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Abstract. The paper reconsiders the autoregressive aided periodogram bootstrap (AAPB)
which has been suggested in Kreiss and Paparoditis (2003). Their idea was to combine a time
domain parametric and a frequency domain nonparametric bootstrap to mimic not only a part
but as much as possible the complete covariance structure of the underlying time series. We
extend the AAPB in two directions. Our procedure explicitly leads to bootstrap observations
in the time domain and it is applicable to multivariate linear processes, but agrees exactly
with the AAPB in the univariate case, when applied to functionals of the periodogram. The
asymptotic theory developed shows validity of the multiple hybrid bootstrap procedure for the
sample mean, kernel spectral density estimates and, with less generality, for autocovariances.

1. Introduction

In 1979, Efron’s seminal paper on the i.i.d. bootstrap as an extension of the jackknife initi-
ated the fruitful theory of resampling methods in statistics. Since then a great many of papers
concerning resampling techniques for i.i.d. as well as for non i.i.d. data has been proposed,
whereas, by now, the i.i.d. case has been understood quite well. However, bootstrap methods
have been acknowledged as a powerful tool for approximating certain distributional charac-
teristics of statistics as, for example, variance or covariance, which are sometimes difficult to
compute or even not possible to derive analytically. In particular, in time series analysis, due
to the potentially complicated dependence structure of the data, often bootstrap methods are
required to overcome this barrier, especially, if one wants to avoid the assumption of Gaussianity.

Besides parametric methods that are just applicable to a nonsatisfying narrow class of time
series models, several nonparametric approaches for resampling dependent data have been sug-
gested. For instance, Künsch (1989) introduced the so-called block-bootstrap, where blocks of
data from a stationary process are resampled to preserve the dependence structure to some
extent. See Bühlmann (2002), Lahiri (2003) and Härdle, Horowitz and Kreiss (2003) for an
overview of existing methods.

In recent years, bootstrap procedures in the frequency domain have become more and more
popular [compare Paparoditis (2002) for a survey]. Most of them are based on resampling
the periodogram as in the paper by Franke and Härdle (1992), who proposed a nonparametric
residual-based bootstrap that uses an initial (nonparametric) estimate of the spectral density
and i.i.d. resampling of (appropriately defined) frequency domain residuals. They proved as-
ymptotic validity for kernel spectral density estimates while Dahlhaus and Janas (1996) extended
these validity to ratio statistics and Whittle estimators. Paparoditis and Politis (1999) followed
an alternative approach exploiting smoothness properties of the spectral density and resample
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locally from adjacent periodogram ordinates. In an early unpublished manuscript, Hurvich and
Zeger (1987) use the property that the relation between periodogram and spectral density can
be described by means of a multiplicative regression model.

The idea of Kreiss and Paparoditis (2003) was to combine a time domain parametric and a
frequency domain nonparametric bootstrap to widen the class of periodogram statistics for
which their autoregressive aided periodogram bootstrap (AAPB) remains valid. They use a
parametric (autoregressive) fit to catch the essential features of the data and to imitate the
weak dependence structure of the periodogram ordinates while a nonparametric correction (in
the frequency domain) is applied in order to catch features not represented by the parametric fit.
Compare also Sergides and Paparoditis (2007), who carried over this idea to locally stationary
processes.

However, the above mentioned frequency based resampling procedures share one handicap. All
of them generate bootstrap periodogram replicates and, for this reason, can be applied to sta-
tistics that are functionals of the periodogram, exclusively.

In this paper, we pick up the idea of the AAPB bootstrap introduced by Kreiss and Papar-
oditis (2003) and enhance their method in two directions. On the one hand, we modify the
AAPB in such a manner that our new procedure has the ability to provide explicitly bootstrap
replicates in the time domain. Further, we generalize our approach to the multivariate case,
on the other hand. In doing so, we had to realize that indeed most of the univariate results
are transferable one-to-one to the multivariate case, but also that this is not true in all situations.

Recently, Kirch and Politis (2009) proposed also a frequency domain bootstrap scheme that
is capable to generate time domain replicates and is well suited for change point analysis.

So far, there is only little literature on bootstrap for multivariate time series, especially on non-
parametric bootstrap methods. However, one dimension is evidently not enough to study the
possibly sophisticated interdependencies between two or more quantities measured over time.
Particularly, in econometric work, interest often centers on cross-variable dynamic interactions,
which are frequently described with the concept of cointegration. For instance, in the case of
a univariate linear time series, the empirical autocovariances concerning different lags obey a
CLT with specific handsome covariance matrix in the limit [see Brockwell and Davis (1991),
Proposition 7.3.1]. For this reason, using the ∆-method, the limiting covariance matrix of the
empirical autocorrelations is not affected by the fourth order cumulant of the i.i.d. white noise
process. This fact, in turn, allows the AAPB to be valid for autocorrelations and for ratio
statistics in general. If one considers multivariate linear time series this does not remain true
any longer. Compare Hannan (1970, Chapter IV, Section 3 and Theorem 14, p. 228) for the
unattractive shape of the entrywise asymptotic covariance structure. Here, bootstrap methods
may help approximating the distribution of these statistics.

Paparoditis (1996) considered a parametric bootstrap for vector-valued autoregressive time series
of infinte order. The approach of Franke and Härdle (1992) has been extended to the multivariate
case by Berkowitz and Diebold (1997) without proving validity. Dai and Guo (2004) proposed
to smooth the Cholesky decomposition of a raw estimate of a multivariate spectrum, allowing
different degrees of smoothness for different elements, while Guo and Dai (2006) extended their
method to multivariate locally stationary processes. Goodness-of-fit tests for VARMA models
are investigated by Paparoditis (2005), where the asymptotic distribution of the test statistic is
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established and therefor a bootstrap method is developed.

In the following we prove validity of our multiple hybrid bootstrap method under some mild
general assumptions for the sample mean and for kernel spectral density estimators as well as
asymptotic normality for empirical autocovariances, where the here proposed method is shown
to work in some important special cases. Moreover, we check the validity for some statistics
deduced from the above mentioned as, for example, cospectrum and quadrature spectrum.

In contrast to the AAPB paper, where all asymptotic results are derived for general classes
of spectral means and ratio statistics, we restrict our considerations for the hybrid bootstrap in
the multivariate setting to empirical autocovariances. Regarding their asymptotic behaviours
in Theorem 5.3, it becomes clear that it is not possible to obtain validity for ratio statistics in
general which would had been an analogue to Corollary 4.1 (ii) in Kreiss and Paparoditis (2003).
However, a more general result corresponding to Theorem 4.1 (ii) in their paper for multivariate
spectral means should be possible under suitable assumptions.

Also the case where the order of the autoregressive fit is allowed to tend to infinity with in-
creasing sample size while assuming the underlying multivariate process to be causal and in-
vertible is not considered here. This would correspond to Theorem 4.1 (i) and Corollary 4.1
(i) in the paper above, but analogue validity results are expected in the multivariate case as well.

The paper is organized as follows. In Section 2, at first, we discuss our idea how to extend
the AAPB to get bootstrap observations in the time domain and, thereafter, we generalize this
concept to the multivariate case. The technical assumptions needed throughout the paper are
summarized in Section 3 while the multiple hybrid bootstrap procedure is described in detail
in Section 4. Section 5 deals with applications of the suggested bootstrap in approximating the
sampling behavior of sample mean, spectral density estimates and empirical autocovariances as
well as from these quantities deduced statistics. A small simulation study is presented in Section
6. Finally, proofs of the main results as well as of some technical lemmas are found in Section 7.

2. Preliminaries

We consider a strictly stationary r-dimensional process X = (Xt : t ∈ Z) and assume that
Xt = (Xt,1, . . . , Xt,r)T has the linear representation

Xt =
∞∑

ν=−∞
Cνεt−ν , t ∈ Z, (2.1)

where Cν = (Cν,ij)i,j=1,...,r, ν ∈ Z are (r×r) matrices, C0 = Ir is the (r×r) unit matrix and the
sequence (Cν : ν ∈ Z) is entrywise absolutely summable. Further, the error process (εt : t ∈ Z)
is assumed to consist of r-dimensional independent and identically distributed random variables
εt = (εt,1, . . . , εt,r)T with E[εt] = 0 and E[εtεTt ] = Σ, where the (r × r) covariance matrix Σ is
supposed to be positive definite. Under these assumptions, X exhibits the spectral density

f(ω) =
1

2π

( ∞∑
ν=−∞

Cνe
−iνω

)
Σ

( ∞∑
ν=−∞

Cνe−iνω

)T
. (2.2)

Here and in the following, we underline vector-valued quantities and write matrix-valued ones
as bold letters. Z denotes the (entrywise) complex conjugate of a matrix Z and XT indicates
the transpose of a vector or matrix X.
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Since our first main intention is to pick up the concept of the AAPB bootstrap proposed by
Kreiss and Paparoditis (2003) and modify it to obtain a procedure that is explicitly able to
generate bootstrap replicates in the time domain, initially, we consider the univariate case r = 1
to simplify matters and sketch the steps of their method before demonstrating which step is the
sticking point.

The univariate AAPB approach can be summarized as follows. With real-valued observations
X1, . . . , Xn at hand, Kreiss and Paparoditis apply a usual residual-based autoregressive boot-
strap of fixed order p ∈ N to obtain bootstrap replicates X+

1 , . . . , X
+
n and compute the pe-

riodogram I+
n (ω) = 1

2πn |
∑n

t=1X
+
t e
−itω|2 of these quantities to switch over to the frequency

domain. So far, this is just a parametric bootstrap that, of course, is not valid asymptoti-
cally if the underlying data does not stem from an autoregressive model of order less or equal
to p. Therefore, they correct the periodogram I+

n (ω) by multiplication with a nonparametric
(pre-whitening) correction function q̂(ω), defined as

q̂(ω) =
1
n

N∑
j=−N

Kh(ω − ωj)
In(ωj)

f̂AR(ωj)
, (2.3)

where ωj = 2π jn , N = [n2 ], h is the bandwidth, K is a kernel function, Kh(·) = 1
hK( ·h), In(ω)

is the periodogram based on X1, . . . , Xn and f̂AR is the spectral density obtained from the
autoregressive fit. Their proceeding is motivated by the following facts. Recall that we want to
bootstrap the periodogram In(ω) and under some assumptions on the coefficients of the linear
representation of Xt in (2.1), it holds

E[In(ω)] = f(ω) + o(1), (2.4)

but using the simple residual AR-bootstrap, however, yields

E+[I+
n (ω)] = fAR(ω) + oP (1), (2.5)

where f is the true spectral density of the process X and fAR is the spectral density of the
theoretical autoregressive model of order p that is obtained as n tends to infinity. Note, that
f 6= fAR in general. Here, as usual, E+ denotes the conditional expectation given X1, . . . , Xn.

Since the estimate q̂(ω) in (2.3) converges to f(ω)
fAR(ω) in probability under some reasonable as-

sumptions, their self-evident attempt to solve the problem argued in (2.4) and (2.5) is to design
corrected bootstrap periodogram replicates I∗n(ω) according to

I∗n(ω) = q̂(ω)I+
n (ω),

obtaining

E+[I∗n(ω)] = q̂(ω)E+[I+
n (ω)] = f(ω) + oP (1), (2.6)

which, by now, agrees with the expectation in (2.4). Thus, the last equation emphasizes that,
in a certain sense, the AAPB does the proper correction in the frequency domain. For this
reason, one would expect this method to work for all statistics whose asymptotic distributional
characteristics can be written in terms of the spectral density. But there are statistics with this
property that cannot be written itself by means of the periodogram as, for instance, the sample
mean. Recall that under some standard assumptions the following CLT holds true:

L

(
1√
n

n∑
t=1

Xt

)
⇒ N (0, 2πf(0)). (2.7)
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However, using just the simple AR-bootstrap, under suitable assumptions, it holds

L

(
1√
n

n∑
t=1

X+
t |X1, . . . , Xn

)
⇒ N (0, 2πfAR(0)) (2.8)

in probability. Considering solely (2.7) and (2.8), a naive idea to construct a bootstrap that
works for the sample mean is to generate X+

1 , . . . , X
+
n and multiply the whole data set with√

q̂(0). Doing so, with Slutsky, we get

L

(
1√
n

n∑
t=1

√
q̂(0)X+

t |X1, . . . , Xn

)
⇒ N (0, 2πfAR(0)q(0))

= N (0, 2πf(0))

in probability, but this approach is just taylor-made for the sample mean and does not remain
valid in other cases as spectral density estimation or for ratio statistics. Therefore, a different
modification of the AAPB has to be developed to solve this problem, but we will come back to
this issue later.

Now, to answer the question why the AAPB is not capable to deliver bootstrap replicates in the
time domain, observe that I+

n (ω), ω ∈ [−π, π] does not contain all the information that is con-
tained in the data set X+

1 , . . . , X
+
n . This means, on the one hand, computing the periodogram

causes an irretrievable loss of information, but switching to the frequency domain is necessary
to apply the nonparametric correction, on the other hand. To get rid of this inconvenience, note
that for the periodogram at the Fourier frequencies ωj = 2π jn , j = 1, . . . , n, it holds

I+
n (ωj) = |J+

n (ωj)|2 = J+
n (ωj)J+

n (ωj),

where J+
n (ωj) = 1√

2πn

∑n
t=1X

+
t e
−itωj is the discrete Fourier transform (DFT) and there is a

one-to-one correspondence between X+
1 , . . . , X

+
n and J+

n (ω1), . . . , J+
n (ωn).

These circumstances result in the idea to compute the DFT J+
n (ω1), . . . , J+

n (ωn) instead of
the periodogram, multiply them with appropriate correction terms q̃(ωj) and use the ono-to-one
correspondence to get back to the time domain. The canonical choice of the correction term is
q̃(ω) =

√
q̂(ω) and to set

J∗n(ωj) = q̃(ωj)J+
n (ωj), j = 1, . . . , n,

because with this definition, it holds

J∗n(ωj)J∗n(ωj) = q̃(ωj)J+
n (ωj)q̃(ωj)J+

n (ωj) = q̂(ωj)I+
n (ωj) = I∗n(ωj), (2.9)

which is exactly the correction done in the AAPB method. Finally, we exploit the one-to-one
correspondence of the DFT, to define bootstrap observations X∗1 , . . . , X

∗
n via inverse DFT, that

is,

X∗t =

√
2π
n

n∑
j=1

J∗n(ωj)eitωj , t = 1, . . . , n. (2.10)

Now, that we have developed a bootstrap method that directly leads to bootstrap observations
in the time domain and, moreover, contains the AAPB as a special case, let us consider the
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sample mean discussed in (2.7) and (2.8) again. Using the replicates defined in (2.10), we get

1√
n

n∑
t=1

X∗t =
1√
n

√
2π
n

n∑
j=1

J∗n(ωj)
n∑
t=1

eitωj

=
√

2πJ∗n(0)

= q̃(0)
1√
n

n∑
t=1

X+
t ,

which is exactly the naive correction suggested earlier to construct a bootstrap that works for
the sample mean, but contrary to the previous situation this new approach remains valid in all
situations where the AAPB is already shown to work thanks to relation (2.9).

Taking everything into account, the above derived bootstrap constitutes a reasonable modi-
fication of the AAPB that is able to produce bootstrap replicates in the time domain and, for
this reason, is applicable to a wider class of statistics. We call this proposal the (univariate)
hybrid bootstrap.

Next, we generalize the hybrid bootstrap to the multivariate case. From now on, the data
of interest is supposed to have some arbitrary dimension r ≥ 1, but to appreciate the main dif-
ficulties adapting the univariate proposal derived above, consider the vector-valued case r ≥ 2,
only.

The first step of the hybrid bootstrap generalizes to a usual residual-based vector-autoregressive
scheme to obtain X+

1 , . . . , X
+
n . Further, the periodogram

I+
n (ωj) = J+

n (ωj)J+
n (ωj)

T
, j = 1, . . . , n

becomes a hermitian (r × r)-matrix and the (multivariate) discrete Fourier transform (mDFT)
J+
n (ωj) = 1√

2πn

∑n
t=1X

+
t e
−itωj is now an r-dimensional column vector. Reconsidering (2.4) and

(2.5) in the vector-valued case, it still holds

E[In(ω)] = f(ω) + o(1) (2.11)

as well as

E+[I+
n (ω)] = fAR(ω) + oP (1), (2.12)

with In(ω), f(ω) and fAR(ω) according to the univariate case.

Maintaining the property to produce bootstrap replicates in the time domain, consequently,
we have to correct the mDFT. Now, this has to be done by multiplication with a suitable (r×r)
matrix Q̃(ωj), defining

J∗n(ωj) = Q̃(ωj)J+
n (ωj), j = 1, . . . , n.

Similar to the univariate equation (2.9), now, we get

J∗n(ωj)J∗n(ωj)
T

= Q̃(ωj)J+
n (ωj)Q̃(ωj)J+

n (ωj)
T

= Q̃(ωj)I+
n (ωj)Q̃(ωj)

T
. (2.13)

Concerning (2.12), the last relation (2.13) asks for the correction term Q̃(ω) to converge in
probability to its limit Q(ω) [Observe the notation differing to the univariate case! For r = 1,
it holds Q(ω) =

√
q(ω) instead of Q(ω) = q(ω).], which has to satisfy the equality

Q(ω)fAR(ω)Q(ω)
T

= f(ω) (2.14)
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to get the analogue result to equation (2.6) obtained in the univariate case, that is,

E+[I∗n(ω)] = Q̃(ω)E+[I+
n (ω)]Q̃(ω)

T
= f(ω) + oP (1).

Now, to answer the question how Q̃(ω) has to be defined to achieve this property, suppose we
knew that f(ω) and fAR(ω) have some representations

f(ω) = G(ω)G(ω)
T

and fAR(ω) = B(ω)B(ω)
T
. (2.15)

Then, if the inverse of B(ω) exists, it seems self-evident to set Q(ω) = G(ω)B−1(ω), obtaining

Q(ω)fAR(ω)Q(ω)
T

= G(ω)B−1(ω)B(ω)B(ω)
T
B−1(ω)

T
G(ω)

T
= f(ω),

and accordingly to construct a nonparametric estimator Q̃(ω) for this quantity G(ω)B−1(ω).

If f(ω) and fAR(ω) are positive definite, their uniquely determined Cholesky decompositions
as in (2.15) exist, where G(ω) and B(ω) have full rank. Thus, we can state Q̃(ω) in terms of
estimates for f(ω) and fAR(ω).

As in the univariate case, f(ω) can be estimated nonparametrically by f̂(ω) via smoothing
the periodogram matrix and fAR(ω) is estimated by f̂AR(ω), which is obtained from the residual
vector AR-bootstrap. Assuming f(ω) to be positive definite, then, for sufficiently large sample
size n in relation to r, the estimates f̂(ω) and f̂AR(ω) are positive definite in probability. Hence,
we can define

Q̃(ω) = Ĝ(ω)B̂−1(ω),

where f̂(ω) = Ĝ(ω)Ĝ(ω)
T

and f̂AR(ω) = B̂(ω)B̂(ω)
T

. Observe also the detailed illustration
of this multiple hybrid bootstrap proposal in Section 4 and, in particularly, Remark 4.1 on the
choice of Q̃(ω).

3. Assumptions

3.1. The data generation process.

We assume the underlying process X to satisfy the following assumptions:
(A1) (Xt : t ∈ Z) is a Rr-valued linear strictly stationary process

Xt =
∞∑

ν=−∞
Cνεt−ν , t ∈ Z,

where Cν , ν ∈ Z are (r × r) coefficient matrices, C0 = Ir is the (r × r) unit matrix and
for all j, k = 1, . . . , r the summability condition

∞∑
ν=−∞

|ν||Cν(j, k)| <∞

holds true. Further,
∑∞

ν=−∞Cνz
ν is supposed to be nonsingular on the unit circle, that

is

det

( ∞∑
ν=−∞

Cνz
ν

)
6= 0 ∀z ∈ C : |z| = 1.
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(A2) The error process is assumed to be a standard white noise [compare Lütkepohl (2005),
p.73], that means (εt : t ∈ Z) constitutes a sequence of independent and identically
distributed Rr-valued random variables with E[εt] = 0 and E[εtεTt ] = Σ, where the
covariance matrix Σ is supposed to be positive definite. Further, for i, j, k, l = 1, . . . , r
the expectation E[εt,iεt,jεt,kεt,l] < ∞ exists and κ4(i, j, k, l) denotes the fourth-order
cumulant between εt,i, εt,j , εt,k and εt,l.

(A3) The spectral density f in (2.2) of X is (entrywise) three times continuously differentiable
on [−π, π] and accordingly on the real line, when understood as continuously extended.

3.2. The kernel function.

(K1) K denotes a nonnegative kernel function with compact support [−π, π]. The Fourier
transform k of K, that is,

k(u) =
∫ π

−π
K(x)e−ixudx,

is assumed to be a symmetric, continuous and bounded function satisfying k(0) = 2π.
Hence, the kernel has the representation

K(x) =
1

2π

∫ ∞
−∞

k(u)eiuxdu.

Note that k(0) = 2π implies that 1
2π

∫∞
−∞K(u)du = 1, while the symmetry of k implies

the same property for K.
(K2) The Fourier transform k of K satisfies

∫∞
−∞ k

2(u)du <∞.
(K3) K is three times continuously differentiable on [−π, π] and its derivatives fulfill the

smoothness condition K(d)(−π) = K(d)(π) = 0 for all d = 0, 1, 2.

3.3. The bandwidth.

(B1) h = h(n)→ 0 as n→∞ such that nh→∞.
(B2) h = h(n)→ 0 as n→∞ such that (nh4)−1 = O(1).
(B3) h = h(n)→ 0 as n→∞ such that (nh6)−1 = O(1).

4. The hybrid bootstrap procedure

In this section, first of all, we describe the multiple hybrid bootstrap motivated in Section 2 in de-
tail and, afterwards, we give a couple of comments on the choice of the correction function Q̃(ω)
and thereby arising difficulties. Moreover, we discuss the special case where no autoregressive
model is fitted at all.

Step 1. Given the Rr-valued observations X1, . . . , Xn, we fit a vector-autoregressive process
of order p ∈ N0 = {0, 1, 2, . . .} (V AR(p)-model). This leads to estimated coefficient
matrices Â1(p), . . . , Âp(p) and covariance matrix Σ̂(p), which are obtained from the
multivariate Yule-Walker equations. Consider the estimated residuals

ε̂t = Xt −
p∑

ν=1

Âν(p)Xt−ν , t = p+ 1, . . . , n
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and denote F̂ cn the empirical distribution function of the standardized quantities

ε̃t = L̂(p)−1

ε̂t − 1
n− p

n∑
s=p+1

ε̂s

 , t = p+ 1, . . . , n,

where

L̂(p)L̂(p)T =
1

n− p

n∑
t=p+1

ε̂t − 1
n− p

n∑
s=p+1

ε̂s

ε̂t − 1
n− p

n∑
r=p+1

ε̂r

T

is the Cholesky decomposition of the covariance matrix of the centered residuals. That
is, F̂ cn has mean 0 and the unit matrix Ir as covariance matrix.

Step 2. Generate bootstrap observations X+
1 , . . . , X

+
n according to the following vector autore-

gressive model of order p:

X+
t =

p∑
ν=1

Âν(p)X+
t−ν + Σ̂1/2(p)ε+t ,

where (ε+t ) is a sequence of i.i.d. random variables with cumulative distribution function
F̂ cn (conditionally on the given observations X1, . . . , Xn) and Σ̂1/2(p)Σ̂1/2(p)T = Σ̂(p) is
the Cholesky decomposition. Now, the time series (X+

t : t ∈ Z) has the spectral density

f̂AR(ω) =
1

2π

(
Ir −

p∑
k=1

Âk(p)e−ikω
)−1

Σ̂(p)

Ir −
p∑

k=1

Âk(p)e−ikω

−1T

.

Thereby, the used multivariate Yule-Walker estimates ensure that f̂AR(ω) is always well
defined [cf. Whittle (1963)], that is

det

(
Ir −

p∑
ν=1

Âν(p)zν
)
6= 0 ∀z ∈ C : |z| ≤ 1.

Step 3. Compute the (multivariate) discrete Fourier transform (mDFT) of the bootstrap obser-
vations X+

1 , . . . , X
+
n , that is

J+
n (ωj) =

1√
2πn

n∑
t=1

X+
t e
−itωj , j = 1, . . . , n

at the Fourier frequencies ωj = 2π jn , j = 1, . . . , n. Notice, there is a one-to-one corre-
spondence

X+
1 , . . . , X

+
n ↔ J+

n (ω1), . . . , J+
n (ωn).

Step 4. Define the nonparametric correction function Q̃(ω) = Ĝ(ω)B̂(ω)−1, where Ĝ(ω) and
B̂(ω) are obtained via the following Cholesky decompositions (in lower triangular matrix
times its transposed complex conjugate):

B̂(ω)B̂(ω)
T

= f̂AR(ω), (4.1)

Ĝ(ω)Ĝ(ω)
T

= B̂(ω)

(
1
n

N∑
k=−N

Kh(ω − ωk)B̂(ωk)−1In(ωk)B̂(ωk)−1
T
)

B̂(ω)
T
, (4.2)
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whereas N = [n2 ], K is a kernel function, Kh(·) = 1
hK( ·h) and h is the bandwidth.

Furthermore, In(ω) = Jn(ω)Jn(ω)
T

denotes the periodogram matrix of the given obser-
vations with

Jn(ω) =
1√
2πn

n∑
t=1

Xte
−itω.

Now, compute the nonparametric estimator Q̃ at the Fourier frequencies ωj = 2π jn ,
j = 1, . . . , n. In doing so, all involved quantities are understood as periodically extended
to the real line.

Step 5. At first, compute the mDFT J+
n (ωj), j = 1, . . . , n of the parametrically via residual

bootstrap generated observations X+
1 , . . . , X

+
n and afterwards apply the nonparametric

correction function Q̃(ω) to get the corrected version of the mDFT, that is

J∗n(ωj) = Q̃(ωj)J+
n (ωj), j = 1, . . . , n.

Step 6. According to the inverse mDFT, the bootstrap observations X∗1, . . . , X
∗
n are defined as

follows:

X∗t =

√
2π
n

n∑
j=1

J∗n(ωj)eitωj , t = 1, . . . , n.

Remark 4.1 (On the choice of Q̃(ω)).
(i) As illustrated in (2.15), basically, it is possible to use alternative decompositions e.g.

square-root or Cholesky-decomposition in upper triangular matrix times its transposed
complex conjugate. Although Cholesky needs positive definiteness, we choose this decom-
position (in lower triangular matrix times its transposed complex conjugate), because it
is uniquely defined and it automatically generates invertible matrices.

(ii) Moreover, regarding just (2.14) and (2.15), it would even work if one uses different
decompositions in (4.1) and (4.2). This would lead to the same results in Section 5
except for Corollary 5.4, which will not remain valid, anymore.

(iii) In definition (4.2), we follow the advice of Kreiss and Paparoditis (2003) and define
Ĝ(ω) via a nonparametric pre-whitening estimate of f(ω). Asymptotically, we get the
same results if we just set

G̃(ω)G̃(ω)
T

=
1
n

N∑
k=−N

Kh(ω − ωk)In(ωk)

and redefine Q̊(ω) = G̃(ω)B̂(ω)−1, but for small sample sizes we expect slightly better
results using Ĝ(ω). Note, in the univariate case, Q̃(ω) agrees with q̃(ω) as defined
previous to (2.9).

(iv) Assumption (A1) guarantees the positive definiteness of f and, for this reason, the pre-
whitening estimate in (4.2) satisfies this property asymptotically (in probability). How-
ever, for very small sample sizes n relative to the dimension r, it may happen that the
quantities on the right-hand sides of (4.1) and (4.2) are just positive semidefinite and not
positive definite, which in turn disallows computation of their Cholesky decompositions.
For medium and large sample sizes this problem practically does not occur. Hence, it is
advisable to define

Q̃(ω) =

{
Ĝ(ω)B̂(ω)−1, Ĝ(ω) and B̂(ω) exist
Ir, otherwise
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to overcome this difficulty of well-definition. Observe that in the second case, the hybrid
bootstrap becomes the usual residual AR-bootstrap.

(v) To obtain Q̃(ω) that satisfies (2.14) in its limit (in probability), it is essential to estimate
fAR(ω) and f(ω) separately and decompose them first, before defining Q̃(ω) as its product.

Remark 4.2 (On the choice of p).
A common bootstrap technique in time series analysis is the autoregressive residual bootstrap, but
often a high order p has to be chosen to capture the dependence structure properly. Regarding
multiple time series data, this may result in a huge number of parameters to be estimated.
Elaborate simulation studies done using the multiple hybrid bootstrap have shown very reasonable
results even in the case p = 1. To point out the effect of the nonparametric correction and to
underline the quality of the obtained bootstrap results, we choose p = 1 in our simulation study
in Section 6, only.

Remark 4.3 (The special case p = 0).
Setting p = 0, this means that we do not fit any autoregressive model to the data X1, . . . , Xn at
all in Step 1 of our proposal. Actually, Step 2 shrivels to the standard i.i.d. bootstrap scheme ob-
taining X+

1 , . . . , X
+
n . Although this ignores completely the dependence structure in X1, . . . , Xn,

nevertheless, the hybrid bootstrap remains valid as discusssed later in Section 5. In comparison,
the nonparametric residual-based periodogram bootstrap (NPB) proposed by Franke and Härdle
(1992) uses that the periodogram ordinates are asymptotically independently distributed accord-
ing to an exponential distribution. For this reason, they resample in the frequency domain to
obtain i.i.d. exponentially distributed random variates. In the case p = 0, in contrast, we do
i.i.d. resampling in the time domain disregarding the dependence in the data and switch to the
frequency domain afterwards by computing the discrete Fourier transform. Observe that peri-
odogram ordinates are just asymptotically independent, but for finite n this is not true anymore.
Although we ignore the dependence contained in X1, . . . , Xn by using this i.i.d. scheme setting
p = 0, in comparison to the NPB, we get correlated periodogram ordinates in the frequency
domain.

5. Asymptotic theory and validity

This section is organized in three subsections. In the first one, we state the validity of our proce-
dure for the multivariate sample mean, which constitutes an extension of the AAPB introduced
by Kreiss and Paparoditis (2003), also in the univariate case. Validity for kernel spectral density
matrix estimation and related quantities is discussed in the second subsection and, finally, the
third deals with the asymptotic covariance structure of (entries of) empirical autocovariance
matrices, their weak convergence in general as well as validity in some special situations. In the
following, we use repeatedly Mallows’ d2-metric [cf. Mallows (1972)]. The d2-distance between
distributions P1 and P2 is defined as follows:

d2{P1,P2} = inf{E|Y1 − Y2|2}1/2,

where the infimum is taken over all joint distributions for the pair of random variables Y1 and Y2

whose fixed marginal distributions are P1 and P2 respectively. Compare Bickel and Freedman
(1981) for a detailed discussion and related results.
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5.1. Sample mean.

Theorem 5.1 (Validity for the sample mean).
Suppose the assumptions (A1), (A2), (K1) and (B1) are satisfied. Then for all fixed p ∈ N0, it
holds

d2{L(
√
n X),L(

√
n X

∗|X1, . . . , Xn)} → 0

in probability, where X = 1
n

∑n
t=1Xt and X∗ = 1

n

∑n
t=1X

∗
t .

5.2. Spectral density estimates.

Theorem 5.2 (Validity for spectral density estimates).
Suppose the assumptions (A1), (A2), (A3), (K1), (K2), (K3) and (B3) are satisfied as well as
nb5 → C2 with a constant C ≥ 0. Then for all fixed orders p ∈ N0 of the autoregressive fit, all
s ∈ N and arbitrary frequencies ω1, . . . , ωs (not necessarily Fourier frequencies), it holds

d2{L(
√
nb(f̂jk(ωl)− fjk(ωl)) : j, k = 1, . . . , r; l = 1, . . . , s),

L(
√
nb(f̂∗jk(ωl)− f̃jk(ωl))|X1, . . . , Xn : j, k = 1, . . . , r; l = 1, . . . , s)} → 0

in probability, where f̂(ω) = 1
n

∑N
j=−N Kb(ω − ωj)In(ωj), f̂∗(ω) = 1

n

∑N
j=−N Kb(ω − ωj)I∗n(ωj)

and f̃(ω) = Q̃(ω)f̂AR(ω)Q̃(ω)
T

.

A direct consequence of the above Theorem 5.2 is the corresponding result for the so-called
cospectrum and quadrature spectrum, which are real-valued quantities and for this reason some-
times preferred to the complex-valued cross-spectral densities.

Corollary 5.1 (Cospectrum and quadrature spectrum).
Putting f(ω) = 1

2(cspec(ω) − iqspec(ω)) (analogue for f̂(ω), f̂∗(ω) and f̃(ω)), we call the (real)
matrix-valued quantities cspec(ω) and qspec(ω) the co- and quadrature spectral density matrices.
Under the assumptions of Theorem 5.2 the following holds:

d2{L(
√
nb(ĉspec,jk(ωl)− cspec,jk(ωl)) : j, k = 1, . . . , r; l = 1, . . . , s),

L(
√
nb(ĉ∗spec,jk(ωl)− c̃spec,jk(ωl))|X1, . . . , Xn : j, k = 1, . . . , r; l = 1, . . . , s)} → 0,

d2{L(
√
nb(q̂spec,jk(ωl)− qspec,jk(ωl)) : j, k = 1, . . . , r; l = 1, . . . , s),

L(
√
nb(q̂∗spec,jk(ωl)− q̃spec,jk(ωl))|X1, . . . , Xn : j, k = 1, . . . , r; l = 1, . . . , s)} → 0

in probability, respectively.

5.3. Empirical autocovariances.

Autocovariances provide a lot of information about the stochastic dependence properties of
a multivariate time series X. For instance, if one is interested in construction of confidence
intervals, especially in the multivariate case, it is difficult to use existing central limit theorems
to derive confidence regions. This is up to the sophisticated covariance matrix of the asymptotic
normal distribution. Defining

Γ̂(h) =

{
1
n

∑n−h
t=1 (Xt+h −X)(Xt −X)T , h ≥ 0

1
n

∑n
t=1−h(Xt+h −X)(Xt −X)T , h < 0

, (5.1)
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namely, it holds [compare Hannan (1970), Chapter IV, Section 3 and Theorem 14, p. 228]

nCov(γ̂jk(g)− γjk(g), γ̂lm(h)− γlm(h))

→
r∑

s1,s2,s3,s4=1

( ∞∑
ν1=−∞

Cν1,js1Cν1−g,ks2

)
κ4(s1, s2, s3, s4)

( ∞∑
ν2=−∞

Cν2,ls3Cν2−h,ms4

)

+
∞∑

t=−∞
γkm(t)γjl(t− h+ g) +

∞∑
t=−∞

γkl(t− h)γjm(t+ g) (5.2)

=
r∑

s1,s2,s3,s4=1

(∫ π

−π
(C(ω1))js1

(
C(ω1)

T
)
s2k

eigω1dω1

)

κ4(s1, s2, s3, s4)
(∫ π

−π
(C(ω2))ls3

(
C(ω2)

T
)
s4m

eihω2dω2

)
(5.3)

+
∞∑

t=−∞
γkm(t)γjl(t− h+ g) +

∞∑
t=−∞

γkl(t− h)γjm(t+ g)

for all j, k, l,m = 1, . . . , r and all lags g, h ∈ Z, where C(ω) = 1√
2π

∑∞
ν=−∞Cνe

−iνω is the trans-
fer function of X and κ4(s1, s2, s3, s4) is the fourth order joint cumulant between εt,s1 , εt,s2 , εt,s3
and εt,s4 .

The first sums in (5.2) and (5.3) containing these cumulants are difficult to handle and to
interpret. For this reason, bootstrap methods may possibly help to overcome this difficulty. De-
sirable is to have a bootstrap procedure that is able to replicate the covariance structure above
as far as possible.

In the following two Theorems 5.3 and 5.4, we state the asymptotics for the hybrid bootstrap
corresponding to (5.3) on the bootstrap level.

Theorem 5.3 (Asymptotic covariance structure).
Assume (A1), (A2), (K1) and (B2) and let p ∈ N0. Defining Cp(ω) = 1√

2π

∑∞
ν=0 Cν(p)e−iνω,

where Cν(p), ν ∈ N0 are the coefficient matrices of the causal representation of the best au-
toregressive fit of order p to X in L2-distance, for all j, k, l,m = 1, . . . , r and all g, h ∈ Z, the
following convergence in probability holds true:

nCov+(γ̂∗jk(g)− E+[γ̂∗jk(g)], γ̂∗lm(h)− E+[γ̂∗lm(h)])

→
r∑

s1,s2,s3,s4=1

(∫ π

−π
(Q(ω1)Cp(ω1))js1

(
Cp(ω1)

T
Q(ω1)

T
)
s2k

eigω1dω1

)
κ4(p; s1, s2, s3, s4) (5.4)(∫ π

−π
(Q(ω2)Cp(ω2))ls3

(
Cp(ω2)

T
Q(ω2)

T
)
s4m

eihω2dω2

)
+

∞∑
t=−∞

γkm(t)γjl(t− h+ g) +
∞∑

t=−∞
γkl(t− h)γjm(t+ g),

where Cov+ is the conditional covariance given X1, . . . , Xn, Γ̂∗(h) is the bootstrap analogue
of (5.1) and κ4(p; s1, s2, s3, s4) is the fourth order joint cumulant between the corresponding
components of the (non-standardized) residuals obtained by the best autoregressive fit.

Theorem 5.4 (Asymptotic normality).
Suppose the assumptions (A1), (A2), (A3), (K1), (K3) and (B3) are satisfied. Then for all
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fixed p ∈ N0, all s ∈ N0 and lags l = 0, . . . , s, it holds

L(
√
n(γ̂∗jk(l)− E+[γ̂∗jk(l)])|X1, . . . , Xn : j, k = 1, . . . , r; l = 0, . . . , s)⇒ N (0,V)

in probability. Here, the asymptotic covariance matrix V can be constructed by the results of
Theorem 5.3.

Unfortunately, the multiple hybrid bootstrap method does not work completely satisfactory in
the general setting for autocovariances. In comparison to the AAPB this is not surprising, be-
cause in the univariate case the AAPB is just able to mimic the asymptotic distribution for
autocorrelations (ratio statistics) and not for autocovariances (spectral means), where the aris-
ing fourth order cumulant of the white noise process is not captured properly (compare Theorem
4.1 (ii) and Corollary 4.1 (ii) in Kreiss and Paparoditis (2003)). However, under suitable as-
sumptions, a more general result for multivariate spectral means corresponding to Theorem 4.1
(i) in their paper is expected. The following direct corollary shows that our bootstrap procedure
provides the same results as the AAPB in the univariate case for empirical autocovariances.

Corollary 5.2 (Univariate case).
Let r = 1. Under the assumptions of Theorem 5.4 we get

L(
√
n(γ̂∗(l)− E+[γ̂∗(l)])|X1, . . . , Xn : l = 0, . . . , s)⇒ N (0, V ),

where V is obtained by

nCov+(γ̂(g), γ̂(h))→ γ(g)γ(h)(η(p)− 3) +
∞∑

t=−∞
γ(t)γ(t− h+ g) +

∞∑
t=−∞

γ(t− h)γ(t+ g) (5.5)

in probability, where E[(Xp −
∑p

ν=1 aν(p)Xp−ν)2] = σ2(p), E[(Xp −
∑p

ν=1 aν(p)Xp−ν)4] =
η(p)σ4(p) and aν(p), ν = 1, . . . , p are the coefficients of the best autoregressive fit of order p
in L2-distance.

Comparing (5.4) and (5.5) one striking difference regarding the first summands becomes ob-
vious. The asymptotic covariance in the univariate case discussed in Corollary 5.2 depends
exclusively through η(p) which is related to the fourth order cumulant κ4(p) on the initially
fitted autoregressive model and therefore on the underlying hybrid bootstrap proposal. In con-
trast, the complicated covariance structure derived in Theorem 5.3 depends on the fourth order
joint cumulants κ4(p; s1, s2, s3, s4) and, additionally, on the correction function Q(ω) as well as
on the transfer function Cp(ω) of the best autoregressive fit. The reason why these quantities
do not vanish asymptotically for r ≥ 2 is given in the following remark.

Remark 5.1.
The nonparametric correction achieved by Q(ω) works properly only in the case when the mul-
tiplication is executed on either side of the spectral density matrix fAR(ω), that is,

Q(ω)fAR(ω)Q(ω)
T

= Q(ω)Cp(ω)Σ(p)Cp(ω)
T
Q(ω)

T
= f(ω),

but one-sided application of Q(ω) to the transfer function Cp(ω) yields

Q(ω)Cp(ω) 6= C(ω)Σ1/2Σ(p)−1/2 (5.6)

in general. Observe that equality in (5.6) is necessary for the quantities Q(ω) and Cp(ω) to
disappear in (5.4) and, consequently, for the integrals to collapse in (5.4) obtaining a represen-
tation similar to (5.2). This problem does not arise in the univariate case, where the square
root of a positive real number is uniquely determined up to its sign, which is not true for the
generalized square root of a positive definite matrix.
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Note that all these quantities κ4(p; s1, s2, s3, s4), Q(ω) and Cp(ω) depend on the order p of the
autoregressive fit, which in turn causes the hybrid bootstrap as well as the AAPB to be not
valid in general for empirical autocovariances. Due to this specific feature in the multivariate
situation, moreover, it is neither possible to obtain validity for empirical autocorrelations under
general assumptions nor for a more general class of ratio statistics. However, compared to the
usual residual AR-bootstrap, the hybrid bootstrap is at least able to mimic exactly the second
and third term in (5.2). In the upcoming Corollaries 5.3 and 5.4, two important special cases
are presented where the hybrid bootstrap still works asymptotically.

Apparently, both methods (AAPB and hybrid bootstrap) do not have the ability to imitate
the fourth moments and accordingly the fourth order cumulants of the underlying white noise
process (εt : t ∈ Z) properly. This problem does not appear if we assume a normal distribution
for the error process, because in this case all occurring fourth order cumulants vanish and we
immediately obtain the following result.

Corollary 5.3 (Gaussian case).
Assume that the residuals (εt : t ∈ Z) are multivariate normally distributed. Under the assump-
tions of Theorem 5.4 for all s ∈ N0 and lags l = 0, . . . , s, it holds

d2{L(
√
n(γ̂jk(l)− E[γ̂jk(l)]) : j, k = 1, . . . , r; l = 0, . . . , s),

L(
√
n(γ̂∗jk(l)− E+[γ̂∗jk(l)])|X1, . . . , Xn : j, k = 1, . . . , r; l = 0, . . . , s)} → 0

in probability.

Assuming the underlying process X to be a causal vector autoregressive time series of finite order
p0 ∈ N0 is another very important case. In this situation the usual residual bootstrap works
well if we fit a model of order p ≥ p0. For this reason, we do not want the correction function
Q̃(ω) to adjust anything and expect the hybrid bootstrap to be valid particularly in this case.
Otherwise, this would represent a significant drawback compared to the residual bootstrap. The
forthcoming corollary reinforces our speculation.

Corollary 5.4 (V AR(p0) case).
Assume that the underlying observations X1, . . . , Xn originate from a causal V AR(p0) model
with p0 ∈ N0, that is, the stationary process X satisfies

Xt =
p0∑
k=1

AkXt−k + εt, t ∈ Z.

Under the assumptions of Theorem 5.4 for all p ∈ N0, p ≥ p0, all s ∈ N0 and lags l = 0, . . . , s,
it holds

d2{L(
√
n(γ̂jk(l)− E[γ̂jk(l)]) : j, k = 1, . . . , r; l = 0, . . . , s),

L(
√
n(γ̂∗jk(l)− E+[γ̂∗jk(l)])|X1, . . . , Xn : j, k = 1, . . . , r; l = 0, . . . , s)} → 0

in probability.

Using techniques similar to those employed by Kreiss and Paparoditis (2003) proving their
Theorem 4.1 (i), it seems also possible to achieve validity for empirical autocovariances (and
for spectral means and ratio statistics in general) in the case of an underlying causal V AR(∞)
model allowing the order p = p(n) of the autoregressive fit to increase at an appropriate rate
with the sample size n without assuming Gaussianity. Basically, this is because the correction
term Q̃(ω) tends to the unit matrix in this case as well.
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6. A simulation study

In this section we compare the performance of the proposed multiple hybrid bootstrap to that
of the usual autoregressive bootstrap and that of the moving block bootstrap by means of simu-
lation. In order to make such a comparison, we have chosen statistics for which all methods lead
to asymptotically correct approximations. In particular, we study and compare the performance
of the aforementioned bootstrap methods in estimating a) the variance σ2 of the first component
and b) the covariance γ12 of both components of the sample mean X = 1

n

∑n
t=1Xt of a bivariate

time series data set.

Realizations of length n = 50 and n = 400 from two models

Xt = A1εt−1 + εt and Xt = A1Xt−1 + εt

with i.i.d. εt ∼ N (0,Σ) have been considered, where the first one is a vector moving average
model of order one (VMA(1)-model) and the second is a vector autoregressive model of order
one (V AR(1)-model). In both cases, we have used

A1 =
(

0.5 0.9
0.0 0.5

)
, Σ =

(
1.0 0.2
0.2 1.0

)
.

To estimate the exact variance σ2 and covariance γ12, 10, 000 Monte-Carlo replications have
been used while the bootstrap approximations are based on B = 300 bootstrap replications and
we have simulated M = 200 data sets, respectively. In all cases, the Bartlett-Priestley kernel K
has been used and an autoregressive model of order p = 1 is fitted to the data. Compare also
Remark 4.2 concerning the choice of p = 1.

In Figure 1-4, some boxplots of the distributions of the different bootstrap approximations
for the cases n = 50 and n = 400 are presented. To check how sensitive the hybrid bootstrap
reacts concerning the choice of the bandwidth h in Figure 5 and 6 boxplots with different band-
widths are shown.

All figures show reasonable results for the hybrid bootstrap in comparison to the other methods,
but the effect of the nonparametric correction is clearly seen in Figure 2, where the bias of the
pure autoregressive bootstrap is reduced significantly. Moreover, as expected, the hybrid boot-
strap works well for autoregressive time series data as illustrated in Figure 3 and 4, where even
some bias reduction can be seen in comparison to the autoregressive bootstrap. The Figures
5 and 6 demonstrate that the hybrid bootstrap seems not to be over sensitive concerning the
choice of h. In particular, the right panel in Figure 5 shows the typical behaviour of decreasing
fluctuation with increasing bandwidth.

7. Proofs and auxiliary results

7.1. The nonparametric correction function.

Lemma 7.1 (Consistency of the correction function).
Assume (A1), (A2), (K1) and (B1). Then, for the nonparametric correction function Q̃(ω) =
Ĝ(ω)B̂(ω)−1 as defined in (4.1) and (4.2) (note the suppressed dependence on the sample size
n), it holds

Q̃(ω)→ Q(ω)
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in probability for all ω, where Q(ω) = G(ω)B(ω)−1 with Cholesky decompositions B(ω)B(ω)
T

=
fAR(ω) and G(ω)G(ω)

T
= f(ω). If even (B2) is satisfied, we get the uniform convergence

sup
ω
‖Q̃(ω)−Q(ω)‖ = oP (1)

and if additionally (A3), (K3) and (B3) are fulfilled, the first three (entrywise) derivatives of
Q̃(ω) exists and we get the uniform convergence in probability of the first two, that is

sup
ω
‖Q̃(j)(ω)−Q(j)(ω)‖ = oP (1), j = 1, 2

and the boundedness in probability of the third, that is sup
ω
‖Q̃(3)(ω)‖ = OP (1).

Proof.
First of all, we discuss some preliminary considerations. The Cholesky decomposition BBT = A
of a (complex) positive definite matrix A is obtained recursively by

bkl =


0, k < l

(akk −
∑k−1

j=1 bkjbkj)
1/2, k = l

1
bll

(akl −
∑l−1

j=1 bkjblj), k > l

, (7.1)

where B is uniquely defined and all diagonal elements are real-valued and strictly positive and
therefore B is invertible. Assuming a matrix-valued function A(ω) to be positive definite for all
ω, the same properties hold for its Cholesky decomposition B(ω). Further, if we assume A(ω)
to be (entrywise) k-times differentiable in ω, this property is also satisfied for B(ω), which can
be seen easily computing the derivatives according to (7.1). Moreover, if (An(ω) : n ∈ N) is a se-
quence of matrix-valued functions assumed to be positive definite as well as k-times (entrywise)
differentiable for all ω, uniform convergence of their first k derivatives A(d)

n (ω), d = 0, 1, . . . , k
causes uniform convergence of the k-th derivative B(k)

n (ω) of the corresponding Cholesky de-
composition Bn(ω).

Since the spectral densities f(ω) and fAR(ω) are both positive definite for all ω due to the assump-
tions (A1) and (A2) and because the Yule-Walker estimates always yield to stable autoregressive
models [compare Whittle (1963)], it suffices to restrict considerations to the convergence of the
quantities on the right-hand sides of (4.1) and (4.2) to f(ω) and fAR(ω) respectively as well as
the convergence of their derivatives. We prove only the most sophisticated assertion for Q̃(2)(ω).

The uniform convergence of f̂AR(ω) in probability follows by standard arguments using (7.7)
below and, because of the positive definiteness of its limit fAR(ω), we can treat f̂AR(ω) as a
positive definite matrix for sufficiently large n (in probability). Hence, the right-hand side in
(4.2) is well defined for large n (in probability). Entrywise geometrically decaying coefficient
matrices of the causal representation of the (stable) autoregressive fit yield uniform convergence
for all derivatives of f̂AR(ω) and the same holds true for its inverse f̂−1

AR(ω), causing the k-th
derivatives of B̂(ω) and B̂−1(ω) to converge uniformly, also. Now, consider the term on the
right-hand side of (4.2) more closely and define

Q̂(ω) =
1
n

N∑
k=−N

Kh(ω − ωk)B̂(ωk)−1In(ωk)B̂(ωk)−1
T
.
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Thanks to the uniform convergence of B̂(ω) and B̂−1(ω) and their derivatives, it remains to
show

sup
ω
‖Q̂(d)(ω)− (B−1(ω)f(ω)B−1(ω)

T
)(d)‖ = oP (1).

A Taylor series expansion yields

Q̂(d)(ω)

=
d∑

s1,s2=0

(B̂−1(ω))(s1)

(
1

nhd+1

N∑
k=−N

K(d)

(
ω − ωk
h

)
(ωk − ω)s1+s2In(ωk)

)
(B̂−1(ω))(s2)

T

+OP (h) (7.2)

uniformly in ω and it remains to check the following uniform convergence for the expression in
the big round parentheses in (7.2):

sup
ω
‖ 1
nhd+1

N∑
k=−N

K(d)

(
ω − ωk
h

)
(ωk − ω)sIn(ωk)−

d!
(d− s)!

f (d−s)(ω)‖ = oP (1)

for d = 0, 1, 2 and s = 0, 1, . . . , d. Observe that all sums in (7.2) with s = s1 + s2 > d can be
neglected because they vanish asymptotically with OP (hs−d) due to assumption (K3). To prove
the last assertion, we follow the idea of Franke and Härdle (1992, Theorem A1). Initially, the
last supremum is bounded by

sup
ω
‖ 1
nhd+1

N∑
k=−N

K(d)

(
ω − ωk
h

)
(ωk − ω)s(In(ωk)−C(ωk)In,ε(ωk)C(ωk)

T
)‖ (7.3)

+ sup
ω
‖ 1
nhd+1

N∑
k=−N

K(d)

(
ω − ωk
h

)
(ωk − ω)sC(ωk)In,ε(ωk)C(ωk)

T

− 1
(d− s)!

f (d−s)(ω)
1
nh

N∑
k=−N

K(d)(
ω − ωk
h

)(
ωk − ω
h

)d‖ (7.4)

+ sup
ω
‖ 1

(d− s)!
f (d−s)(ω)

1
nh

N∑
k=−N

K(d)(
ω − ωk
h

)(
ωk − ω
h

)d − d!
(d− s)!

f (d−s)(ω)‖, (7.5)

where C(ω) :=
∑∞

ν=−∞Cνe
−iνω and In,ε(ω) is the periodogram based on ε1, . . . , εn. Now, we

consider these three expressions seperately.

Theorem 2 in Hannan (1970, p.248) indicates ‖In(ω) − C(ω)In,ε(ω)C(ω)
T ‖ = OP (n−1/2) uni-

formly in ω and the supremum in (7.3) and in (7.5) vanish asymptotically in probability by
standard arguments. Using again Taylor expansion for C(ωk) the supremum in (7.4) can be
bounded by

sup
ω
‖

d∑
j1,j2=0

C(j1)(ω)

(
1

nhd+1

N∑
k=−N

K(d)

(
ω − ωk
h

)
(ωk − ω)s+j1+j2

j1!j2!
In,ε(ωk)

)
C(j2)(ω)

T

− (−1)d

(d− s)!
f (d−s)(ω)

1
nh

N∑
k=−N

K(d)(
ω − ωk
h

)(
ω − ωk
h

)d‖+OP (h).

Now, for instance, a multivariate version of Theorem 5.9.1 in Brillinger (1981) and following
the approach of Franke and Härdle (1992) for proving Theorem A1 yield the claimed uniform
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convergence in probability of Q̃(ω) as n tends to infinity. Here, (nh6)−1 = O(1) has to be
satisfied in comparison to Franke and Härdle, where no derivatives are estimated. �

7.2. Sample mean.

Proof of Theorem 5.1.
Since convergence in d2-metric is equivalent to weak convergence and convergence of the first
two moments [compare Bickel and Freedman (1981), Lemma 8.3], it suffices to show

V ar+(
√
n X

∗)→ 2πf(0),

where V ar+ is the conditional variance given X1, . . . , Xn and

L{
√
n X

∗|X1, . . . , Xn} ⇒ N (0, 2πf(0))

in probability, respectively. Recall that V ar(
√
nX) → 2πf(0) and

√
nX ⇒ N (0, 2πf(0)) as

n→∞ [compare Brockwell and Davis (1991), p.406]. Straightforward calculation yields

1√
n

n∑
t=1

X∗t =
1√
n

n∑
t=1

√
2π
n

[n/2]∑
j=−[n/2]

Q̃(ωj)J+
n (ωj)eitωj

=
√

2π
n

[n/2]∑
j=−[n/2]

Q̃(ωj)J+
n (ωj)

n∑
t=1

eitωj

=
√

2πQ̃(0)J+
n (0)

= Q̃(0)

(
1√
n

n∑
t=1

X+
t

)
and for the covariance matrix, we get immediately

V ar+

(
1√
n

n∑
t=1

X∗t

)
= Q̃(0)V ar+

(
1√
n

n∑
t=1

X+
t

)
Q̃(0)T .

For this reason, the claimed convergence in Mallows’ metric follows from

L{
√
n X

+|X1, . . . , Xn} ⇒ N (0, 2πfAR(0)) (7.6)

in probability, because, by construction, 2πQ(0)fAR(0)Q(0)T = 2πf(0). Using the Cramer-
Wold device, assertion (7.6) results from an adequate CLT, e.g. for weakly dependent random
variables as derived by Neumann and Paparoditis (2008, Theorem 6.1), which is well-suited for
the bootstrap. Thereby, we employ the convergence rate

sup
ν∈N0

‖Ĉν(p)−Cν(p)‖ =
1
rν
OP (n1/2), (7.7)

for some r > 1 which was established by Kreiss (1984, p.7) for the coefficient matrices Ĉν(p),
ν ∈ N0 of the causal representation

X+
t =

∞∑
ν=0

Ĉν(p)Σ̂1/2(p)ε+t−ν (7.8)

of the autoregressive fit of order p, using a multidimensional version of Cauchy’s inequality for
holomorphic functions [compare Kreiss and Franke (1992), Lemma 2.2 in the univariate case].
�
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7.3. Spectral density.

Proof of Theorem 5.2.
To prove the Theorem, it is more convenient to use the vec-operator that creates a column vector
by stacking the columns of a matrix below one another and to show the sufficient assertion

d2{L(
√
nbvec

([
f̂(ω1)− f(ω1)| · · · |̂f(ωs)− f(ωs)

])
),

L(
√
nbvec

([
f̂∗(ω1)− f̃(ω1)| · · · |̂f∗(ωs)− f̃(ωs)

])
|X1, . . . , Xn)} → 0

in probability. By Lemma 8.8 of Bickel and Freedman (1981), we can split the squared Mallows’
metric in a variance part V 2

n (ω) and a squared bias part b2n(ω), where

V 2
n (ω) = d2{L(

√
nbvec

([
f̂(ω1)− E [̂f(ω1)]| · · · |̂f(ωs)− E [̂f(ωs)]

])
),

L(
√
nbvec

([
f̂∗(ω1)− E+ [̂f∗(ω1)]| · · · |̂f∗(ωs)− E+ [̂f∗(ωs)]

])
|X1, . . . , Xn)}

and

b2n(ω) = nb‖vec
([
E [̂f(ω1)]− f(ω1)| · · · |E [̂f(ωs)]− f(ωs)

])
−vec

([
E+ [̂f∗(ω1)]− f̃(ω1)| · · · |E+ [̂f∗(ωs)]− f̃(ωs)

])
‖2

and by Lemma 8.3 of the same paper, convergence in the d2-metric is equivalent to weak con-
vergence and convergence of the first two moments. The latter two follow from Lemma 7.2 and
the weak convergence is a consequence of Lemma 7.3, so that V 2

n (ω) = oP (1) holds. Recall that

nbCov(f̂jk(ω), f̂lm(λ))→


{fjl(ω)fmk(ω) + fjm(ω)flk(ω)} 1

2π

∫
K2(u)du, ω = λ ∈ {0, π}

fjl(ω)fmk(ω) 1
2π

∫
K2(u)du, 0 < ω = λ < π

0, ω 6= λ

(7.9)

and
√
nb(f̂jk(ωl)− E[f̂jk(ωl)] : j, k = 1, . . . , r; l = 1, . . . , s)

is asymptotically (complex) normally distributed with mean vector 0 and covariance matrix
obtained by (7.9) [compare Hannan (1970), Theorem 9, p. 280 and Theorem 11, p. 289 for a
different but asymptotically equivalent estimator]. Note that assumption (5.2) in Hannan (1970)
is avoided in this context. Finally, the required convergence of b2n(ω) results from

E [̂f(ω)]− f(ω)→ C

4π
f ′′(ω)

∫
K(u)u2du

for nb5 → C2 ≥ 0 as n→∞ and Lemma 7.4 below.

Lemma 7.2 (Covariance structure).
Assume (A1), (A2), (K1) and (B2). For j, k, l,m ∈ {1, . . . , r} and ω, λ ∈ [0, π], the following
convergence in probability holds true:

nbCov+(f̂∗jk(ω), f̂∗lm(λ))→


{fjl(ω)fmk(ω) + fjm(ω)flk(ω)} 1

2π

∫
K2(u)du, ω = λ ∈ {0, π}

fjl(ω)fmk(ω) 1
2π

∫
K2(u)du, 0 < ω = λ < π

0, ω 6= λ
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Proof.
We consider the case ω = λ ∈ [0, π] only. Let k1, k2, h1, h2 ∈ {1, . . . , r}, then insertion and
straightforward calculation yields

nbCov+(f̂∗k1h1
(ω), f̂∗k2h2

(ω))

=
b

n

N∑
j1,j2=−N

Kb(ω − ωj1)Kb(ω − ωj2)
r∑

m1,m2,m3,m4=1

q̃k1m1(ωj1)q̃h1m2(ωj1)q̃k2m3(ωj2)q̃h2m4(ωj2)

(E+[I+
n,m1m2

(ωj1)I+
n,m3m4(ωj2)]− E+[I+

n,m1m2
(ωj1)]E+[I+

n,m3m4(ωj2)])

=
b

n

N∑
j1,j2=−N

Kb(ω − ωj1)Kb(ω − ωj2)
r∑

m1,m2,m4,m3=1

q̃k1m1(ωj1)q̃h1m2(ωj1)q̃h2m4(ωj2)q̃k2m3(ωj2)

1
4π2n2

n∑
s,t,v,u=1

∞∑
ν1,ν2,ν4,ν3=0

r∑
µ1,µ2,µ4,µ3=1

(
Ĉν1(p)Σ̂1/2(p)

)
m1µ1

(
Ĉν2(p)Σ̂1/2(p)

)
m2µ2(

Ĉν4(p)Σ̂1/2(p)
)
m4µ4

(
Ĉν3(p)Σ̂1/2(p)

)
m3µ3

(E+[ε+s−ν1,µ1
ε+t−ν2,µ2

ε+v−ν4,µ4
ε+u−ν3,µ3

] (7.10)

−E+[ε+s−ν1,µ1
ε+t−ν2,µ2

]E+[ε+v−ν4,µ4
ε+u−ν3,µ3

])e−i(s−t)ωj1e−i(v−u)ωj2 .

Here, for the first equality we used I∗n(ω) = Q̃(ω)I+
n (ω)Q̃(ω)

T
and the second results from

inserting for the periodogram and (7.8). Because of the identity next to (7.18)-(7.20) we can
deal with those three summands separately. Initially, we consider (7.20). Here,

∑n
t=1 e

itω = 0 if
ω 6= 0 and n otherwise causes the sum over j2 in (7.10) to collapse and a rearrangement yields

b

n

N∑
j=−N

K2
b (ω − ωj)

r∑
m1,m3=1

q̃k1m1(ωj)
r∑

µ1=1

1
2π

∞∑
ν1=0

(
Ĉν1Σ̂

1/2(p)
)
m1µ1

e−iν1ωj

∞∑
ν3=0

(
Ĉν3Σ̂

1/2(p)
)
m3µ1

eiν3ωj q̃k2m3(ωj)

r∑
m4,m2=1

q̃h2m4(ωj)
r∑

µ4=1

1
2π

∞∑
ν4=0

(
Ĉν4Σ̂

1/2(p)
)
m4µ4

e−iν4ωj

∞∑
ν2=0

(
Ĉν2Σ̂

1/2(p)
)
m2µ4

eiν2ωj q̃h1m2(ωj)

=
b

n

N∑
j=−N

K2
b (ω − ωj)

(
Q̃(ωj)f̂AR(ωj)Q̃(ωj)

T
)
k1k2

(
Q̃(ωj)f̂AR(ωj)Q̃(ωj)

T
)
h2h1

.

Because of the uniform convergence in ω of the quantities Q̃(ω) and f̂AR(ω), the last sum is
equal to

b

n

N∑
j=−N

K2
b (ω − ωj)

(
Q(ωj)fAR(ωj)Q(ωj)

T
)
k1k2

(
Q(ωj)fAR(ωj)Q(ωj)

T
)
h2h1

+ oP (1)

=
1
nb

N∑
j=−N

K2(
ω − ωj
b

)fk1k2(ωj)fh2h1(ωj) + oP (1),

where we used the correcting property of Q̃(ω). Concerning assumption (A1), the spectral
density f(ω) is componentwise differentiable with bounded derivative. For this reason, Taylor
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expansions of fk1k2(ωj) and fh2h1(ωj) plus the converging Riemann sum yield

1
nb

N∑
j=−N

K2(
ω − ωj
b

)fk1k2(ωj)fh2h1(ωj) + oP (1)

= fk1k2(ω)fh2h1(ω)
1

2π

2π
nb

N∑
j=−N

K2(
ω − ωj
b

)

+OP (b) + oP (1)

→ fk1k2(ω)fh2h1(ω)
1

2π

∫ π

−π
K2(x)dx

in probability. Arguments are similar for the term related to (7.19) and we get

fk1h2(ω)fk2h1(ω)
1

2π

2π
nb

N∑
j=−N

K(
ω − ωj
b

)K(
ω + ωj
b

)

+OP (b) + oP (1),

where the involved Riemann sum converges to zero for ω ∈ (0, π) and to 1
2π

∫
K2(u)du for

ω ∈ {0, π} as required. It remains to check (7.18) concerning its asymptotic behaviour. Inserting
(7.18) in equation (7.10) and standard calculations result in an oP (1) term that, for this reason,
does not play a role asymptotically. This completes the proof. �

Lemma 7.3 (Asymptotic normality).
Assume (A1), (A2), (K1), (K2) and (B2). Then, the following assertion holds true:

L
[√

nbvec
([

f̂∗(ω1)− E+ [̂f∗(ω1)]| · · · |̂f∗(ωs)− E+ [̂f∗(ωs)]
])∣∣∣X1, . . . , Xn

]
⇒ NC(0,W)

in probability, where NC denotes a complex normal distribution [cf. Brillinger (1981), p.89] and
the asymptotic covariance matrix W is obtained by the results of Lemma 7.2.

Proof.
Let c = (c(1)T , . . . , c(s)T )T ∈ Csr2 with c(l) ∈ Cr2 , l = 1, . . . , s. Using the Cramer-Wold device,
applied to complex-valued random variables, it suffices to show asymptotic normality for

cT
√
nbvec

([
f̂∗(ω1)− E+ [̂f∗(ω1)]| · · · |̂f∗(ωs)− E+ [̂f∗(ωs)]

])
=

s∑
l=1

c(l) T
√
nbvec

([
f̂∗(ωl)− E+ [̂f∗(ωl)]

])
.

For this reason, without loss of generality, we can restrict our considerations to the case s = 1.
Analogue to Theorem 2 in Hannan (1970, p.248), it holds

I+
n (ω) =

( ∞∑
ν=0

Ĉν(p)e−iνω
)

Σ̂1/2(p)In,ε+(ω)Σ̂1/2(p)T
( ∞∑
ν=0

Ĉν(p)e−iνω
)T

+OP ∗(n−
1
2 ),

where Σ̂1/2(p) is defined in Step 1 in Section 4 and In,ε+(ω) is the periodogram based on the

bootstrap residuals ε+1 , . . . , ε
+
n . Using this formula and I∗n(ω) = Q̃(ω)I+

n (ω)Q̃(ω)
T

, we get

√
nb(f̂∗(ω)− E+ [̂f∗(ω)]) =

√
b

n

N∑
j=−N

Kb(ω − ωj)M̂(ωj)
(

In,ε+(ωj)−
1

2π
Ir

)
M̂(ωj)

T

+ oP ∗(1),



MULTIPLE HYBRID BOOTSTRAP 23

where M̂(ω) = Q̃(ω)(
∑∞

ν=0 Ĉν(p)e−iνω)Σ̂1/2(p). Thanks to a multivariate analogue to Theorem
5.9.1 in Brillinger (1981), instead of the first term on the right-hand side of the above equality,
we may consider the asymptotically equivalent statistic

√
nb

1
2π

∫ π

−π
Kb(ω − x)M(x)

(
In,ε+(x)− 1

2π
Ir

)
M(x)

T
dx

=
√
nb

1
2π

∫ π

−π
K(u)M(ω − ub)

(
In,ε+(ω − ub)− 1

2π
Ir

)
M(ω − ub)Tdu (7.11)

= M(ω)
(√

nb
1

2π

∫ π

−π
K(u)

(
In,ε+(ω − ub)− 1

2π
Ir

)
du

)
M(ω)

T
+ D+

n,1(ω) + D+
n,2(ω),

where M(ω) = Q(ω)
(∑∞

ν=0 Cν(p)e−iνω
)
Σ1/2(p) is the limit in probability of M̂(ω) and the

quantities D+
n,1(ω) and D+

n,2(ω) are defined as follows:

D+
n,1(ω) =

√
nb

1
2π

∫ π

−π
K(u)(M(ω − ub)−M(ω))

(
In,ε+(ω − ub)− 1

2π
Ir

)
M(ω − ub)Tdu,

D+
n,2(ω) =

√
nb

1
2π

∫ π

−π
K(u)M(ω − ub)

(
In,ε+(ω − ub)− 1

2π
Ir

)
(M(ω − ub)−M(ω))

T
du.

For the components of D+
n,k(ω), k ∈ {1, 2}, straightforward calculations yield E+[D+

n,k(i, j)(ω)] =
0 and

E+[|D+
n,k(i, j)(ω)|2] = OP ( max

i,j=1,...,r
{|Mi,j(ω − ub)−Mi,j(ω)|2}) = OP (b2)

for all i, j ∈ {1, . . . , r}, where the last equality follows from the Lipschitz-continuity of M, which
is a consequence of this property fulfilled by Q(ω) and

∑∞
ν=0 Cν(p)e−iνω. Due to the formula

vec(ABC) = (CT ⊗ A)vec(B) for appropriate matrices A, B and C [cf. Lütkepohl (2005),
p.662], the first term of the last right-hand side of (7.11) becomes

(M(ω)⊗M(ω))vec
(√

nb
1

2π

∫ π

−π
K(u)

(
In,ε+(ω − ub)− 1

2π
Ir

)
du

)
and it remains to show asymptotic normality for the part in big outer parentheses above.
Plugging-in the expression In,ε+(ω) = 1

2π

∑n−1
s=−n+1 Γ̂ε+(s)e−isω, where

Γ̂ε+(s) =

{
1
n

∑n−s
t=1 ε

+
t+sε

+T
t , s ≥ 0

1
n

∑n
t=1−s ε

+
t+sε

+T
t , s < 0

, (7.12)

we get
√
nb

1
2π

∫ π

−π
K(u)

(
In,ε+(ω − ub)− 1

2π
Ir

)
du

=
√
nb

∫ π

−π
K(u)

1
4π2

n−1∑
s=1

(
Γ̂ε+(s)e−is(ω−ub) + Γ̂ε+(−s)eis(ω−ub)

)
du

+
√
nb

1
4π2

(Γ̂ε+(0)− Ir)
∫ π

−π
K(u)du,

where the second term is OP ∗(
√
b) = oP ∗(1). Using the Fourier transform k of K and its

symmetry, the first term can be written as

1
4π2

√
nb

n−1∑
s=1

k(sb)
(
Γ̂ε+(s)e−isω + Γ̂ε+(−s)eisω

)
.
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Ignoring the factor 1
4π2 , we can split this expression to obtain

√
nb

cn∑
s=1

k(sb)
(
Γ̃ε+(s)e−isω + Γ̃ε+(−s)eisω

)
(7.13)

+
√
nb

cn∑
s=1

k(sb)
((

Γ̂ε+(s)− Γ̃ε+(s)
)
e−isω +

(
Γ̂ε+(−s)− Γ̃ε+(−s)

)
eisω

)
(7.14)

+
√
nb

n−1∑
s=cn+1

k(sb)
(
Γ̂ε+(s)e−isω + Γ̂ε+(−s)eisω

)
, (7.15)

where (cn, n ∈ N) ⊂ N satisfies cn = o(n) as well as cn → ∞ as n → ∞ and the summation in
Γ̃ε+(s) is from 1 to n compared to the definition of Γ̂ε+(s) in (7.12). Next we show that (7.14)
and (7.15) vanish asymptotically. We prove this only for the parts with positive lags s. For the
(h, j)-th component of (7.14) we get

E+[|
√
nb

cn∑
s=1

k(sb)
(
Γ̂ε+(s)− Γ̃ε+(s)

)
h,j
e−isω|2] = nbE+[|

cn∑
s=1

k(sb)
1
n

n∑
t=n−s+1

ε+t+s,hε
+
t,je
−isω|2]

≤ nb

cn∑
s=1

k2(sb)
s

n2
.

The last term is bounded by cnb
n

∑cn
s=1 k

2(sb), which, defining mn = [1b ], is asymptotically equiv-
alent to

cn
n

1
mn

cn∑
s=1

k2(
s

mn
) ∼=

cn
n

∫ cn

0
k2(x)dx→ 0,

where
∫
k(u)2du <∞ and cn = o(n) are used. Similarly, for the (h, j)-th component of (7.15),

we get

E+[|
√
nb

n−1∑
s=cn+1

k(sb)Γ̂ε+(s)h,je−isω|2] = nbE+[|
n−1∑

s=cn+1

k(sb)
1
n

n−s∑
t=1

ε+t+s,hε
+
t,je
−isω|2]

≤ b

n−1∑
s=cn+1

k2(sb)

and the last sum is asymptotically equivalent to

1
mn

n−1∑
s=cn+1

k2(
s

mn
) ∼=

∫ ∞
cn

k2(x)dx→ 0.

Using expression (7.13), now, we define the quantity W+
t,n by

√
nb

cn∑
s=1

k(sb)
(
Γ̃ε+(s)e−isω + Γ̃ε+(−s)eisω

)
=

n∑
t=1

√
b

n

cn∑
s=1

k(sb)
(
ε+t+sε

+T
t e−isω + ε+t−sε

+T
t eisω

)
=:

n∑
t=1

W+
t,n

and, by the Cramer-Wold device, finally, it remains to show asymptotic (complex) normality of∑n
t=1 c

T vec
(
W+

t,n

)
for all c ∈ Cr2 , which per definition of the complex normal distribution is
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equivalent to asymptotic (real) normality of
n∑
t=1

cT vec
(
[Re(W+

t,n)|Im(W+
t,n)]

)
=

n∑
t=1

c(1)T vec
(
Re(W+

t,n)
)

+ c(2)T vec
(
Im(W+

t,n)
)

for all c = (c(1)T , c(2)T )T ∈ R2r2 , where Re(x) and Im(x) denote the real and the imaginary
part of a complex quantity x. These one-dimensional quantities can be treated standardly with
Theorem 4 in Rosenblatt (1985, p.63) as done in Kreiss and Paparoditis (2003) for the univariate
case to obtain asymptotic normality using the AAPB, which completes this proof. �

Lemma 7.4 (Bias term).
Assume (A1), (A2), (A3), (K1), (K3) and (B3). If nb5 → C2 with a constant C ≥ 0, we get

E+ [̂f∗(ω)]− f̃(ω)→ C

4π
f ′′(ω)

∫
K(u)u2du

in probability, where f ′′(ω) is the (entrywise) second derivative in ω of the spectral density matrix
f .

Proof.
Thanks to | 1n

∑N
j=−N Kb(ω − ωj) − 1| = O( 1

nb) uniformly in ω and E+[I+
n (ωj)] = f̂AR(ωj), at

first, we get
√
nb(E+ [̂f∗(ω)]− f̃(ω))

=
√
nb

 1
n

N∑
j=−N

Kb(ω − ωj)
(

Q̃(ωj)f̂AR(ωj)Q̃(ωj)
T
− Q̃(ω)f̂AR(ω)Q̃(ω)

T
)+OP (

1√
nb

).

Now, the expression in inner round parentheses can be displayed in the following way:

Q̃(ωj)f̂AR(ωj)Q̃(ωj)
T
− Q̃(ω)f̂AR(ω)Q̃(ω)

T

= (Q̃(ωj)− Q̃(ω))f̂AR(ω)Q̃(ω)
T

+ Q̃(ω)(f̂AR(ωj)− f̂AR(ω))Q̃(ω)
T

+Q̃(ω)f̂AR(ω)(Q̃(ωj)− Q̃(ω))
T

+ (Q̃(ωj)− Q̃(ω))(f̂AR(ωj)− f̂AR(ω))Q̃(ω)
T

+(Q̃(ωj)− Q̃(ω))f̂AR(ω)(Q̃(ωj)− Q̃(ω))
T

+ Q̃(ω)(f̂AR(ωj)− f̂AR(ω))(Q̃(ωj)− Q̃(ω))
T

+(Q̃(ωj)− Q̃(ω))(f̂AR(ωj)− f̂AR(ω))(Q̃(ωj)− Q̃(ω))
T

= D̂1,j + D̂2,j + D̂3,j + D̂4,j + D̂5,j + D̂6,j + D̂7,j ,

with an obvious notation for D̂k,j , k = 1, . . . , 7. Note, because of the chain rule, for the second
(componentwise) derivative of f(ω), it holds

f ′′(ω) = (Q(ω)fAR(ω)Q(ω)
T

)′′

= Q′′(ω)fAR(ω)Q(ω)
T

+ Q(ω)f ′′AR(ω)Q(ω)
T

+ Q(ω)fAR(ω)Q′′(ω)
T

+2Q′(ω)f ′AR(ω)Q(ω)
T

+ 2Q′(ω)fAR(ω)Q′(ω)
T

+ 2Q(ω)f ′AR(ω)Q′(ω)
T

= D1 + D2 + D3 + D4 + D5 + D6

and the claimed convergence of E+ [̂f∗(ω)]− f̃(ω) follows from√
b

n

N∑
j=−N

Kb(ω − ωj)D̂k,j →
C

4π
Dk

∫
K(u)u2du, k = 1, . . . , 7 (7.16)
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in probability, where D7 is set equal to zero. Consider first D̂1,j . A Taylor expansion of Q̃(ω)
delivers√

b

n

N∑
j=−N

Kb(ω − ωj)(Q̃(ωj)− Q̃(ω))

=

√ b

n

N∑
j=−N

Kb(ω − ωj)(ωj − ω)

 Q̃′(ω) +

1
2

√
b

n

N∑
j=−N

Kb(ω − ωj)(ωj − ω)2

 Q̃′′(ω)

+

1
6

√
b

n

N∑
j=−N

Kb(ω − ωj)(ωj − ω)3Q̃′′′(ω̃j)


with ω̃j between ω and ωj . Due to

∫
K(u)udu = 0 we get 1

nb

∑N
j=−N K(ω−ωj

b )(ωj−ω
b ) = O( 1

nb)
and together with nb5 = O(1) the first summand vanishes. The third is OP (b) because of
Q̃′′′(ω) = OP (1) uniformly in ω and disappears also. From nb5 → C2 and Lemma 7.1, for the
second term, we get√nb5

4π
2π
nb

N∑
j=−N

K(
ω − ωj
b

)(
ωj − ω
b

)2

 Q̃′′(ω)→ C

4π
Q′′(ω)

∫
K(u)u2du,

which yields (7.16) for k = 1. The cases k = 2 and k = 3 can be treated analogously, where
a Taylor expansion of f̂AR(ω) has to be used for k = 2. Now, consider k ∈ {4, 5, 6}. We prove
only the case k = 4. Similar to calculations above, Taylor expansions of Q̃(ω) and f̂AR(ω),
respectively, provide √

b

n

N∑
j=−N

Kb(ω − ωj)(Q̃(ωj)− Q̃(ω))(f̂AR(ωj)− f̂AR(ω))

=

√ b

n

N∑
j=−N

Kb(ω − ωj)(ωj − ω)2

 Q̃′(ω)f̂ ′AR(ω)

1
2

√
b

n

N∑
j=−N

Kb(ω − ωj)(ωj − ω)3Q̃′′(ω̃)

 f̂ ′AR(ω)

+Q̃′(ω)

1
2

√
b

n

N∑
j=−N

Kb(ω − ωj)(ωj − ω)3f̂ ′′AR(ω̃)


+

1
4

√
b

n

N∑
j=−N

Kb(ω − ωj)(ωj − ω)4Q̃′′(ω̃)f̂ ′′AR(ω̃)

→ C

4π
Q′(ω)f ′AR(ω)

∫
K(u)u2du.

Finally, three times Taylor again yields√
b

n

N∑
j=−N

Kb(ω − ωj)(Q̃(ωj)− Q̃(ω))(f̂AR(ωj)− f̂AR(ω))(Q̃(ωj)− Q̃(ω))
T

=

√
b

n

N∑
j=−N

Kb(ω − ωj)(ωj − ω)3Q̃′(ω̃)f̂ ′AR(ω̃)Q̃′(ω̃)
T
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and the last sum vanishes asymptotically, because of
∫
K(u)u3du = 0. �

This concludes the proof of Theorem 5.2. �

7.4. Autocovariances.

Proof of Theorem 5.3.
Extending X∗1, . . . , X

∗
n cyclically to obtain (X∗t : t ∈ Z), we can define

Γ̃∗(h) =
1
n

n∑
t=1

(Xt+h −X)(Xt −X)T , h ∈ Z

and because of E[‖Γ̂∗(h)− Γ̃∗(h)‖] = OP ( 1
n) it suffices to show the assertion for the components

of Γ̃∗(h). Let h1, h2, k1, k2 ∈ {1, . . . , r} as well as h, k ∈ Z, then insertion and straightforward
calculation yields

nCov+(γ̃∗h1h2
(h)− E+[γ̃∗h1h2

(h)], γ̃∗k1k2(k)− E+[γ̃∗k1k2(k)])

=
4π2

n3

N∑
j1,j2,j3,j4=−N

r∑
m1,m2,m3,m4=1

q̃h1m1(ωj1)q̃h2m2(ωj2)q̃k1m3(ωj3)q̃k2m4(ωj4)

(
E+[J+

n,m1
(ωj1)J+

n,m2
(ωj2)J+

n,m3
(ωj3)J+

n,m4
(ωj4)]

−E+[J+
n,m1

(ωj1)J+
n,m2

(ωj2)]E+[J+
n,m3

(ωj3)J+
n,m4

(ωj4)]
)

eihωj1eikωj3

n∑
s=1

eis(ωj1
+ωj2

)
n∑
t=1

eit(ωj3
+ωj4

)

=
4π2

n

N∑
j1,j2=−N

r∑
m1,m2,m3,m4=1

q̃h1m1(ωj1)q̃h2m2(ωj1)q̃k1m3(ωj2)q̃k2m4(ωj2)

(
E+[I+

n,m1m2
(ωj1)I+

n,m3m4
(ωj2)]− E+[I+

n,m1m2
(ωj1)]E+[I+

n,m3m4
(ωj2)]

)
eihωj1eikωj2

=
4π2

n

N∑
j1,j2=−N

r∑
m1,m2,m3,m4=1

q̃h1m1(ωj1)q̃h2m2(ωj1)q̃k1m3(ωj2)q̃k2m4(ωj2) (7.17)

1
4π2n2

n∑
s,t,u,v=1

∞∑
ν1,ν2,ν3,ν4=0

r∑
µ1,µ2,µ3,µ4=1

(
Ĉν1(p)Σ̂1/2(p)

)
m1µ1

(
Ĉν2(p)Σ̂1/2(p)

)
m2µ2(

Ĉν3(p)Σ̂1/2(p)
)
m3µ3

(
Ĉν4(p)Σ̂1/2(p)

)
m4µ4

(
E+[ε+s−ν1,µ1

ε+t−ν2,µ2
ε+u−ν3,µ3

ε+v−ν4,µ4
]

−E+[ε+s−ν1,µ1
ε+t−ν2,µ2

]E+[ε+u−ν3,µ3
ε+v−ν4,µ4

]
)
e−i(s−t)ωj1e−i(u−v)ωj2eihωj1eikωj2 .

For the second equality from above we used
∑n

t=1 e
itω = 0 if ω 6= 0 and n otherwise as well as

the hermitian symmetry of Jn(ω) and Q̃(ω). Inserting for the periodogram provides the third
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equation. Up to an eventually negligible term, it holds

n∑
s,t,u,v=1

(
E[ε+s−ν1,µ1

ε+t−ν2,µ2
ε+u−ν3,µ3

ε+v−ν4,µ4
]− E[ε+s−ν1,µ1

ε+t−ν2,µ2
]E[ε+u−ν3,µ3

ε+v−ν4,µ4
]
)

e−i(s−t)ωj1e−i(u−v)ωj2

= nκ̃4(p;µ1, µ2, µ3, µ4)e−iν1ωj1eiν2ωj1e−iν3ωj2eiν4ωj2 (7.18)

+1(µ1 = µ3)1(µ2 = µ4)

∣∣∣∣∣
n∑
s=1

e−is(ωj1
+ωj2

)

∣∣∣∣∣
2

eiν1ωj2e−iν2ωj2e−iν3ωj2eiν4ωj2 (7.19)

+1(µ1 = µ4)1(µ2 = µ3)

∣∣∣∣∣
n∑
s=1

e−is(ωj1
−ωj2

)

∣∣∣∣∣
2

e−iν1ωj2eiν2ωj2e−iν3ωj2eiν4ωj2 , (7.20)

where κ̃4(p;µ1, µ2, µ3, µ4) denotes the fourth-order cumulant between the standardized residuals
ε+t,µ1

, ε+t,µ2
, ε+t,µ3

and ε+t,µ4
obtained by fitting an AR-model of order p. Insertion in (7.17) simplifies

matters and we have to deal with the three summands in (7.18)-(7.20) separately. Consider first
(7.19). Here, the sum over j2 in (7.17) collapses and a rearrangement results in

4π2

n

N∑
j1=−N

r∑
m1,m3=1

q̃h1m1(ωj1)

 1
2π

r∑
µ1=1

( ∞∑
ν1=0

(
Ĉν1(p)Σ̂1/2(p)

)
m1µ1

e−iν1ωj1

)( ∞∑
ν3=0

(
Ĉν3(p)Σ̂1/2(p)

)
m3µ1

e−iν3ωj1

)T
q̃m3k1(ωj1)

T
r∑

m2,m4=1

q̃k2m4(ωj1)

 1
2π

r∑
µ4=1

( ∞∑
ν4=0

(
Ĉν4(p)Σ̂1/2(p)

)
m4µ4

e−iν4ωj1

)( ∞∑
ν2=0

(
Ĉν2(p)Σ̂1/2(p)

)
m2µ4

e−iν2ωj1

)T
q̃m2h2(ωj1)

T
e−i(k−h)ωj1

=
4π2

n

N∑
j1=−N

(
Q̃(ωj1)f̂AR(ωj1)Q̃(ωj1)

T
)
h1k1

(
Q̃(ωj1)f̂AR(ωj1)Q̃(ωj1)

T
)
k2h2

e−i(k−h)ωj1 .

Because of the uniform convergence in ω of the quantities Q̃(ω) and f̂AR(ω), the Riemann sum
above converges to

2π
∫ π

−π

(
Q(ω)fAR(ω)Q(ω)

T
)
h1k1

(
Q(ω)fAR(ω)Q(ω)

T
)
k2h2

e−i(k−h)ωdω

= 2π
∫ π

−π
fh1k1(ω)fk2h2(ω)e−i(k−h)ωdω
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in probability. Finally, the multivariate inversion formula yields

2π
∫ π

−π
fh1k1(ω)fk2h2(ω)e−i(k−h)ωdω = 2π

∫ π

−π
fh1k1(ω)

1
2π

∞∑
t=−∞

e−itωγk2h2(t)e−i(k−h)ωdω

=
∞∑

t=−∞
γk2h2(t)

∫ π

−π
fh1k1(ω)ei(−t−k+h)ωdω

=
∞∑

t=−∞
γh2k2(−t)γh1k1(−t− k + h).

Arguments are analogue for (7.20) and its limit in probability is

∞∑
t=−∞

γh2k2(−t)γh1k1(−t− k + h).

It remains to check (7.18). Inserting in (7.17) and rearranging gives the expression

r∑
s1,s2,s3,s4=1

2π
n

N∑
j1=−N

(
Q̃(ωj1)

(
1√
2π

∞∑
ν1=0

Ĉν1(p)e−iν1ωj1

))
h1s1( 1√

2π

∞∑
ν2=0

Ĉν2(p)e−iν2ωj1

)T
Q̃(ωj1)

T


s2h2

eihωj1


r∑

µ1,µ2,µ3,µ4=1

Σ̂1/2(p)s1µ1Σ̂
1/2(p)s2µ2Σ̂

1/2(p)s3µ3Σ̂
1/2(p)s4µ4 κ̃4(p;µ1, µ2, µ3, µ4)2π

n

N∑
j2=−N

(
Q̃(ωj2)

(
1√
2π

∞∑
ν3=0

Ĉν3(p)e−iν3ωj2

))
k1s3( 1√

2π

∞∑
ν4=0

Ĉν4(p)e−iν4ωj2

)T
Q̃(ωj2)

T


s4k2

eikωj2

 ,

which converges to the corresponding part as stated in the theorem. �

Proof of Theorem 5.4.
As in the proof of Theorem 5.2 it is more convenient to show asymptotic normality for

L
(√

nbvec
([

Γ̂∗(0)− E+[Γ̂∗(0)]| · · · |Γ̂∗(s)− E+[Γ̂∗(s)]
])
|X1, . . . , Xn

)
and analogue to the proof of Lemma 7.3 it suffices here to consider the case s = 1 with some
lag h. Hence, we can focus on

√
nbvec

(
Γ̂∗(h)− E+[Γ̂∗(h)]

)
.

Recall that Γ̂∗(h) can be displayed as a so-called spectral mean [cf. Dahlhaus (1985) for the
univariate case], that is

Γ̂∗(h) =
∫ π

π
I∗n(ω)eihωdω.
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Using I∗n(ω) = Q̃(ω)I+
n (ω)Q̃(ω)

T
and I+

n (ω) = 1
2π

∑n−1
k=−(n−1) Γ̂+(k)e−ikω, where Γ̂+(h) is ana-

logue to (5.1) based on X+
1 , . . . , X

+
n , we get

Γ̂∗(h) =
n−1∑

k=−(n−1)

1
2π

∫ π

−π
Q̃(ω)Γ̂+(k)Q̃(ω)

T
e−i(k−h)ωdω.

Further, due to the formula vec(ABC) = (CT ⊗A)vec(B) for appropriate matrices A, B and
C, application of the vec-operator yields

√
nvec(Γ̂∗(h)− E+[Γ̂∗(h)])

=
n−1∑

k=−(n−1)

1
2π

∫ π

−π

(
Q̃(ω)⊗ Q̃(ω)

)
e−i(k−h)ωdω

√
n vec

(
Γ̂+(k)− E+[Γ̂+(k)]

)
= Z+

n .

To make Proposition 6.3.9 in Brockwell and Davis (1991) applicable, let M ∈ N be fixed and
split the last sum in two parts to obtain

M∑
k=−M

1
2π

∫ π

−π

(
Q̃(ω)⊗ Q̃(ω)

)
e−i(k−h)ωdω

√
n vec

(
Γ̂+(k)− E+[Γ̂+(k)]

)

+
n−1∑

k=−(n−1)

|k|>M

1
2π

∫ π

−π

(
Q̃(ω)⊗ Q̃(ω)

)
e−i(k−h)ωdω

√
n vec

(
Γ̂+(k)− E+[Γ̂+(k)]

)
,

= Z+
n,M + (Z+

n,M − Z
+
n ),

with an obvious notation for Z+
n,M . Now, it suffices to have that for all M ∈ N the quantity

Z+
n,M converges weakly to a normal distribution in probability depending on M , which itself in

turn converges for M →∞. Moreover, for all ε > 0, the condition

lim
M→∞

lim sup
n→∞

P+(‖Zn − Zn,M‖ > ε) = 0 (7.21)

in probability has to be satisfied. At first, let M be fixed. Then Z+
n,M can be displayed as a

matrix-vector product and we get

Z+
n,M =

[
1

2π

∫ π

−π

(
Q̃(ω)⊗ Q̃(ω)

)
e−i(−M−h)ωdω

∣∣∣∣ · · · ∣∣∣∣ 1
2π

∫ π

−π

(
Q̃(ω)⊗ Q̃(ω)

)
e−i(M−h)ωdω

]
·
√
nvec

([
Γ̂+(−M)− E+[Γ̂+(−M)]

∣∣∣ · · · ∣∣∣Γ̂+(M)− E+[Γ̂+(M)]
])

= H+
n,M ·R

+
n,M ,

where the (r2 × (2n − 1)r2)-matrix H+
n,M is multiplied with the (2n − 1)r2-dimensional vector

R+
n,M . Applying an adequate CLT (e.g. the CLT in Neumann and Paparoditis (2008)), we get

asymptotic normality of R+
n,M , which contains nothing else but empirical autocovariances of the

usual residual AR-bootstrap. Together with the convergence in probability of H+
n,M and Slutsky

we get the required weak convergence of Z+
n,M = H+

n,M · R
+
n,M and its asymptotic multivariate

normal distribution depending on M converges itself to the correct covariance matrix as M →∞
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by Theorem 5.3. It remains to show (7.21). By Markov inequality, it suffices to consider

E+[‖Zn − Zn,M‖]

= ‖
n−1∑

k=−(n−1)

|k|>M

1
2π

∫ π

−π

(
Q̃(ω)⊗ Q̃(ω)

)
e−i(k−h)ωdω

√
n vec

(
Γ̂+(k)− E+[Γ̂+(k)]

)
‖

≤
n−1∑

k=−(n−1)

|k|>M

‖ 1
2π

∫ π

−π

(
Q̃(ω)⊗ Q̃(ω)

)
e−i(k−h)ωdω‖ · ‖

√
n vec

(
Γ̂+(k)− E+[Γ̂+(k)]

)
‖

= OP (1)
n−1∑

k=−(n−1)

|k|>M

‖ 1
2π

∫ π

−π

(
Q̃(ω)⊗ Q̃(ω)

)
e−i(k−h)ωdω‖, (7.22)

where we have used
√
n vec(Γ̂+(k)− E+[Γ̂+(k)]) = OP (1) uniformly in k. Now, let ‖ · ‖ be the

1-norm for matrices ‖ · ‖1, defined as ‖A‖1 =
∑

i,j |ai,j |. The normed expression in (7.22) is a
matrix, whose entries are usual Fourier coefficients of the type

ak−h(r, s, t, u) =
1

2π

∫ π

−π
q̃rs(ω)q̃tu(ω)e−i(k−h)ωdω,

where r, s, t, u ∈ {1, . . . , r}. Because of Lemma 7.1, the function q̃rs(·)q̃tu(·) is three times
differentiable and therefore |ak−h| can be bounded by Tn

|k−h|2 , where

Tn =
1

2π

∫ π

−π

∣∣∣∣ ∂2

∂ω2

(
q̃rs(ω)q̃tu(ω)

)∣∣∣∣ dω = OP (1)

uniformly in k. Finally, for sufficiently large M , we obtain

lim
M→∞

lim sup
n→∞

E+[‖Zn − Zn,M‖] ≤ lim
M→∞

lim sup
n→∞

OP (1)
n−1∑

k=−(n−1)

|k|>M

1
|k − h|2

= 0

in probability, where we have used
∑
|k|>M

1
|k−h|2 <∞. This concludes the proof. �

Proof of Corollary 5.4.
All we have to show is that the asymptotic covariance derived in Theorem 5.3 agrees with (5.3).
It suffices to consider the first part containing the fourth order cumulants, because the second
parts are already equal. Note, that the sums over ν1 and ν2 in (5.2) are from 0 to ∞ due
to causality. Under the assumption of an underlying V AR(p0)-model, fitting a V AR(p)-model
with p ≥ p0, we estimate the parameters A1, . . . ,Ap0 consistently with Â1(p), . . . , Âp(p), where
Âk(p) converges to zero for k > p0. Thus, we obtain Cν(p) = Cν for all ν ∈ N0 on the one
hand and f = fAR on the other hand, which in turn yields Q̃(ω) → Q(ω) = Ir in probability
uniformly in ω. Moreover, it holds

κ4(s1, s2, s3, s4) = κ4(p; s1, s2, s3, s4).

Together, the first part of expression (5.4) becomes
r∑

s1,s2,s3,s4=1

(∫ π

−π
(C(ω1))js1

(
C(ω1)

T
)
s2k

eigω1dω1

)

κ4(s1, s2, s3, s4)
(∫ π

−π
(C(ω2))ls3

(
C(ω2)

T
)
s4m

eihω2dω2

)
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which concludes the proof. �
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MULTIPLE HYBRID BOOTSTRAP 33

●
●

●

●

●

●

●●

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0
●

●

●

●
●

●

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

●

●

●

●

●

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

0
.0

1
2

0
.0

1
4

0
.0

1
6

0
.0

1
8

●

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

0
.0

1
2

0
.0

1
4

0
.0

1
6

0
.0

1
8

●

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

0
.0

1
2

0
.0

1
4

0
.0

1
6

0
.0

1
8

Figure 1. Boxplots of the bootstrap distributions for the variance of the first
component of the sample mean in the VMA(1)-case with target indicated by the
horizontal dashed line. In both panels from left to right: hybrid bootstrap (HB),
AR-bootstrap (ARB) and moving block bootstrap (MBB). Left panel: n = 50,
HB with p = 1 and h = 0.3; ARB with p = 1; MBB with l = 5. Right panel:
n = 400, HB with p = 1 and h = 0.15; ARB with p = 1; MBB with l = 10.
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Figure 2. Boxplots of the bootstrap distributions for the covariance of both
components of the sample mean in the VMA(1)-case with target indicated by
the horizontal dashed line. In both panels from left to right: hybrid bootstrap
(HB), AR-bootstrap (ARB) and moving block bootstrap (MBB). Left panel:
n = 50, HB with p = 1 and h = 0.3; ARB with p = 1; MBB with l = 5. Right
panel: n = 400, HB with p = 1 and h = 0.15; ARB with p = 1; MBB with
l = 10.
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Figure 3. Boxplots of the bootstrap distributions for the variance of the first
component of the sample mean in the V AR(1)-case with target indicated by the
horizontal dashed line. In both panels from left to right: hybrid bootstrap (HB),
AR-bootstrap (ARB) and moving block bootstrap (MBB). Left panel: n = 50,
HB with p = 1 and h = 0.3; ARB with p = 1; MBB with l = 5. Right panel:
n = 400, HB with p = 1 and h = 0.15; ARB with p = 1; MBB with l = 10.
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Figure 4. Boxplots of the bootstrap distributions for the covariance of both
components of the sample mean in the V AR(1)-case with target indicated by the
horizontal dashed line. In both panels from left to right: hybrid bootstrap (HB),
AR-bootstrap (ARB) and moving block bootstrap (MBB). Left panel: n = 50,
HB with p = 1 and h = 0.3; ARB with p = 1; MBB with l = 5. Right panel:
n = 400, HB with p = 1 and h = 0.15; ARB with p = 1; MBB with l = 10.

●

●

●

●

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

●
●

●

●

●

●

●●

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

●

●

●

●

●

●

●

●

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

●
●

●

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

●

●
●

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

0
.0

1
2

0
.0

1
4

0
.0

1
6

0
.0

1
8

●

●●●
●
●

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

0
.0

1
2

0
.0

1
4

0
.0

1
6

0
.0

1
8

●

●

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

0
.0

1
2

0
.0

1
4

0
.0

1
6

0
.0

1
8

●

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

0
.0

1
2

0
.0

1
4

0
.0

1
6

0
.0

1
8

Figure 5. Boxplots of the bootstrap distributions for the variance of the first
component of the sample mean using hybrid bootstrap (HB) in the VMA(1)-case
with target indicated by the horizontal dashed line for different bandwidths h.
Left panel: n = 50, from left to right: h = 0.2, h = 0.3, h = 0.4 and h = 0.5.
Right panel: n = 400, from left to right: h = 0.1, h = 0.15, h = 0.2 and h = 0.25.
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Figure 6. Boxplots of the bootstrap distributions for the covariance of both
components of the sample mean using hybrid bootstrap (HB) in the V AR(1)-
case with target indicated by the horizontal dashed line for different bandwidths
h. Left panel: n = 50, from left to right: h = 0.2, h = 0.3, h = 0.4 and h = 0.5.
Right panel: n = 400, from left to right: h = 0.1, h = 0.15, h = 0.2 and h = 0.25.


