
Page 1

Strategy-Based Instruction: Lessons Learned in
Teaching the Effective and Efficient Use of
Computer Applications

SURESH K. BHAVNANI
University of Michigan

FREDERICK A. PECK
University of Colorado

FREDERICK REIF
Carnegie Mellon University
__

Numerous studies have shown that many users do not acquire the knowledge necessary for the effective and
efficient use of computer applications such as spreadsheets and web-authoring tools. While many cognitive,
cultural, and social reasons have been offered to explain this phenomenon, there have been few systematic
attempts to address it. This article describes how we identified a framework to organize effective and efficient
strategies to use computer applications, and used an approach called strategy-based instruction to teach those
strategies over five years to almost 400 students. Controlled experiments demonstrated that the instructional
approach (1) enables students to learn strategies without harming command knowledge, (2) benefits students
from technical and non-technical majors, and (3) is robust across different instructional contexts and new
applications. Real-world classroom experience of teaching strategy-based instruction over several instantiations
has enabled the approach to be disseminated to other universities. The lessons learned throughout the process of
design, implementation, evaluation and dissemination should allow teaching a large number of users in many
organizations to rapidly acquire the strategic knowledge to make more effective and efficient use of computer
applications.

Categories: K.3.2 [COMPUTERS AND EDUCATION] Computer and Information Science Education---
curriculum, literacy.
General Terms: Design, Experimentation, Human Factors.
Additional Key Words and Phrases: Strategies, Teaching, Training, Strategy-Based Instruction.

__

1. INTRODUCTION

This article reports our experience in the design, implementation, evaluation, and

dissemination of a teaching approach called strategy-based instruction. This approach,

evolved over five years through teaching almost 400 students, is designed to teach

effective and efficient strategies to use complex computer applications such as

spreadsheets and web authoring tools.

Strategy-based instruction is motivated by several empirical studies which have

reported that users have difficulty in acquiring effective and efficient strategies to use

This research was supported by the National Science Foundation, EIA-9812607.
Authors' addresses: Author 1, School of Information, University of Michigan, MI 48109-1092; Author 2, School
of Education, University of Colorado, Boulder, CO 80309-0249; Author 3, Carnegie Mellon University,
Pittsburgh, PA 15213.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice, the
title of the publication, and its date of appearance, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.

To appear in ACM Transactions on Computer-Human Interaction

Page 2

computer authoring applications. These empirical studies in the use of UNIX (Doane et

al., 1990), word processors (Rosson, 1983), spreadsheets (Nilsen et al., 1993, Cragg and

King, 1993) and computer-aided drafting (CAD) systems (Bhavnani and John, 2000)

have shown that, while most users can easily learn how to use basic commands, few of

them acquire the knowledge to use the commands effectively and efficiently. For

example, Nilsen et al. (1993), observed experienced spreadsheet users perform a task

requiring a change of width of several adjacent columns with the exception of one. They

found that most of the users modified the column widths one by one in order to avoid

modifying the exception. However, another method to perform this task is to aggregate

all the columns (including the exception), modify their widths, and then modify the

exception back to its original width. This method avoids the time-consuming and error-

prone steps of changing the width of each column. The method is therefore efficient

because it reduces task time, and effective because it reduces errors in the end product.

While some users do in fact acquire efficient and effective methods to become

experts, why do many other users persist in using inefficient and ineffective methods to

perform common computer tasks? Analyses of tasks like the above have led researchers

to conclude that users are likely to change a method to perform a task if that method fails

to achieve the intended goal. However, users are more likely to not change their methods

if they succeed in achieving goals, even if the methods are inefficient. For example,

Singley and Anderson (1989) state:

“productions which produce clearly inappropriate actions contribute to poor
initial performance on a transfer task but are quickly weeded out. Productions
that generate actions which are merely non-optimal, however, are more difficult
to detect and persist for longer periods” (p. 119).

More recently, Fu and Gray (2004) suggest that most users persist in using suboptimal

methods (e.g., using spaces to center a word on a page) because they are general purpose

and therefore useful for a wide range of similar tasks. Furthermore, because such

suboptimal methods provide immediate incremental feedback about progress towards the

user’s goal, they become preferred methods over time. Unfortunately for the user, these

preferred methods are highly inefficient when used for complex tasks. Other reasons (for

a review see Bhavnani and John, 2000) that might conspire against users becoming more

effective and efficient in using computer applications include prior knowledge

dominating current performance (thus leading to the Einstellung effect [Luchins and

Luchins, 1970, Flemming et al., 1997]), a production bias (Carroll and Rosson, 1987)

which results in users focusing on the task at hand rather than on learning to use the

system more efficiently, few opportunities for acquiring effective methods in work

Page 3

environments (Bhavnani et al., 1996), and the lack of effective and efficient methods

made explicit in instructional material (Bhavnani and John, 1996, Bhavnani, 1998).

Furthermore, sources of knowledge to use computer applications, like help and user

manuals, either focus on command instructions for simple tasks, or focus on methods to

perform complex tasks, methods that are task-specific and difficult to generalize

(Bhavnani, 1998).

Given the many reasons that conspire against users acquiring efficient and effective

methods, can explicit instruction address this issue? Over the last 20 years, researchers

have stressed the need of computer literacy in undergraduate education (Sellars, 1988),

identified the different stages of computer literacy (Halaris and Sloan, 1985), and

designed approaches to teach application commands such as through minimalist

documentation (Carroll et al., 1987). More recently researchers have explored extensions

of computer literacy to new uses of technology, (e.g., as a communication device), and to

social aspects of technology (e.g., ethical computing guidelines) (Goldweber et al., 1994;

ISTE, 1999; Hoffman and Blake, 2003). Finally there have been numerous approaches to

teach computer skills through online tutoring systems (e.g., Shaw and Polovina, 1999),

and comparisons of different instructional approaches such as tutors and discovery

learning (e.g., Charney et al., 1990).

While the above research provides important insights into the need and process of

teaching users how to use computer applications, they have mostly focused on teaching

how to use basic commands. However, several studies have shown that most users do not

acquire efficient and effective methods just by learning how to use commands. For

example, architects, despite formal CAD training to use commands and many years of

experience using the CAD system, did not use effective and efficient methods in real-

world tasks (Bhavnani et al., 1996). To address this situation, we hypothesized that users

might benefit from explicit instruction on effective and efficient methods to use computer

applications. For example, in addition to learning how to select and modify columns in a

spreadsheet, we hypothesized that users might benefit by also learning the method of

dealing with exceptions. This method is general because it can be used to deal with a

wide range of tasks involving different information objects (e.g., words, graphics,

formulas). We refer to such general and goal-directed methods as strategies.

To teach efficient and effective strategies like the above, we first need to know what

they are. Unfortunately, there has been relatively little research in identifying effective

Page 4

and efficient strategies1 for using computer applications. For example, as discussed

earlier, Nilsen et al., (1993) identified a few efficient methods to perform spreadsheet

tasks, and Lee and Barnard (1993) discuss a method to compare different parts of a

document by using the SPLIT WINDOW command. In neither case has there been an

attempt to generalize these methods, nor have they been organized in a framework.

Furthermore, as discussed earlier, while much research has focused on teaching computer

commands, we have found no attempts to teach and evaluate strategies to use computer

applications.

This article describes our experience over five years to: (1) develop a framework to

identify and organize strategies that generalize across computer authoring applications,

and (2) design, implement, evaluate and disseminate an instructional framework to teach

those strategies.

Section 2 reviews our prior research that focused on the design of the above two

frameworks, and how they were used to implement and evaluate a prototype for strategy-

based instruction. Section 3 discusses our more recent research which evaluated the

robustness of the prototype as it was extended to teach new applications to new

populations and in a new context. Section 4 generalizes our experiences by indicating

five lessons learned in teaching strategy-based instruction. We conclude with reflections

on our experience in designing, implementing, and evaluating the strategy-based

instruction to almost 400 students over five years, and with research questions that need

to be addressed to make more users effective and efficient in the use of computer

applications.

2. DESIGN, IMPLEMENTATION, AND EVALUATION OF A STRATEGY-
BASED INSTRUCTIONAL PROTOTYPE

Our research on strategy-based instruction began with the design of the following two

frameworks: (1) a strategy framework that specified general powers of computers which

were used to identify efficient and effective strategies, and (2) a strategy-based

instructional framework that specified general principles of instruction which were used

to identify an approach for teaching strategies to novice users. The above two

frameworks were used to implement a prototype of strategy-based instruction, which was

then evaluated in controlled classroom experiments.

1 There have been several attempts at identifying effective strategies in other domains such as
information seeking (Harter and Peters, 1985), mathematics (Schoenfeld, 1985), and reading and
writing (Collins et al., 1989).

Page 5

2.1 Design of a Strategy Framework

The strategy framework was developed through a literature review of effective and

efficient methods to use computer applications (Bhavnani and John, 2000), observation

of users performing real-world tasks (Bhavnani et al., 1996), analysis of the features of

applications (Bhavnani and John, 1998), and a GOMS (Card, et al., 1983; John and

Kieras, 1996) analysis of key strategies (Bhavnani and John, 2000). The above process

led us to identify a strategy framework consisting of 9 strategies based on 4 general

functions or powers of computer applications: Iteration, propagation, organization, and

visualization2.

The first column of Appendix-A shows the 9 general strategies, and the remaining

columns show how those strategies can be instantiated across different authoring

applications. For example, the strategy (described earlier) to modify many columns with

an exception (an instantiation of the handle exceptions last strategy in Appendix-A) is

efficient because it exploits the power of iteration provided by most authoring tools.

Instead of the user modifying each column, the strategy enables the iterative task to be

delegated to the computer, given some constraints. Such strategies are critical to learn

because real-world users (as shown by Nilsen et al., 1993) typically miss opportunities to

use such strategies. Furthermore, a GOMS analysis of such iteration strategies found that

they could lead to a reduction in time of between 40-70%, and to reduce the probability

of errors (Bhavnani and John, 2000).

Similarly, propagation strategies exploit the power of computers to modify objects

that are connected through explicit dependencies. These strategies allow users to

propagate changes to large numbers of interconnected objects. For example, the strategy

make dependencies known to the computer is useful in word processors through the use

of styles. Here a user can create paragraphs that need to share a common format

specification; when the specification is modified all the dependent paragraphs are

automatically changed. Similarly, formulas in a spreadsheet can be linked to dependent

data, or graphic elements in a CAD system can be linked to a common graphic definition

of objects.

Organization strategies exploit the power of computers to construct and maintain

organizations of information, such as tables and lists. For example, the strategy make

organizations known to the computer is useful in a word processor through the use of a

table. In contrast to using tabs to construct a table (whose organization maybe not

2 We do not claim that this list is complete because we do not have a principle to generate these
powers. See Bhavnani and John (2000) for a detailed description of the strategy framework.

Page 6

maintained when the contents are modified), using the INSERT TABLE command in

MSWord enables the computer to maintain the tabular organization under any

modification of its contents. Similarly, data for different years in a spreadsheet can be

organized in separate sheets for easy access and manipulation.

Finally, visualization strategies exploit the power of computers to display information

selectively without altering its content. For example, the strategy view parts of spread-out

information to fit simultaneously on the screen addresses the limited screen space of most

computer screens. For instance, a user might need to compare the contents of a table at

the beginning of a long word processing document to the contents of a table in the middle

of the same document. In such cases, instead of scrolling back and forth between the

tables, it is more efficient and less error-prone to set up distinct views (for example

through the use of the SPLIT-WINDOW command) that focus on each table and that can

be viewed simultaneously on the screen. This strategy is clearly useful in large

documents containing text, numbers, or graphic elements, and is therefore generally

useful across applications using such objects.

As in most performance-improvement methods, the above strategies trade off the

effort to use a strategy and the realized benefits. For example, iteration strategies are

more beneficial when they are used for many elements rather than a few (Bhavnani and

John, 1998). Furthermore, it would not be compelling to use a strategy that saves time

when time is not a critical factor to a user. Therefore, strategies are more cost-effective

for complex tasks, and where the performance gains are of value to the user. It is

therefore as important to know when to use a strategy, as it is to know how to execute it.

2.2 Design of a Strategy-Based Instructional Framework

As suggested by many researchers (e.g., Klahr and Carver, 1988, Gong and Elkerton,

1990) we decided to first model the knowledge required to use the strategies, before we

designed the instruction. This approach enabled us to gain a precise understanding of the

knowledge to be imparted.

A GOMS analysis of the strategies (Bhavnani and John, 2000) revealed that each

requires three knowledge components: (1) Command knowledge that includes knowledge

of the existence of commands, their location, and the methods to use them. In GOMS

terms, there must exist a method with operators to execute the command. (2) Application-

specific strategic knowledge that includes knowledge of the existence of efficient

strategies within an application, conditions of when to use a strategy, and the method to

execute the strategy by sequencing different commands. In GOMS terms, there must be a

selection rule that recognizes when to use this strategy, and an associated method to

Page 7

sequence different commands to execute the strategy. (3) Application-general strategic

knowledge that provides knowledge of how particular application-specific strategies can

be applied across applications. In GOMS terms, the selection rules for strategies are

generally stated and can be instantiated in different task situations.

While the GOMS modeling guided us towards a more precise understanding of what

to teach, it did not provide guidance on how to teach the above three knowledge

components. Therefore we exploited existing educational research to understand how to

teach the above knowledge components. Below we describe how we designed an

instructional framework by combining our understanding of the knowledge components

required to use effective and efficient strategies, and the existing research on how best to

teach different types of skills.

2.2.1 Command Knowledge

Our approach of when and how to teach command knowledge was guided by

previous research in the psychology and education literature. Anderson (2000, pg. 387)

recommended that it was important to teach component skills before teaching high-level

skills that included those component skills. This suggested to us that command

knowledge should be taught before strategies that used those commands. This was further

verified in our early pilots (Bhavnani et al., 1999) where we attempted to first teach

general strategies as a unifying framework for later teaching the commands. However,

this approach resulted in a course that was not motivating for the students because the

strategies were too abstract without the command knowledge. Our final prototype,

therefore, taught commands before teaching the strategies.

Prior research has also shown the importance of active processing, whereby students

are made to engage in a task instead of merely observing passively how others perform

the task. Such active processing has been shown to enable a deeper understanding of the

imparted knowledge (Nicholls, 1989; Nolen, 1996; Nolen, 2003). We therefore designed

the instruction in two parts: (1) Demonstration of commands where the students watched

the instructor execute the steps of a command. While this first step was passive, it

enabled the student to begin to acquire the declarative knowledge of the location, goal,

and process of using the command. (2) Practice of commands where the students

performed on their own a task that was different from the one demonstrated, but which

required the same commands. Such an approach was used to encourage active processing.

For example, the students were shown how to use commands to view a document such as

SPLIT WINDOW, SCROLL, and NEW WINDOW, and then given an opportunity to

practice the commands in the context of a new task.

Page 8

Prior research also suggested that students typically have higher intrinsic motivation

when they are taught with examples that are relevant to them, and to the real-world

(Pintrich and Schunk, 1996, Myers, 1989; McCade, 2001; Eisenberg and Johnson, 2002).

The in-class tasks for demonstration and practice (as shown in Appendix-D) were

therefore carefully designed to be meaningful and relevant to the students. For example,

the tasks for the technical students included organizing information related to salaries for

teaching assistants, and tasks for the art students included organizing information related

to art and music. These tasks were designed based on input from the student instructors

who had experience in teaching the CMU freshman students in previous years, and

therefore had first-hand knowledge of the tasks that were relevant to these students.

2.2.2 Application-Specific Strategic Knowledge

Our approach to teaching application-specific strategic knowledge was guided by

research which has shown that higher retention of knowledge can often be achieved when

students construct knowledge through the process of guided discovery (e.g., Brown and

Palinscar, 1989). In addition to using the notion of guided discovery, our approach was

also informed by the importance of making explicit the conditions under which a strategy

is useful (Singley and Anderson, 1989).

We implemented the notion of guided discovery by engaging the students in an

interactive session where they were asked to describe how they would use the commands

just practiced to efficiently perform a complex task. For example, after being introduced

to the SPLIT WINDOW command (described above), the students were shown a long

document with many short bulleted lists and asked to discuss a method for bringing three

non-adjacent items from the last list to the third list. The instructors provided feedback

for the methods suggested by the students by discussing the trade-offs, and then

demonstrated the efficient strategy of splitting the window before moving the items.

These discussions made explicit the conditions which best motivated the use of the

application-specific strategy.

2.2.3 Application-General Strategic Knowledge

Our approach to teach application-general strategic knowledge was guided by two

important findings in the acquisition of knowledge: (1) transfer of strategies can be

achieved by teaching the general form of a strategy (Bossock and Holyoak, 1989, Fong et

al., 1986), and through multiple examples of the same strategy (Gick and Holyoak, 1983),

and (2) higher retention can be achieved by re-visiting the same knowledge after regular

and reasonably extended intervals, in a phenomenon called the spacing effect (e.g.,

Hintzman, 1969, Underwood, 1969, Anderson and Milson, 1989; Anderson, 2000).

Page 9

We implemented the notion of teaching application-general strategic knowledge in

multiple contexts by first presenting the general form of the strategy, and then showing

how it could be used across many computer applications. For example, after the split-

window strategy was discussed and demonstrated within an application (as discussed

above), the strategy was generalized to view parts of spread-out information to fit

simultaneously on the screen by pointing it out in a strategy handout (similar to the table

shown in Appendix-A). This handout contained all the strategies and examples of their

instantiation across the applications taught. Similarly, the application-specific strategy of

using the STYLES command in Word to efficiently and effectively modify text was

generalized to the strategy make dependencies known to the computer, by pointing it out

in the handout. To leverage the spacing effect to help in retention, we taught the same

strategy in subsequent applications.

2.3 Implementation of the Strategy-Based Instructional Framework

The strategy-based instructional framework was implemented as a prototype in the

context of an existing seven-week required course for freshman students at Carnegie

Mellon University (CMU). This course focused on teaching a set of commands to the

freshman students. To enable an experimental comparison, our implementation taught the

same commands, taught the same sequence of applications (UNIX, MSWord, then

Excel), and took the same instruction time as the regular CMU instruction (3 classes each

for UNIX, MSWord, and MSExcel, each class taking 50 minutes).

The strategy-based implementation followed the template shown in Figure 1. The

command instruction began with a demonstration of a small set of commands in the

Command Instruction

1. Demonstration of commands

2. Practice of commands

3. Repeat for next set of commands

4. Summarization of commands

Application-Specific Strategy Instruction

5. Exploration of alternate methods in complex task

6. Discussion of effectiveness and efficiency

7. Demonstration of effective and efficient method

Application-General Strategy Instruction

8. Abstraction to general strategy

9. Repeat for next complex task

10. Summarization of strategies (if time permits)

Figure 1. Methods used to implement the strategy-based instructional framework.

Page 10

context of simple tasks (Step 1). For example, the instructor introduced different ways to

view a document in MSWord, through the use of SPLIT WINDOW and SCROLL. The

students were then told to practice the commands just taught with a new task (Step 2).

This demonstration and practice was followed by instruction for the next set of

commands (Step 3). In this case these commands involved using NEW WINDOW and

ZOOM. All the commands taught until then in the class were summarized (Step 4).

The command instruction was followed by application-specific strategy instruction.

For example, the instructor opened a three-page document that had 11 different bulleted

lists. The students were asked how they would move three non-adjacent bulleted items in

the last list to the third list in the document. Here the instructor encouraged the students

to discuss alternate methods to do the task by using the commands they had just learned

(Step 5). Then the instructor stated that the advantage of using the SPLIT WINDOW or

NEW WINDOW to perform the task was to avoid having to repeatedly scroll up and

down between the lists (Step 6). The instructor demonstrated this method in a practice

document and contrasted it with the inefficient method of scrolling (Step 7).

The students were then given the strategy handout containing the strategies and their

instantiations across the applications (as described above). The application-specific

strategy just taught was abstracted to the general strategy view parts of spread-out

information to fit simultaneously on the screen. The students were asked to locate the

strategy just taught in their handout and were shown how they generalized across

applications (Step 8).

Steps 5-8 were repeated for other complex tasks demonstrating the utility of other

strategies (Step 9). All the strategies presented in the class were then summarized by

explicitly pointing them out in the handout (Step 10). The above steps were repeated for

each application (UNIX, MSWord, and Excel).

The above approach contrasts with the traditional approach of teaching such

applications. For example, instructors of the existing CMU course are taught to teach

commands in the context of simple tasks (Steps 1-3). However, the students never receive

instruction of how to assemble the commands to perform complex tasks effectively and

efficiently. Thus they do not receive any instruction on the general nature of effective and

efficient methods, and do not acquire strategic knowledge that they can use across

applications. Both versions of the course were taught by undergraduate students who

were trained to teach the respective courses. All the time in the traditional course was

spent on teaching pertinent commands and on examples illustrating their use. In the

strategy-based course the time was spent on teaching both commands and general

Page 11

strategies. But, because the teaching of these was tightly integrated, the total time spent

by students was the same in both courses.

2.4 Evaluation of the Strategy-Based Instruction Prototype

We conducted two experiments to test the strategy-based instruction with two

different populations. The first experiment (CMU-1) was conducted with science and

engineering students, and was designed to address the question:

Does the proposed strategy-based instructional approach help the acquisition of

strategic knowledge without harming the acquisition of command knowledge?

The second experiment (CMU-2) was conducted with a population of Arts students

and addressed the question:

How effective is strategy-based instruction for teaching students with non-technical

majors?

2.4.1 Method for CMU-1

The students were divided into two groups. The command group received the

instruction ordinarily provided by CMU, and the strategy group received the

experimental strategy-based instruction. Students were randomly assigned across both

treatments, and then balanced by major (i.e., each treatment had equal numbers of

students from each technical discipline). This assignment resulted in 87 students in the

command group and 84 students in the strategy group.

Instructor Training: Each group had a main instructor and a secondary instructor,

both of whom were undergraduate students at the university. The main instructor taught

the course content in front of the classroom through a desktop computer connected to an

overhead projector. The role of the secondary instructor was to provide assistance to

students who had difficulty following the instruction or had trouble with the computers.

The instructors in both conditions had taught the existing CMU course before, had

equivalent experience in teaching and in the use of commands, and were considered to be

effective instructors. All the instructors therefore had received the same instruction on

how to teach commands, but the strategy-group instructors got extra instruction to teach

the general strategies. Instructors in both groups were given teaching guides to help teach

content. The teaching guides for the command group consisted of a list of commands and

practice files developed by a commercial company. This instructional approach is

typically used to teach computer applications in educational and commercial

organizations, and therefore represented a realistic comparison condition.

The teaching guides for the strategy group included the same commands as those

taught in the command group, but in addition contained instruction on how to teach the

Page 12

general strategies with appropriate demonstration and practice examples. Furthermore,

the strategy instruction included problem-solving requiring interaction with the students.

Our guides provided the overall structure for instruction, but excluded the actual words to

be used during instruction. Thus the guide allowed situated elaboration and improvisation

by the instructors. While such teaching guides provide structure to scaffold new

instructors and to enable teaching consistency across instructors, they also allow for

creative instructor elaboration which could lead to improved learning by students

(Bereiter, 2002; Borko and Livingston, 1989; Palincsar, 1998; Yinger, 1987). This

balance of structure and improvisation is similar to how experienced teachers typically

design their instruction (Brown and Edelson, 2001).

The instruction in the strategy group could be done in the same amount of time as in

the command group because the strategies were tightly integrated into the teaching of the

commands and concretely illustrated in the strategy handout. In addition, we created

handouts to explicitly show students how the strategies in Appendix-A generalized across

applications3.

Posttest Tasks: The posttest was given in a computer laboratory, and consisted of

three sets of tasks (one each in UNIX, MSWord, and MSExcel as shown in Appendix-B).

The students were presented, on paper, tasks and instructions which required them to use

online applications and files which consisted of a UNIX directory populated with files,

MSWord to create a new file, and an MSExcel file containing a spreadsheet. The

instructions also required the students to complete, after each task, a brief questionnaire

in which they were asked to explain their method for completing the task and their

rationale for using that method. Finally, the students were instructed to save the resulting

directories and files, which were checked before the students left the computer

laboratory. The tasks were designed to take a maximum of 1.5 hours, but there was no

time limit given to the students. The students were spaced out in the computer laboratory

to ensure that they could not see the details of the computer screen of other students in

the experiment.

Embedded in the above three sets of tasks were 13 opportunities4 (shown in the first

column of Table I) to use the 9 general strategies (shown in Appendix-A). For example,

Task 3A in MSExcel required the students to find which of two pairs of days had the

lowest temperature in a large spreadsheet containing temperature data. One way to

3 See Bhavnani et al., (2001) for a detailed description of the course implementation, and
http://www.si.umich.edu/StrategyCourse/ for the teaching guides and handouts
4 One MSWord task did not motivate the use of the strategy that it was designed to test, and
therefore was excluded from the analysis. This left 12 opportunities to use 8 strategies.

Page 13

perform this task was to scroll up and down the spreadsheet in order to compare the

dates. Another way to perform the task was to split the screen into two panes so that the

top pane would display at all times the column headings containing the dates, and the

bottom would be used to scroll through the temperature data. This approach enabled a

quicker and more accurate comparison of dates. Each of these strategy opportunities was

different in content from the tasks taught in the experimental course.

Participation in the posttest was voluntary. Students were requested to participate in

the posttest in exchange for $25, and were informed that their performance on the posttest

would not affect their grade. This recruitment yielded 42 of the total 87 students from the

command group, and 48 of the total 84 students from the strategy group.

2.4.2 Method for CMU-2

The method for CMU-2 was similar to CMU-1 except that the population consisted of

only Arts students. The command group and the strategy group consisted of 24 and 25

Arts students respectively. Similar to the CMU-1 experiment, students were requested to

participate in the posttest in exchange for $25. The recruitment yielded 17 students from

the command group and 19 students from the strategy group.

2.4.3 Data Collection

We collected and analyzed five types of data:

1. Screen-capture videos, which recorded the computer interaction of each student.

2. Command logs consisting of UNIX history files and MSExcel Macro files.

These files contained a list of commands executed by the students in a format

that could be automatically analyzed by computer scripts.

3. Completed task files in Word and Excel.

4. Qualitative descriptions, authored by each of the students, in which they

explained how they completed each task, and the rationale for their method.

5. Exam scores, which were based on an exam required by all students enrolled in

the course. This exam tested only command knowledge. The exam scores were

used to check whether the strategy instruction harmed command knowledge.

2.4.4 Analysis

The focus of our study was to analyze whether or not students recognized the

opportunity to use a strategy. Therefore, for each student, we analyzed each of the 12

strategy opportunities for evidence of strategy use. For each opportunity, students were

given a binary score indicating whether or not they used the strategy in that particular

opportunity. This led to nominal-level data for each strategy (i.e., a student either used a

Page 14

strategy or did not). Table I shows the strategy opportunities for each task, the criteria for

strategy use, and the method used to analyze the strategy.

Where possible, we used computational methods to analyze the data in order to

reduce error. In all cases, whenever there was any chance for ambiguity, the data were

double-checked in another form such as the screen capture video or the written

descriptions. For example, as shown in row E of Table I, Task 2A in MSWord included

an opportunity to use the strategy make dependencies known to the computer. Students

were given credit for having used this strategy if they explicitly defined and used at least

one style using the MSWord STYLE command. Strategy use was assessed by first

looking at each student’s completed task file for evidence of style use, and then

Table I. Strategy opportunities in the posttest and which tasks provided them (shown in Appendix-B),

criteria for using those opportunities, and how they were analyzed

Strategy opportunities Criteria for strategy use Method of analysis
UNIX
A. Reuse and modify groups of

objects (Task 1)
At least one example of mv * in the
UNIX history file (e.g., “mv *.doc
docs”)

Automatic analysis of UNIX
history files

B. Check original before making
copies/operating on objects
(Task 1)

At least one example of ls * in the
UNIX history file (e.g., “ls *.doc”
used to check if the set of files to be
manipulated is correct)

Automatic analysis of UNIX
history files

MSWord
C. Reuse and modify groups of

objects (Task 2A)
At least one example of copy-paste Manual analysis of the screen-

capture videos

D. Make organizations known to
the computer (Task 2A)

At least one example of a list created
using the MSWord list function

Manual analysis of completed
MSWord files

E. Make dependencies known to
the computer (Task 2A)

At least one style explicitly defined
using MSWord styles

Manual analysis of completed
MSWord files and screen capture
video

F. Exploit dependencies to
generate variations (Task 2B)

At least one style definition explicitly
modified using MSWord styles

Manual analysis of completed
MSWord files and screen capture
video

MSExcel
G. View parts of spread out

information simultaneously on
the screen (Task 3A)

At least one use of split window in
the comparison task

Automatic analysis of MSExcel
macro file, and analysis of
qualitative description

H. View relevant information, do
not view irrelevant
information (Task 3B)

At least one use of zoom in the search
task

Automatic analysis of MSExcel
macro file, and analysis of
qualitative description

I. Make dependencies known to
the computer (Task 3C)

At least one formula used Manual analysis of completed
MSExcel files

J. Reuse and modify groups of
objects (Task 3C)

At least one example of copy-paste or
fill-bar

Automatic analysis of MSExcel
macro file

K. Exploit dependencies to
generate variations (Task 3D)

At least one example of a dependent
cells modified

Manual analysis of completed
MSExcel files

L. Generate new representations
from existing representations
(Task 3E)

At least one use of Charts Manual analysis of completed
MSExcel files

Page 15

confirmed through analysis of the screen capture videos. This confirmation was necessary

because MSWord sometimes automatically assigns styles to text.

2.4.5 Results

CMU-1: We performed a two-step analysis of the data. First, we tested for an overall

effect by analyzing the proportion of strategy opportunities used by each student in the

command and strategy groups. For the command group, the mean proportion of strategies

used was 42.66% [SD=.16], while for the strategy group, the mean proportion of

strategies used was 68.58% [SD=.21]. Therefore, a typical student in the command group

used 42.66% of the strategy opportunities shown in Table II, while a typical student in

the strategy group used 68.58%. This difference was statistically significant based on a t-

test of the proportions (t(88)=6.73, p<.001).

In the second step of our analysis, we tested each strategy individually to provide a

more fine-grained view of the data. As reported elsewhere (Bhavnani et al., 2001), and

shown in Table II, the strategy group did significantly better than the command group in

exploiting seven strategy opportunities (p<0.05 for each of the seven strategies based on

chi-square tests on the frequencies in each group5). Furthermore, there was no statistically

significant difference in command knowledge between the two groups, as measured by

5 Chi-square tests were used because the data were nominal, as described in section 2.2.4. See
Table V in Appendix-E for details of each statistical comparison.

Table II. Results from the CMU-1 and CMU-2 experiments. Grayed cells show statistically significant

differences between the command and strategy group (based on a Chi-square test at the .05 level). See Table V

in Appendix-E for details of each statistical comparison.

Strategy opportunities CMU-1 CMU-2
 Com. Strat. Com. Strat.
UNIX
A. Reuse and modify groups of objects (mv *) 21% 79% 12% 42%

B. Check original before making copies/operating on objects (ls *) 0% 13% 0% 5%

MSWord
C. Reuse and modify groups of objects (copy/paste) 86% 100% 59% 94%

D. Make organizations known to the computer (lists) 88% 94% 100% 100%

E. Make dependencies known to the computer (styles) 5% 62% 12% 67%

F. Exploit dependencies to generate variations (modify styles) 0% 46% 6% 39%

MSExcel
G. View parts of spread out information simultaneously on the screen (split

window)
10% 58% 0% 56%

H. View relevant information, do not view irrelevant information (zoom) 10% 29% 18% 11%

I. Make dependencies known to the computer (formulas) 100% 100% 92% 100%

J. Reuse and modify groups of objects (drag across cells) 100% 100% 100% 100%

K. Exploit dependencies to generate variations (modify dependent cells) 86% 95% 83% 93%

L. Generate new representations from existing representations (charts) 95% 98% 53% 89%

Page 16

mean scores on the in-class exams which tested only command knowledge as discussed

above (mean for command group: 96.07, mean for strategy group: 95.54 t(511)=0.63,

p=.53).

The above results demonstrate that students could, in fact, be taught to recognize

opportunities to use efficient strategies, and to execute them. Closer inspection showed

that five strategies opportunities (D, I, J, K, L in Table II) may be easily acquired just by

learning commands. For example, even though the command group was given only

command instruction, all of them recognized the opportunity to use formulas in the

spreadsheet task (I). One explanation is that once commands such as formulas in

MSExcel are learned, the alternate methods (e.g., doing manual calculations in the

spreadsheet) are just too inefficient to be considered. This could also explain why two

sets of strategy opportunities (F/K and C/J), each testing the same general strategy but

with different commands, had very different usage profiles, especially for the command

group. These results also confirm laboratory studies which show that under certain

conditions, a strategy to reuse information through cut and paste can be discovered just

by knowing commands (Charman and Howes, 2003). Future research needs to explore

more closely what makes certain strategy opportunities more difficult to detect compared

to others.

Although the strategy group did significantly better for strategy opportunities B and

H, the actual numbers of students exploiting those opportunities was small. This suggests

that those strategies required more instruction than we provided. However, because zoom

often leads users to become disoriented, the lack of zoom use could also be a conscious

choice to avoid such problems. Overall, the results showed that most of the strategies can

be taught in the same amount of time as the regular approach, without harming the

acquisition of command-knowledge.

CMU-2: As shown in Table II, the results of CMU-2 were similar to those in CMU-1.

The overall effect remained (command group mean proportion: 37.25% [SD=.19],

strategy group mean proportion: 58.33% [SD=.20], t(34)=3.21, p<.01). Furthermore, six

of the strategy opportunities showed a significant difference between the two groups.

These results show the utility of the strategy-based instruction for students with very little

technical background. Finally, command knowledge was significantly higher in the

strategy group than the command group (command group mean: 86.71; strategy group

mean: 95.47, t(151)=3.97, p<.001). This suggests that teaching commands with strategies

might have the added benefit of improving command knowledge.

Page 17

2.5 Summary of the Strategy-Based Instructional Prototype

In Phase-1 of our research we: (1) identified a strategy framework that helped to

organize nine effective and efficient strategies that were general across applications, (2)

identified a framework to teach the knowledge components, (3) implemented the

instructional framework, and (4) tested the instructional design in two controlled

experiments. Furthermore, we learned that a few strategies did not require explicit

instruction, while others required more instruction than we expected.

The results of these experiments showed that the strategy-based instruction: (1)

enabled students to learn effective and efficient strategies, (2) benefited student

populations with both technical and non-technical majors, (3) did not require extra time

compared to the traditional approach focused on command knowledge, and (4) did not

harm the acquisition of command knowledge.

In our next phase, we tested whether the instructional framework could be extended to

new applications and in a different context compared to the prototype.

3. EXTENSION TO A NEW APPLICATION AND TO A NEW POPULATION

Because the first author moved to the University of Michigan, we had the opportunity

to test whether the strategy framework and the instructional framework were robust in the

new university context, with a different population of freshman Art students. Such a test

of robustness is critical because educational interventions can easily fail to produce

positive results when used in a context where the original authors have less control

(Brown, 1992).

However, testing the robustness of an instructional approach in a new real-world

context usually comes at the cost of trading-off experimental control, a common problem

in testing educational interventions in real world contexts (National Research Council,

2000, Brown, 1992). As described below, we had to make many modifications to the

instructional design to fit the new context. This loss of control prevented us from making

statistical comparisons with the experiments at CMU. Furthermore, unlike many user

tests of systems that take around an hour per user, educational field experiments may take

an entire semester. This long time span reduces the kind of manipulations that can

practically be done. However, the experience of testing our approach in a new context led

to insights of using strategy-based instruction in new contexts, and how the approach

could be disseminated to different institutions.

3.1 Extension of the Strategy-Based Instructional Design

The new context had three major differences that tested the robustness of our strategy

and instructional frameworks: (1) UNIX was not taught, as it was not considered an

Page 18

application that was particularly useful for the Michigan Arts students. (2) The Arts

faculty requested that the course be extended to teach Dreamweaver (a web-authoring

application). (3) At the request of the faculty, an extra day was added for teaching each

application to enable the students to perform a summative task (e.g., creating a resume in

Word). To test the above changes, we asked the question:

Could the strategy-based instructional approach be applied to teach new

applications?

3.1.1 Extension to a new application

To develop teaching guides for Dreamweaver, we followed a three-step process. (1)

Identify in each application the commands that were appropriate to teach freshman Arts

students. (This was done in consultation with the Arts faculty.) (2) Instantiate the 9

general strategies in Dreamweaver. (3) Construct for each application a 4-day teaching

guide that closely followed our original instructional design framework, but added an

extra day for each application.

We decided to teach in Dreamweaver 17 commands which the Arts faculty agreed

were useful for students to build a basic website where the students could upload their

graphics and music files. The commands ranged from OPEN NEW FILE, to DEFINE

WEBSITE, and PUBLISH WEBSITE. Appendix-A shows how each of the 9 strategies

were instantiated in Dreamweaver using the chosen commands. For example, the strategy

make organizations known to the computer was instantiated in Dreamweaver through

commands to create and modify tables, which are used by most website designers to

organize content in a webpage. Appendix-D shows the portions of the Dreamweaver

teaching guide concerned with the commands to use tables.

While the strategies themselves generalized with minimal effort, our main difficulty

was in designing the demonstration, practice, and problems-solving tasks for

Dreamweaver. This was because, while it is easy to construct websites that have minimal

functionality, a credible looking website that was motivating and relevant to the Arts

students required a considerable effort in graphic design. As we did not have these

graphic-design skills, we employed a graphic designer to construct a website with many

well-designed pages, each of which demonstrated the use of the commands and strategies

that we had chosen to teach.

Therefore, we were able to instantiate the nine strategies in a new application, and to

create a teaching guide for the new application. This demonstrated that we were

successful in extending both the strategy framework and the instructional design

framework to a new application. Furthermore, we learned that applications varied in the

Page 19

amount of setup costs to build demonstration and practice examples that were relevant

and motivating.

3.2 Effect of Strategy-Based Instruction on a New Population

To test the robustness of the instructional design in a new context, we conducted an

experiment (henceforth referred to as UM-1) with the Art students at Michigan. Our goal

led to the following research question:

How robust was the strategy-based instructional approach when implemented in a

new context with a new population, and with less control?

 Because retention of knowledge is critical in learning, we also wished to investigate

how well the strategies were retained over time. This was not investigated in the CMU

experiments as the posttests were given immediately after the instruction set was

complete. The above goal led to the following research question:

Does the strategy-based instructional approach help the retention of strategic

knowledge over time?

In addition to the above primary research goals to test robustness and retention, we

also used this opportunity to perform a small exploratory study to probe the role of the

general form of a strategy in its transfer across applications.

3.2.1 Method for Experiment with Arts Students (UM-1)

 As discussed in Section 2.2, our GOMS modeling helped to pinpoint three types of

knowledge that were important for the strategic use of computer applications: (1)

Command knowledge (e.g., the existence of the split window command, its location, and

the method of how to use it); (2) Application-specific strategic knowledge (e.g., the

existence of a strategy to modify distant parts of a MSWord document by using the split-

window command); (3) Application-general strategic knowledge (e.g., the general form

of the above application-specific strategy so that it can be used across applications). The

CMU-1 and CMU-2 experiments compared students, who were taught only commands

knowledge (command group), to students who were taught all the above three knowledge

components (strategy group).

In the current experiment, fifty Arts students at the University of Michigan were

Table III. Knowledge components taught to the ap-specific and the strategy groups in UM-1.

Knowledge components taught Command +
Ap-specific

Strategy

Command knowledge Yes Yes
Application-specific strategies Yes Yes
Application-general strategies No Yes, except the strategy view parts of spread out

information simultaneously on the screen in Excel

Page 20

randomly divided into two equal groups, and then balanced by prior experience in Word

and Excel. One group was given the same instruction as the strategy group in the CMU

experiments (with the modifications discussed in Section 3.1) and is therefore still called

the strategy group. Analysis of how the strategy group performed the posttest tasks

would reveal robustness of the instructional framework when taught in a new context.

In addition to the above analysis, we explored the explicit role of the general form of

the strategy by teaching the second half of the class only command knowledge and

application-specific strategic knowledge. For example, while we taught how to use the

SPLIT WINDOW command and when to use it strategically within MSWord, we did not

teach the general form of the strategy (view parts of spread out information

simultaneously on the screen). Because this group was taught command knowledge and

only the application-specific strategic knowledge, it was called the command + ap-

specific group.

Furthermore, to test if the general form of the strategy was necessary for transfer

across applications, we also did not teach the strategy view parts of spread out

information simultaneously on the screen in Excel in the strategy group. Therefore, while

the command + ap-specific group had no general strategy instruction at all, the strategy

group had instruction for all general strategies in all applications except for the above

strategy in Excel. The above manipulation allowed us to explore if (1) the general form of

the strategy was necessary for its use within an application, and (2) if the general form

was necessary for transferring that knowledge across applications. The latter was tested

in a single condition for exploratory purposes. Table III shows the different knowledge

components taught in each group.

The posttest data were collected as part of the final exam required by all students.

This yielded 25 students in each condition. The posttest for each group was identical to

the MSWord and MSExcel posttest tasks used in CMU-1. Because tasks for

Dreamweaver require long setup times exceeding the time constraints of the exam, we

were unable to test strategies in that application.

The retention test (see Appendix-C) was conducted one month later to explore how

well the students in both conditions retained the strategies. The students were requested

to take part in the retention study in exchange for $406. This yielded 18 and 20 students

from the command + ap-specific group and the strategy group respectively, where all

these students constituted 76% of the original class. There was no statistically significant

difference between the posttest scores of the students taking the retention test, and the

6 This incentive was determined appropriate given that the course had already been completed.

Page 21

posttest scores for the students who did not take it. This result suggests the absence of a

self-selection bias in the students who opted to take the retention test. The students in the

retention test were given isomorphs of the posttest tasks described earlier, and the

analysis criteria were identical to those used in the CMU experiments.

3.2.2 Results and Discussion

As discussed earlier, a statistical comparison between UM-1 and CMU-2 could not be

done because the UM-1 students had one extra day of instruction per application. We

therefore present the data in Figure 2 mainly to enable a direct comparison with the

CMU-2 data. As shown7, the strategy group had a high rate of strategy use, comparable to

the strategy group in CMU-2 (also Art students). In four strategy opportunities (I, J, K,

and L) there was a small drop (5%, 10%, 7%, and 11%) in strategy use. The rest had

either equal or much more strategy use. The extra instruction might explain the higher

scores that UM-1 students acquired in the posttest for strategy opportunities. But the

results certainly suggest that the instructional framework was robust in a new context.

Just as in the CMU experiments, we performed a two-step analysis procedure. In the

first step, we tested for an overall effect by analyzing the proportion of strategy

opportunities used by each student in the command+app-specific and in the strategy

7 Strategy opportunity C (Reuse and modify groups of objects copy/paste) could not be analyzed
because of corrupted screen-capture data.

Comparison between the
strategy group in CMU-2 and
the ap-general group in UM-1

0%

20%

40%

60%

80%

100%

D E F G H I J K L

Strategy opportunities

P
er

ce
nt

ag
e

of
 s

tu
de

nt
s

w
ho

 u
se

d
a

st
ra

te
gy

op

po
rt

un
ity

CMU-2

UM-1

Figure 2. Comparison between use of strategy opportunities in the strategy group in CMU-2, and the

strategy group in UM-1. While a statistical comparison is not possible because of the extra day on each

application, the use of strategy opportunities in UM-1 is higher in 4 strategy opportunities, and only

slightly lower in the rest. Full names of each strategy opportunity are shown in Table IV.

Page 22

groups. This test showed that the mean proportions for both groups was very high, and

that no significant difference existed between the two groups (command+ap-specific

group mean proportion: 72.89% [SD=.18], strategy group mean proportion: 72.44%

[SD=.24], t(48)=.0034, p=.997). This result was expected, because, with the exception of

view parts of spread out information simultaneously on the screen in MSExcel, both

groups were taught application-specific strategies in the applications in which they were

assessed.

As discussed earlier, neither the command + app-specific group nor the strategy group

in UM-1 was taught the general form of the strategy view parts of spread out information

simultaneously on the screen in MSExcel. However, the strategy group was taught the

general form of the strategy in MSWord, while the command + ap-specific group was

taught only the application-specific form of the above strategy in MSWord. To test if this

had an effect on transfer, we performed the second step of our analysis: a Chi-square test

on each individual strategy opportunity. As shown in Table IV, there were no significant

differences between the groups on directly-instructed strategies (see Table VI in

Table IV. Results from the UM-1 experiment. Grayed cells show statistically significant differences

between the command + ap-specific and the strategy groups (based on a Chi-square test at the .05 level). The

single statistically significant result between the two groups suggests the importance of teaching the general

form of the strategy to achieve transfer across applications (which was tested in only one case). The rest of the

non-transfer situations show no difference between the two conditions shown here, and between these and the

CMU strategy group (as shown in Figure 2) suggesting that the strategy-based instructional approach was

successful in a new context. Strategy opportunity L was designed as an extra-credit question. See Table VI in

Appendix-E for details of each statistical comparison.

UM-1 (Post-test) Strategy Opportunities
Command +
Ap-specific

Strategy Explicitly
Taught

MSWord

D. Make organizations known to the computer (lists) 100% 100% Yes

E. Make dependencies known to the computer (styles) 92% 96% Yes

F. Exploit dependencies to generate variations (modify
styles)

52% 60% Yes

MSExcel

G. View parts of spread out information simultaneously on
the screen (split window)

54% 82% No

H. View relevant information, do not view irrelevant
information (zoom)

38% 32% Yes

I. Make dependencies known to the computer (formulae) 100% 95% Yes

J. Reuse and modify groups of objects (Drag across cells) 78% 90% Yes

K. Exploit dependencies to generate variations (modify
dependent cells)

74% 86% Yes

L. Generate new representations from existing
representations (charts)

92% 86% Yes

Page 23

Appendix-E for details of each statistical comparison). However, based on a Chi-square

test on the frequencies in each group, there was a significant difference (df=1, n=50) =

3.99, p<.05) between the command + ap specific group and the strategy group for the

untaught, transfer strategy (G) view parts of spread out information simultaneously on the

screen in MSExcel. This result suggests that transfer is improved when a strategy is

taught in its general form. The above result is, however, not definitive because we tested

for transfer in only one instance. However, despite the fact that the split window

command (necessary to execute the strategy in Word and Excel) is identical in both

applications, the results indicate that application-general strategic knowledge may be

important to enable transfer.

Transfer has been difficult to achieve in many studies (see Singley and Anderson,

1989 for an extensive discussion). It is possible that transfer did occur in our exploratory

study because we: (1) explicitly taught the conditions of when to use the strategy in the

context of tasks in a specific application, (2) made users aware of the nature of tasks that

warrants the strategy, and (3) taught the strategy multiple times with different examples.

Because the above was true for all the strategies that we taught, we believe our

instructional framework appears to be well-suited for the transfer of strategies and is in

agreement with earlier research on transfer of skills (Bossock and Holyoak, 1989, Fong et

al., 1986, Gick and Holyoak, 1983). However, future research should test this result with

more extensive transfer conditions.

Finally, the results of the retention test showed high retention of strategic knowledge

across all the strategy opportunities. None of the differences between the posttest and

retention test were significant in MSExcel or MSWord, for either group. Thus, retention

of strategic knowledge after one month was high in both groups.

3.2.3 Dissemination of the Strategy-Based Instructional Approach

The success of our strategy-based instructional approach in two universities led to

requests for the use of the course material by the School of Nursing at the University of

Michigan. The Nursing faculty requested that the course be used to teach their freshman

students the strategic use of computer applications. They also requested that we teach

PowerPoint in addition to MSWord, MSExcel, and Dreamweaver. The course was taught

in two iterations at the Nursing School, with minimal involvement of the original authors.

This was achieved by providing written instructions to graduate students who were hired

to teach the course. These instructions included the teaching guides (discussed in section

Page 24

2.4.1) and a set of guidelines8 of how to design and execute the teaching guides. The

graduate student instructors modified and executed the course with minimal involvement

of the original authors. Additionally, we received requests from two other universities9

that wished to explore how to provide strategy-based instruction to freshman students.

3.3 Summary of Extending Strategy-Based Instruction to New Applications

and Populations

In Phase-2 of our research on strategy-based instruction, we tested whether the

strategy and instructional frameworks could be extended to a context requiring a new

computer application, and using a new population of Arts students. Furthermore, we

tested whether strategic knowledge could be retained over time. The results showed that

the strategy framework and the instructional framework could be successfully extended

to new applications and to new populations, and that strategic knowledge was retained

even after one month. Furthermore, an exploratory study suggested that transfer of

strategic skill to a new application improves significantly when the strategy is taught in

its general form. Finally, the course material was disseminated to another context within

the University of Michigan, and to the University of Western Australia.

4. LESSONS LEARNED IN TEACHING THE STRATEGIC USE OF COMPLEX
COMPUTER APPLICATIONS

Over the five year span of our research program, we have learned lessons related to:

(1) the need to teach strategies explicitly, (2) the organization of strategies, (3)

approaches to teach commands and strategies, (4) guidelines for creating and teaching

strategy-based instruction, and (5) the effects of strategy-based instruction on learning.

4.1 Strategies need to be taught explicitly because most users do not

spontaneously acquire them.

Several studies have shown that many users do not acquire effective and efficient

strategies to use computer applications. In fact, as discussed in Section 1, there are many

reasons that conspire against users discovering and using helpful strategies, despite many

years of experience and despite well-designed interfaces. While we have experimented

with online intelligent help systems (Bhavnani et al., 1996), and are open to other

approaches to deliver instruction, we have come to believe that whatever the medium and

style of instruction, most users need to be taught strategic knowledge explicitly before

they acquire a wide range of effective and efficient strategies.

8 These guidelines are available from http://www.si.umich.edu/StrategyCourse/
9 See Thomas and Foster, (2001) for a description of how the course was implemented at the
University of Western Australia. The course is currently being explored at Border Technikon,
South Africa.

Page 25

4.2 Strategies exploit general powers of computers, which can be instantiated

across computer applications.

To teach strategies explicitly, we first need to know what they are. While several

studies had identified the need to teach effective and efficient strategies, none of the

studies had identified a systematic approach to organize them. Because we wished to

identify strategies that generalized across authoring applications, we focused on the

general functions or powers that these applications provided. This led us to organize

strategies based on four powers of computer applications: Iteration, propagation,

organization, and visualization. In addition to helping us to organize the general strategies

and instantiate them systematically across applications, the framework can be extended to

include new strategies as new powers of computer applications are discovered and

provided to users.

4.3 Strategies should be taught in combination with commands. This should

be done by teaching commands first, followed by the strategies.

A critical component of strategy-based instruction is that commands should be tightly

integrated with the teaching of strategies. Through our early prototypes, we learned that

an effective way to teach strategies was to first teach how to use a small set of commands,

then immediately teach when to use those commands, followed by teaching the general

form of the strategy. Other approaches, such as providing a general framework of all the

strategies before teaching commands, did not motivate students in the classroom. We

believe this is because learning strategies, in the absence of knowing how to implement

them with commands, is too abstract.

4.4 General strategies, taught by using the strategy-based instruction, can

enable many users to acquire strategic knowledge in a short amount of

time.

While there has been research in teaching strategies to perform tasks in a wide range

of domains such as math and reading, we found no systematic studies that explored how

to teach general strategies to use computer applications. Our research has shown that for

the most part merely learning commands does not easily lead users to acquire many

strategies. Our experiments have shown that, to learn how to use efficient and effective

strategies to use computer applications in a short amount of time, users should be

explicitly taught (1) the commands needed for a strategy, (2) the conditions under which

a strategy is useful, and (3) the strategy itself in its application-specific form. If users are

expected to transfer strategies across applications, there is some indication that the

Page 26

general form can significantly improve transfer, even when the commands to use the

strategies are virtually identical.

5. REFLECTIONS

This article has focused on our five years of research related to strategy-based

instruction. However, our research path began much earlier when we first conducted an

ethnographic study to observe how architects were using CAD systems to perform real-

world tasks (Bhavnani et al., 1996). This study revealed that the architects were not using

effective and efficient strategies despite knowing how to use the commands on the

interface, and despite many years of experience in using the CAD system. Cognitive

analysis of these real-world tasks suggested the existence of strategies that could improve

the performance of the users. Because the observed users had few problems with the

interface, we decided to focus on strategy-based instruction to address the ineffective and

inefficient use of computer applications.

 Our decision to pursue strategy-based instruction has often been criticized for

attempting to change users to fit poorly designed systems. This argument takes the

position that the need for instruction represents a failure in the design of the interface, and

therefore that instead of attempting to change the user through instruction, we should

attempt to change the interface so that it enables users to spontaneously discover and use

effective strategies.

We believe the above argument ignores important characteristics of the problem.

Consider the SPLIT WINDOW command available in MSWord and MSExcel. This

command is explicitly designed to perform the simple goal of dividing a window into two

panes, and is useful in a wide range of higher level editing tasks. However, while a user

might learn from the interface that the split window command can divide the window into

two panes, it is much more difficult to learn from the same interface when best to use that

command. To know when to divide the window into two panes, a user must recognize

specific characteristics in the higher-level task. For example, a user must learn to

recognize that when two information objects that need to be compared are far apart in a

document, then they need to be brought together on the screen before performing the

comparison10. Acquiring knowledge to recognize such task-related cues is difficult, and

as demonstrated by our experiments, such recognition often does not happen

spontaneously just from knowing how to use commands. As described in Section 2,

10 See Flemming et al., (1996) for a discussion on how characteristics in high level architectural
drawings tasks need to be recognized in order for users to make more effective and efficient use of
CAD systems.

Page 27

knowledge to detect characteristics of a higher-level task, and connect them to specific

commands, has been a critical part of the strategic knowledge that we have abstracted and

taught.

One can argue that interfaces could automatically detect characteristics of a task from

user actions, and then suggest to the user when to use more efficient and effective

methods. This approach can be successful when the detection is unambiguous (like

inferring that a user is manually creating a numbered list, and automatically converting

the text into a numbered list). However, in most cases automatic detection of task

characteristics is not unambiguous. For instance, even intelligent interfaces would have

difficulty in unambiguously inferring that a user was attempting to compare two distant

pieces of information and suggest correctly the use of the split window command. Such

ambiguity can lead to complex (Carroll and Aaronson, 1988) and often annoying dialogs

with the user to resolve the ambiguity.

We ourselves have explored approaches to automatically detect opportunities to use

more effective strategies (Bhavnani et al., 1996), and believe such research should

continue and be informed by the results reported here. For example, such projects should

target those strategies, like those identified in our experiments, which are difficult to

acquire just by knowing commands. However, we believe that such attempts should,

where possible, be complemented with strategy-based instruction that can assist users in

acquiring a comprehensive understanding of the powers of computers and how best to

exploit them. Such knowledge, as we have explored, could have the added advantage of

being transferable across applications.

Looking back, our research has attempted to reduce the cost of learning to use

strategies. This was achieved by teaching users how to use commands, how to recognize

opportunities to use them strategically within an application, and then how such

opportunities generalize across applications. While our overall approach has been fairly

successful, it may be insufficiently motivating for students who already have a substantial

knowledge of commands. Accordingly, we believe that it might be useful to develop a

course that focuses only on strategic knowledge without also teaching commands. We are

also exploring the development of a minimalist strategy manual that would provide brief

online instruction of strategies to use different computer applications. Furthermore, while

we have focused on delivering strategy instruction in a classroom context, we would also

like to explore how the same material could be delivered through computer-based tutors.

Future research also needs to explore how well the strategies transfer across

applications and are retained over longer periods of time. Furthermore, as discussed by

Page 28

others (Payne et al., 2001), we need to better understand the attributes of, and conditions

under which some strategies are automatically acquired just by learning commands. More

research also needs to investigate how best to teach instructors how to design and execute

strategy-based instruction effectively.

Finally, the ineffective use of computer applications is not unique to authoring

applications. Many users have difficulty in acquiring strategies to perform effective

searches on the web (Bhavnani, 2001), and we believe that our instructional framework

could be adapted to teach strategic knowledge to improve information-seeking behavior

(Bhavnani, 2005, Bhavnani et al., 2006). Our hope is that such research will help achieve

our ultimate goal of making users more effective and efficient in the use of a wide range

of computer applications.

6. ACKNOWLEDGEMENTS

This research was supported by the National Science Foundation, EIA-9812607. We

thank B. John, who guided the early stages of this research at Carnegie Mellon

University, and G. Olson and J. King for encouraging the deployment and testing of

strategy-based instruction at the University of Michigan. Furthermore, we thank M.

Basket, N. Bos, S. Carpenter, T. Finholt, U. Flemming, O. Frost, J. Lee, J. Olson, C.

Quintana, B. Rogers, A. Sue, L. Strodtman, R. Thomas, G. Vallabha, L. Weber, and the

anonymous reviewers for their contributions.

7. REFERENCES

ANDERSON, J.R. (2000). Learning and Memory: An Integrated Approach (2nd. ed.), chapter 7, 232-272.
Wiley, New York, NY.

ANDERSON, J.R. AND MILSON, R. (1989). Human memory: An adaptive perspective. Psychological Review
96, 703-719

ANDERSON, J.R., CORBETT, A.T., KOEDINGER, K.R., & PELLETIER, R. (1995). Cognitive tutors:
lessons learned. The Journal of the Learning Sciences, 4 (2), 167-207.

BEREITER, C. (2002). Education and the Mind in the Knowledge Age. Erlbaum, Mahwah, NJ.

BHAVNANI, S.K. (1998). How Architects Draw with Computers: A Cognitive Analysis of Real-World CAD
Interactions, unpublished Ph.D. dissertation, 1998, Carnegie Mellon University, Pittsburgh.

BHAVNANI, S.K. (2001). Important Cognitive Components of Domain-Specific Search Knowledge.
Proceedings of the Text Retrieval Conference TREC 2001, 571-578.

BHAVNANI, S.K. (2005). Why is it difficult to find comprehensive information? Implications of information
scatter for search and design. Journal of the American Society for Information Science and Technology, 56, 9
(2005), 989-1003.

BHAVNANI, S.K., BICHAKJIAN, C.K., JOHNSON, T.M., LITTLE, R.J., PECK, F.A., SCHWARTZ, J.L.,
AND STRECHER, V.J. (2006). Strategy Hubs: Domain Portals to Help Find Comprehensive Information.
Journal of the American Society for Information Science and Technology 57 (1), 4-24.

BHAVNANI, S.K. AND JOHN, B.E. (1996). Exploring the unrealized potential of computer-aided drafting. In
Proceedings of Computer-Human Interaction CHI 1996, 332-339.

BHAVNANI, S.K. AND JOHN, B.E. (1998). Delegation and Circumvention: Two Faces of Efficiency. In
Proceedings of Computer-Human Interaction CHI 1998, 273-280.

Page 29

BHAVNANI, S.K. AND JOHN, B.E. (2000). The strategic use of complex computer systems. Human-
Computer Interaction 15, 107-137.

BHAVNANI, S.K., FLEMMING, U., FORSYTHE, D., GARRETT, J.H., SHAW, D.S., AND TSAI, A. (1996).
CAD usage in an architectural office: From observations to active assistance. Automation in Construction 5,
243-255.

BHAVNANI, S.K., JOHN, B.E. AND FLEMMING, U. (1999). The Strategic Use of CAD: An Empirically
Inspired, Theory-Based Course. In Proceedings of Computer-Human Interaction CHI 1999, 42-49.

BHAVNANI, S.K., REIF, F. AND JOHN, B.E. (2001). Beyond Command Knowledge: Identifying and
Teaching Strategic Knowledge for Using Complex Computer Applications. In Proceedings of Computer-
Human Interaction CHI 2001, 229-236.

BORKO, H. AND LIVINGSTON, C. (1989). Cognition and improvisation: Differences in mathematics
instruction by expert and novice teachers. American Educational Research Journal 26, 4, 473-498.

BOSSOCK, M. AND HOLYOAK, K.J. (1989). Interdomain transfer between isomorphic topics in algebra and
physics. Journal of Experimental Psychology: Learning, Memory, & Cognition 15, 153-166.

BROWN, A. (1992). Design experiments: theoretical and methodological challenges in creating complex
interventions in classroom settings. Journal of the Learning Sciences 2, 141-178.

BROWN, A., AND PALINSCAR, A. (1989). Guided, cooperative learning and individual knowledge
acquisition. In L. RESNICK (Ed.), Knowing, Learning and Instruction. Lawrence Erlbaum, Hillsdale, MA.

BROWN, M. AND EDELSON, D.C. (2001). Teaching by design: Curriculum design as a lens on instructional
practice. Paper presented at the Annual Meeting of the American Educational Research Association, Seattle,
WA.

CARD, S.K., MORAN, T.P., AND NEWELL, A. (1983). The Psychology of Human-Computer Interaction.
Lawrence Erlbaum, Hillsdale, MA.

CARROLL, J.M. AND AARONSON, A.P. (1988). Learning by doing with simulated intelligent help.
Communications of ACM 31, 9 1064-1079.

CARROLL, J.M. AND ROSSON, M.B. (1987). The paradox of the active user. In Interfacing thought:
Cognitive aspects of human-computer interaction, J.M. CARROLL, Ed., MIT Press, Cambridge, MA, 80-111.

CARROLL, J.M., SMITH-KERKER, P.L., FORD, J.R. AND MAZUR-RIMETZ, S.A. (1987). The minimal
manual. Human-Computer Interaction 3, 123-153.

CHARMAN, S.C., AND HOWES, A. (2003) The adaptive user: An investigation into the cognitive and task
constraints on the generation of new methods. Journal of Experimental Psychology: Applied, 9, 236-248.

CHARNEY, D., REDER, L., AND KUSBIT, G. (1990). Goal setting and procedure selection in acquiring
computer skills: a comparison of tutorials, problem solving, and learner exploration. Cognition and Instruction
7, 4, 323-342.

COLLINS, A., BROWN, J.S., AND NEWMAN, S. E. (1989). Cognitive apprenticeship: teaching the crafts of
reading, writing, and mathematics. In Knowing, Learning, and Instruction: Essays in honor of Robert Glaser,
L. B. RESNICK, Ed. Erlbaum, Hillsdale, NJ, 453-494.

CRAGG, P.B. AND KING, M. (1993). Spreadsheet modeling abuse: An opportunity for OR? Journal of the
Operational Research Society 44, 743-752.

EISENBERG, M.B. AND JOHNSON, D. (2002). Learning and teaching information technology: Computer
skills in context. ERIC Digest. Available online: www.big6.com/showarticle.php?id=82 (accessed Feb, 2005).

ENGELMANN, S. (1980). Direct Instruction. Educational Technology Publications, Englewood Cliffs, NJ.

FLEMMING, U., BHAVNANI, S.K., AND JOHN, B.E. (1997). Mismatched metaphor: user vs. system model
in computer-aided drafting. Design Studies 18, 349-368.

FONG, G. T., KRANTZ, D. H., & NISBETT, R. E. (1986). The effects of statistical training on thinking about
everyday problems. Cognitive Psychology 18, 253-292.

FU, W., AND GRAY, W.D. (2004). Resolving the paradox of the active user: Stable suboptimal performance in
interactive tasks. Cognitive Science 28(6), 901-935.

GICK, M.L., AND HOLYOAK, K.J. (1983). Schema induction and analogical transfer. Cognitive Psychology
15, 1-38

Page 30

GOLDWEBER. M., BARR, J. AND LESKA, C. A new perspective on teaching computer literacy. In Technical
Symposium on Computer Science Education SIGSCE 1994, 131-135.

GONG, R., & ELKERTON, J. (1990). Designing minimal documentation using a GOMS model: a usability
evaluation of an engineering approach. Proceedings of ACM CHI'90 Conference on Human Factors in
Computing Systems, 99-106.

HALARIS, A., AND SLOAN, L. (1985). Towards a definition of computer literacy for the liberal arts
environment. In Technical Symposium on Computer Science Education SIGSCE 1985, 320-326.

HARTER, S.P., AND PETERS, A.R. (1985). Heuristics for online information retrieval: a typology and
preliminary listing. Online Review 9, 5, 407-424.

HINTZMAN, D. L. (1969). Recognition time: Effects of recency, frequency and the spacing of repetitions.
Journal of Experimental Psychology 79, 192-194.

HOFFMAN, M. AND BLAKE, J. (2003). Computer literacy: Today and tomorrow. Journal of Computing in
Small Colleges 18, 5, 221-233.

INTERNATIONAL SOCIETY FOR TECHNOLOGY IN EDUCATION (ISTE) (1999). National Educational
Technology Standards for Students. Available online: http://cnets.iste.org (accessed Feb, 2005).

JOHN, B., AND KIERAS, D. (1996). The GOMS family of user interface analysis techniques: comparison and
contrast. Transactions of Computer-Human Interaction 3, 4, 320-351.

KLAHR, D. AND CARVER, S. M. (1988). Cognitive objectives in a LOGO debugging curriculum:
Instruction, learning, and transfer. Cognitive Psychology 20, 352-404.

LEE, W.O., AND BARNARD, P.J. (1993). Precipitating change in system usage by function revelation and
problem reformulation. In Proceedings of HCI ‘93, 35-47.

LUCHINS, A.S. AND LICHINS, E.H. Wertheimer’s Seminars Revisited: Problem Solving and Thinking. State
University of New York: Albany, NY.

McCADE, J. (2001). Technology education and computer literacy. The technology teacher, October, 2001, 9-
13.

MYERS, J.P. (1989). The new generation of computer literacy. In Technical Symposium on Computer Science
Education SIGSCE 1989. 177-181

NATIONAL RESEARCH COUNCIL (2000). How People Learn: Brain, Mind, Experience, and School:
Expanded Edition. National Academy Press.

NICHOLLS, J.G. (1989). The Competitive Ethos and Democratic Education. Harvard University Press,
Cambridge, MA.

NILSEN, E., JONG. H., OLSON J., BIOLSI, I., AND MUTTER, S. (1993). The growth of software skill: A
longitudinal look at learning and performance. In Proceedings of Computer-Human Interaction CHI 1993, 149-
156.

NOLEN, S.B. (1996). Why study? How reasons for learning influence strategy selection. Educational
Psychology Review 8, 4, 335-355.

NOLEN, S.B. (2003). Learning environment, achievement, and motivation in high school science. Journal of
Research in Science Teaching 40, 347-168.

OLSON, J.R., AND NILSEN, E. (1988) Analysis of the cognition involved in spreadsheet software interaction.
Human Computer Interaction 3, 309-349.

PALINSCAR, A. (1998). Social constructivist perspectives on teaching and learning. In Annual Review of
Psychology 49, J.T. SPENCE, J.M. DARLEY, AND D.J. FOSS, D.J., Eds. Annual Reviews, Palo Alto, CA,
345-375.

PALINSCAR, A. AND BROWN, A. (1984). Reciprocal teaching of comprehension-fostering and
comprehension-monitoring activities. Cognition and Instruction 1, 117-175.

PAYNE, S.J., HOWES, A., AND READER, W.R. (2001). Adaptively distributing cognition: a decision-making
perspective on human-computer interaction. Behaviour and Information Technology, 20, 5, 339-346.

PINTRICH, P.R., AND SCHUNK, D.H. (1996). Motivation in education: Theory, research, and applications.
Englewood Cliffs: Prentice Hall.

Page 31

ROSSON, M. (1983). Patterns of experience in text editing. In Proceedings of Computer-Human Interaction,
CHI 1983, 171-175.

SCHOENFELD, A.H. (1985). Mathematical Problem Solving. Academic Press, New York, NY.

SELLARS, H.L. (1988). Why a course in computer literacy? SIGCSE Bulletin 20, 2, 58-64

SHAW, S. AND POLOVINA, S. (1999). Practical experiences of, and lessons learnt from, Internet
technologies in higher education. Educational Technology and Society 2, 3, 16-23

SINGLEY, M.K. AND ANDERSON, J.R. (1989). The Transfer of Cognitive Skill. Harvard University Press,
Cambridge, MA.

THOMAS, R. AND FOSTER, M. (2001). A Pilot Study of Teaching the Strategic Use of Common Computer
Applications. In Proceedings of Australian User Interface Conference 2001, 85-92.

UNDERWOOD, B. J. (1969). Some correlates of item repetition in free-recall learning. Journal of Verbal
Learning & Verbal Behavior 8, 83-94.

YINGER, R.J. (1987). By the seat of your pants: An inquiry into improvisation and teaching. Paper presented at
the Annual Meeting of the American Educational Research Association, Washington DC.

Page 32

APPENDIX-A: NINE GENERAL STRATEGIES AND THEIR INSTANTIATIONS ACROSS AUTHORING APPLICATIONS

General Strategies Instantiation

in MSWord

Instantiation

in MSExcel

Instantiation

in Dreamweaver

Instantiation

in MSPowerPoint

Iteration Strategies

1. Reuse and modify groups of objects Copy and modify existing

paragraph to create a new one

Copy and modify existing data sets

and formulae to create new ones

Reuse and modify existing web

page

Copy and modify existing slide to

create a new one

2. Check original before making

copies/operating on objects

Check if paragraph is correct and

complete before making copies

Check if information is correct and

complete before copying to create

new tables

Check navigation set of links

before copying to other pages

Check if slide text/format is correct

and complete before making copies

3. Handle exceptions last Modify full paragraph, then modify

exception

Modify entire table to one format,

then modify exception to another

Copy set of links to another page,

then unlink exception

Modify entire slide text, then

modify exception

Propagation Strategies

4. Make dependencies known to the

computer

Setup paragraph formats to be

dependent on styles

Setup formulas to be dependent on

data

Define a site so that links are

dependent on the location and

names of the files they point to

Use a slide master to automatically

provide a consistent look to every

slide in a presentation

5. Exploit dependencies to generate

variations

Modify style definitions to

generate variations of the same

document

Modify data to generate different

results for the same data set

Modify location and names of files

in a site to generate variations of

site structure

Modify the slide master to generate

variations of the same slide

presentation

Organization Strategies

6. Make organizations known to the

computer

Use lists and tables to organize

related information

Use worksheets to organize data

sets

Use lists and tables to organize

information in a web site

Use slide layout to organize each

slide

7. Generate new representations from

existing ones

Generate table from tabbed words Generate chart from table Generate web version of page in

browser

Generate numbered list from

bulleted list

Visualization Strategies

8. View relevant information, do not

view irrelevant information

Zoom in to reveal more detail Zoom out to locate cells Un-display markers View all the slides in a presentation

in slide sorter view

9. View parts of spread-out

information to fit simultaneously on

the screen

Use split windows or new windows

to bring relevant information

simultaneously on the screen

Use split windows or new windows

to bring relevant information

simultaneously on the screen

Use a site map to visualize

relationships between pages

Use new windows to bring relevant

information simultaneously on the

screen

Page 33

APPENDIX-B: POSTTEST TASKS

Task 1: UNIX

Step 1: Open Nifty Telnet (Start � Communications � Nifty Telnet)

Step 2: Type the following command:

 source ~fap/startup

A directory named project has been created in your current directory.

Please raise your hand if you have any problems.

Task 1: In the project directory, organize the files using directories so that:

1. The files are easy to display and
2. Any specific file is easy to retrieve.

Note: The project directory contained the following files:

chem-lab-01.doc
chem-lab-01.xls
chem-lab-02.doc
chem-lab-02.xls
chem-lab-03.xls
chem-lab-04.doc
data1-stats.xls
data2-stats.xls
final-draft-hist.doc
first-draft-hist.doc
hmwk1-math.xls
hmwk2-math.xls
hmwk3-math.xls
hmwk4-math.xls
hmwk5-math.xls
hmwk6-math.xls
hwwk1-stats.doc
hwwk2-stats.doc
hwwk3-stats.doc
hwwk4-stats.doc
new-resume.doc
resume.doc
rewrite-hist.doc
second-draft-hist.doc
second-resume.doc

Page 34

Task 2: MS Word

Task 2A: Please use MS Word to create the document below (Fonts need not be exactly
the same as those shown). Design the document so that its appearance is easy to modify.

 Agenda for United States Senate, 1 October

Bureau of Transportation

Bill TR-987

• Overview of United States Senate Bill TR-987
• Presentation of United States Senate Bill TR-987
• Vote on United States Senate Bill TR-987

Bill TR-236

• Overview of United States Senate Bill TR-236
• Presentation of United States Senate Bill TR-236
• Vote on United States Senate Bill TR-236
• Closing Remarks

Bureau of Housing
Bill HS-345

• Overview of United States Senate Bill HS-345
• Presentation of United States Senate Bill HS-345
• Vote on United States Senate Bill HS-345

Bill HS-632

• Overview of United States Senate Bill HS-632
• Presentation of United States Senate Bill HS-632
• Vote on United States Senate Bill HS-632
• Closing Remarks

Bureau of Urban Development
Bill UD-696

• Overview of United States Senate Bill UD-696
• Presentation of United States Senate Bill UD-696
• Vote on United States Senate Bill UD-696

Bill UD-750

• Overview of United States Senate Bill UD-750
• Presentation of United States Senate Bill UD-750
• Vote on United States Senate Bill UD-750
• Closing Remarks

Bureau of Safety
Bill SF-159

• Overview of United States Senate Bill SF-159
• Presentation of United States Senate Bill SF-159
• Vote on United States Senate Bill SF-159

Bill SF-753

• Overview of United States Senate Bill SF-753
• Presentation of United States Senate Bill SF-753
• Vote on United States Senate Bill SF-753
• Closing Remarks

Page 35

Task 2B: Please modify the document that you just created so that it looks like the
document below.

Agenda for United States Senate, 1 October

Bureau of Transportation
Bill TR-987

• Overview of United States Senate Bill TR-987
• Presentation of United States Senate Bill TR-987
• Vote on United States Senate Bill TR-987

Bill TR-236
• Overview of United States Senate Bill TR-236
• Presentation of United States Senate Bill TR-236
• Vote on United States Senate Bill TR-236
• Closing Remarks

Bureau of Housing
Bill HS-345

• Overview of United States Senate Bill HS-345
• Presentation of United States Senate Bill HS-345
• Vote on United States Senate Bill HS-345

Bill HS-632
• Overview of United States Senate Bill HS-632
• Presentation of United States Senate Bill HS-632
• Vote on United States Senate Bill HS-632
• Closing Remarks

Bureau of Urban Development
Bill UD-696

• Overview of United States Senate Bill UD-696
• Presentation of United States Senate Bill UD-696
• Vote on United States Senate Bill UD-696

Bill UD-750
• Overview of United States Senate Bill UD-750
• Presentation of United States Senate Bill UD-750
• Vote on United States Senate Bill UD-750
• Closing Remarks

Bureau of Safety
Bill SF-159

• Overview of United States Senate Bill SF-159
• Presentation of United States Senate Bill SF-159
• Vote on United States Senate Bill SF-159

Bill SF-753
• Overview of United States Senate Bill SF-753
• Presentation of United States Senate Bill SF-753
• Vote on United States Senate Bill SF-753
• Closing Remarks

Page 36

Task 3: MS Excel

Step 1: Please open the spreadsheet named “temperatures.xls” located on the desktop.

Step 2: Select Tools � Macro � Record New Macro, as shown below:

Step 3: Press OK in the Record Macro dialog box.

Please raise your hand if you have any problems.

Page 37

The “temperatures.xls” spreadsheet contains the daily temperature at 12:00 noon in

Seattle over many years for the month of August. Please perform the following tasks

using the spreadsheet:

Task 3A. Which of the following pairs of days was hotter?

August 7, 1954 or August 7, 1995 (paint the cell with the hotter temperature red)

August 4, 1950 or August 4, 1985 (paint the cell with the hotter temperature red)

August 1, 1951 or August 6, 1951 (paint the cell with the hotter temperature red)

August 2, 1959 or August 5, 1995 (paint the cell with the hotter temperature red)

For the above tasks, use the fill color icon on the toolbar to paint a cell as shown
below:

Task 3B. There was a technical problem in recording some of the temperatures. Three
consecutive days in a year are missing. Please find them and paint them blue.

Task 3C. Create a set of cells containing the average temperature for the month of
August for each of the years 1950-1999. Paint yellow the cell with the highest average
temperature.

Task 3D. Scientists estimate that the temperatures for the three missing days were 98,
99, and 100 degrees. With this new information, what is the highest average temperature
in the month of August? Please paint the cell brown.

Task 3E. Please create a visual representation of the daily temperatures for the month of
August in the year 1950.

Page 38

Note: The following is a screenshot of only a portion of the file used in the Excel task:

Page 39

APPENDIX-C: RETENTION TEST TASKS

Task 1 - Excel

Step 1: Please open the spreadsheet named “grades.xls” located on the desktop.

Step 2: Select Tools � Macro � Record New Macro, as shown below:

Step 3: Press OK in the Record Macro dialog box.

Please raise your hand if you have any problems.

Page 40

The “grades.xls” spreadsheet contains the weekly quiz grades of students with IDs

from A-1 to A-31. Please perform the following tasks using the spreadsheet:

Task 1A. In each of the following pairs of cells, which grade was higher?

• A-3’s grade in week-1, or A-3’s grade in week-45? (paint the cell with the
higher grade red)

• A-7’s grade in week-2, or A-7’s grade in week-32? (paint the cell with the
higher grade red)

• A-3’s grade in week-2, or A-10’s grade in week-34? (paint the cell with the
higher grade red)

• A-9’s grade in week-1, or A-12’s grade in week-50? (paint the cell with the
higher grade red)

For the above tasks, use the fill color icon on the toolbar to paint a cell as shown
below:

Go to Sheet2 of the spreadsheet (Click on the Sheet2 tab at the bottom of the sheet).

Task 1B. Sheet2 contains the numeric grades of another group of students B1 – B25.
Create a set of cells containing the average grades for each of the students over 52 weeks.
Paint yellow the cell with the highest average grade.

Task 1C. A student missed three consecutive quizzes marked by question marks. Please
find them and paint them blue.

Task 1D. Add zeros for the missing grades. With this new information, which student
had the highest average grade? Please paint brown the cell with the new highest average
grade.

Task 1E. Please create a visual representation of the average grades for all the students.

Page 41

Note: The following is a screenshot of only a portion of the file used in the Excel task:

Page 42

Task 2: MS Word

Task 2A: Please use MS Word to create the document below (Fonts need not be exactly
the same as those shown). Design the document so that its appearance is easy to modify.

2001 Summer Courses

PS-435: Research and Technology in the Humanities

Teaching Staff

• Instructor: John Trimble
• Teaching Assistant: Gary Bell
• Guest Lecturer: Jim Smith

Equipment

• Projection device: IBM Laptop
• Microphone: Clip-on
• Pointing device: Laser pointer

CS-435: Data Structures

Teaching Staff

• Instructor: Michelle Faye
• Teaching Assistant: Sam Smith

Equipment

• Projection device: IBM Laptop
• Microphone: Clip-on
• Pointing device: Telescopic pointer

CS-296: Systems, Networks, and Webs

Teaching Staff

• Instructor: George Thomson
• Teaching Assistant: Sandy Lincoln, Peter Olson
• Guest Lecturer: Simon Sung

Equipment

• Projection device: IBM Laptop
• Microphone: Table-top
• Pointing device: Laser pointer

AC-296: History of Architecture

Teaching Staff

• Instructor: Tom Swift
• Teaching Assistant: Gary Bell
• Guest Lecturer: Jim Baker

Equipment

• Projection device: 35mm slide projector
• Microphone: Clip-on
• Pointing device: Laser pointer

Page 43

Task 2B: Please modify the document that you just created so that it looks like the
document below.

2001 Summer Courses

PS-435: Research and Technology in the Humanities

Teaching Staff

• Instructor: John Trimble
• Teaching Assistant: Gary Bell
• Guest Lecturer: Jim Smith

Equipment

• Projection device: IBM Laptop
• Microphone: Clip-on
• Pointing device: Laser pointer

CS-435: Data Structures

Teaching Staff

• Instructor: Michelle Faye
• Teaching Assistant: Sam Smith

Equipment

• Projection device: IBM Laptop
• Microphone: Clip-on
• Pointing device: Telescopic pointer

CS-296: Systems, Networks, and Webs

Teaching Staff

• Instructor: George Thomson
• Teaching Assistant: Sandy Lincoln, Peter Olson
• Guest Lecturer: Simon Sung

Equipment

• Projection device: IBM Laptop
• Microphone: Table-top
• Pointing device: Laser pointer

AC-296: History of Architecture

Teaching Staff

• Instructor: Tom Swift
• Teaching Assistant: Gary Bell
• Guest Lecturer: Jim Baker

Equipment

• Projection device: 35mm slide projector
• Microphone: Clip-on
• Pointing device: Laser pointer

Page 44

APPENDIX-D: SEGMENT OF THE TEACHING GUIDE FOR DREAMWEAVER

Simple Tasks: Tables

General Table Commands: Insert, Define Attributes, Resize

Motivating Example: Inserting a Table

• Open the document ‘music-after.html’ (located in the ‘music’ folder) in
Explorer.

• This is another page of the web site we saw last time to sell books, and
music we discussed last time. This page shows music for sale.

• Can I modify this page? (no – you have to use Dreamweaver® to modify a
webpage).

• Information on a web page is best laid out using tables.

• This page is organized using tables. Tables allow you to align text and
images easily. So if I add any information to this cell, it will wrap around
and extend the table automatically.

• Tables in Dreamweaver® are similar to tables in Word® and in Excel®.

• Let’s take a closer look at this table.

• Open the document ‘table.htm’ (located in the ‘music’ folder) in
Dreamweaver®.

• How many rows and columns do you think are in this table?

• What is special about the alternate rows?

• To create this table, I have to use the Insert Table menu item. (Explain
rows, columns, width and border)

Practice

• Open a new file on your computer. (This might need to be
demonstrated. Click on File � New and select ‘basic page’. Then
click ‘Create’.)

• Save the file under the name ‘Tables’.

• Insert a new table with 7 rows, 2 columns, 100% width, 0 padding, 0
spacing, and 0 border.

…

Complex Tasks
Problem-Solving Example: Make Organizations Known to the
Computer

• Open the document ‘godiva.html’ in a browser.

• This document contains Valentine chocolates!

• Describe how you would design a Web page to display these chocolates.

• Efficient method:

• Organize content in tables. Open ‘godiva.html’ in Dreamweaver

Page 45

• Why? With tables, information is organized and easy to modify.
For example, I can change the dimensions of this table or add
content and the overall layout is still maintained.

• Demonstrate some modifications

• In general, as we have noted:

Make organizations known to the computer.

(Strategy 6 in handout)

Page 46

APPENDIX-E: RETENTION TEST TASKS

Table V. Pair-wise Chi-square comparisons for each strategy between the Command and Strategy groups

in the CMU-1 and CMU-2 experiments. Grayed cells show statistically significant differences at the .05 level

between the command and strategy group.

Strategy opportunities CMU-1 CMU-2
UNIX
A. Reuse and modify groups of objects (mv *) Chi-square (df=1, n=90) =

26.16, p<.001
Chi-square (df=1, n=36) =
4.12, p<.05

B. Check original before making
copies/operating on objects (ls *)

Chi-square (df=1, n=90) =
5.75, p<.05

Chi-square (df=1, n=36) =
0.92, p=.34

MSWord
C. Reuse and modify groups of objects

(copy/paste)
Chi-square (df=1, n=90) =
4.52, p<.05

Chi-square (df=1, n=36) =
6.29, p<.05

D. Make organizations known to the computer
(lists)

Chi-square (df=1, n=90) =
0.88, p=.35

Chi-square can not be
calculated because 100% of
subjects used the strategy

E. Make dependencies known to the computer
(styles)

Chi-square (df=1, n=90) =
31.68, p<.001

Chi-square (df=1, n=36) =
10.98, p<.001

F. Exploit dependencies to generate variations
(modify styles)

Chi-square (df=1, n=90) =
25.48, p<.001

Chi-square (df=1, n=36) =
5.40, p<.05

MSExcel
G. View parts of spread out information

simultaneously on the screen (split window)
Chi-square (df=1, n=90) =
23.29, p<.001

Chi-square (df=1, n=36) =
13.22, p<.001

H. View relevant information, do not view
irrelevant information (zoom)

Chi-square (df=1, n=90) =
5.40, p<.05

Chi-square (df=1, n=36) =
0.31, p=.58

I. Make dependencies known to the computer
(formulas)

Chi-square can not be
calculated because 100% of
subjects used the strategy

Chi-square (df=1, n=36) =
1.21, p=.27

J. Reuse and modify groups of objects (drag
across cells)

Chi-square can not be
calculated because 100% of
subjects used the strategy

Chi-square can not be
calculated because 100% of
subjects used the strategy

K. Exploit dependencies to generate variations
(modify dependent cells)

Chi-square (df=1, n=90) =
1.722, p=.19

Chi-square (df=1, n=36) =
2.52, p=.11

L. Generate new representations from existing
representations (charts)

Chi-square (df=1, n=90) =
0.50, p=.58

Chi-square (df=1, n=36) =
5.54, p<.05

Page 47

Table VI. Pair-wise Chi-square comparisons for each strategy between the command + Ap-specific and

Strategy groups in the UM-1 experiment. Grayed cells show statistically significant differences at the .05 level.

Strategy opportunity L was designed as an extra-credit question.

Strategy Opportunities UM-1 (Post-test)
MSWord

D. Make organizations known to the computer (lists) Chi-square can not be calculated because
100% of subjects used the strategy

E. Make dependencies known to the computer (styles) Chi-square (df=1, n=50) = 0.35, p=.55

F. Exploit dependencies to generate variations (modify
styles)

Chi-square (df=1, n=50) = 0.32, p=.57

MSExcel

G. View parts of spread out information simultaneously on
the screen (split window)

Chi-square (df=1, n=50) = 3.99, p<.05

H. View relevant information, do not view irrelevant
information (zoom)

Chi-square (df=1, n=50) = 0.16, p=.68

I. Make dependencies known to the computer (formulae) Chi-square (df=1, n=50) = 1.12, p=.29

J. Reuse and modify groups of objects (Drag across cells) Chi-square (df=1, n=50) = 1.08, p=.30

K. Exploit dependencies to generate variations (modify
dependent cells)

Chi-square (df=1, n=50) = 0.94, p=.33

L. Generate new representations from existing
representations (charts)

Chi-square (df=1, n=50) = 0.33, p=.56

