiple regression analysis, and
in the analysis of predicted versus observed survival to pyriproxyfen, semi-
variograms were computed to quantify and analyze spatial autocorrelation
(43) in resistance to pyriproxyfen and other variables across sampled sites. By
assessing spatial patterns in residuals (response variable) and partial resid-
uals (explanatory variables), we evaluated potential spatial autocorrelation
at any scale, including within counties. Spatial autocorrelation was accoun-
ted for in tests of significance through the use of effective sample sizes and
effective degrees of freedom, in modified t and F tests performed in simple
linear correlation, stepwise regression, and multiple regression analyses (43–
45). Programs for these statistical analyses were written in Matlab (46).

Among-county variation in pyriproxyfen use and in the distribution of
whitefly host plants could result in nearby sites havingmore similar resistance
than sites farther apart, both within and across years. To make sure that the
former possibility did not affect the outcomes of analyses, we repeated all
analyses and used two-way ANOVA with county and year as classification
factors to obtain standardized residuals. Such residuals are not affected by
among-county and among-year variation in resistance to pyriproxyfen and in
area of each crop at the 12 scales. Results from the new analyses (SI Text) were
qualitatively similar to results presented herein. In the latter case, the for-
mulation of a predictive model could be affected by spatiotemporal auto-
correlation. However, Mantel tests (43) revealed no significant spa-
tiotemporal correlation in resistance between pairs of years from 2002 to
2005 (two-tailed test, P > 0.20 for all pairs).
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