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Abstract

We examine the possibility of rolling tachyon to play the dual roll of inflaton at early epochs and
dark matter at late times. We argue that enough inflation can be generated with the rolling tachyon
either by invoking the large number of branes or brane world assisted inflation. However, reheating
is problematic in this model.

1 Introduction

Cosmological inflation has become an integral part of the standard model of the universe. Apart from
being capable of removing the shortcomings of the standard cosmology, it gives important clues for
structure formation in the universe. The inflationary paradigm seems to have gained a fairly good amount
of support from the recent observations on microwave background radiation. On the other hand there
have been difficulties in obtaining accelerated expansion from fundamental theories such as M/String
theory. Recently, Sen [1, 2, 3] has shown that the decay of an unstable D-brane produces pressure-less
gas with finite energy density that resembles classical dust. Gibbons has emphasized the cosmological
implications of tachyonic condensate rolling towards its ground state [4], see Refs[5, 6] for further details.
Rolling tachyon matter associated with unstable D-branes has an interesting equation of state which
smoothly interpolates between -1 and 0. The tachyonic matter, therefore, might provide an explanation
for inflation at the early epochs and could contribute to some new form of dark matter at late times [7],
see also Refs[8, 9, 10] on the related theme and Ref[11] for an alternative approach to rolling tachyon
cosmology. We shall review here the cosmological prospects of rolling tachyon with exponential potential.

2 COSMOLOGY WITH ROLLING TACHYON

It was recently shown by Sen that the dynamics of string tachyons in the background of an unstable
D-brane can be described by an effective field theory with Born-Infeld type action[3)

5= [dev=g <% ONE +gaﬁaa¢>am> (1)

where ¢ is the tachyon field minimally coupled to gravity. In a specially flat FRW cosmology the stress
tensor acquires the diagonal form Ty = diag(—p, p, p, p) where the pressure and energy density are given
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The Friedmann equation takes the form

1 1 V(¢
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The equation of motion of the tachyon field which follows from (1) is

é Ve
g 3O i =0 (5)

The conservation equation equivalent to (5) has the usual form
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= p—i = ¢? — 1 is the equation of state for the tachyon field. Thus a universe dominated by

tachyon field would go under accelerated expansion as long as (;52 < % which is very different from the

condition of inflation for non-tachyonic field, ¢? < V(¢). This is related to the fact that field potential
falls out of the equation of state in case of the tachyon field. It should also be noted that evolution
equation for tachyon field contains the logarithmic derivative of the potential.

where w

2.1 DYNAMICS OF TACHYONIC INFLATION IN FRW COSMOLOGY

The tachyon potential V(¢) — 0 as ¢ — oo but its exact form is not know at present[12]. Sen has
argued that the qualitative dynamics of string theory tachyons can be described by (1) with exponential
potential[3]. Padmanabhan went further to suggest that one can construct a phenomenological runaway
potential with the tachyonic equation of state capable of leading to a desired cosmology[13], see also
Ref[14] on the similar theme. In what follows we shall consider (1) with the exponential potential in
purely phenomenological context without claiming any identification of ¢ with the string tachyon field.
Indeed, there are problems with inflation in case the origin of ¢ is traced in string theory[15] and we will
come back to this point later. The field equations (4) and (5) for tachyonic matter with the exponential
potential

V(¢) = Voe=*? (6)
can be solved exactly in the slow roll limit. The integration of these equations leads to[16]
: 2 1 a? a?M?
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where 3 = /Vo/3M2. Eq(7) is consistent with the expression of the slow roll parameter
M? 2
M (Vo)1 ®
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The COBE normalized value for the amplitude of scalar density perturbations
1 V2
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can be used to estimate V.4 as well as . Here V; refers to the value of the potential at the commencement
of inflation and is related to V.,q as

Vi
Vend = 10
4T AN +1 (10)
Using Eqs. (9) and (10) with A" = 60 we obtain
Vena ~ 4 x 1071 M) (11)

At the end of inflation, apart from the field energy density, a small amount of radiation is also present
due to particles being produced quantum mechanically during inflation [17]

pr =0.01 x g, HZ (10 < g, < 100) (12)

which shows that the field energy density far exceeds the density in the radiation

T ‘/en —
Pr 0,01 x g,=2% ~ 4 x g, x 107 (13)

P M,

From (7) we find that o ~ 107°M,, and there is no problem as long as we consider the tachyonic model
of inflation in phenomenological context. However, it would be problematic if we trace the origin of
field ¢ in string theory as there is no free parameter there to tune. Indeed, o and Vj can be expressed
through string length scale and string coupling gs as a = ag/ls, Vo = vo/(27m)3gsl* where vy and g
are dimensionless constants and Vy /vy is brane tension and « is the tachyon mass. Tuning a to 1075M,,
leads to one of the two unacceptable situations: light mass of the tachyon or large value of string coupling
gs. This problem is quite independent of the form of tachyonic potential, see the paper of Fairbairn and
Tytgat Ref[7]. The situation can be remedied by invoking the large number of D-branes separated by
distance much larger than I,'. The number of such branes in our case turns out to be of the order of
10'°. The other alternative could be brane assisted inflation. Indeed, the prospects of inflation in Brane
World scenario improve due to the presence of an additional quadratic density term in the Friedmann
equation. Enough inflation can be generated in this case without tuning «, see the paper by Bento et
al[7] and Ref [16]. The non-brane world alternatives to tackle this problem are discussed by Yun-Song
Piao and collaborators[7].

Regarding the late time behaviour, the phase space analysis of tachyon field with exponential potential
was carried out in Ref [16]. It was shown that dust like solution is a late time attractor of the tachyonic
system. Therefore the tachyon field , in principal, could become a candidate for dark matter.

Inspite of the very attractive features of the rolling tachyon condensate, the tachyonic inflation faces
difficulties associated with reheating [15, 16]. A homogeneous tachyon field evolves towards its ground
state without oscillating about it and , therefore, the conventional reheating mechanism in tachyonic
model does not work. Quantum mechanical particle production during inflation provides an alternative
mechanism by means of which the universe could reheat. Unfortunately, this mechanism also does not
seem to work: the small energy density of radiation created in this process red-shifts faster than the
energy density of the tachyon field and therefore radiation domination in the tachyonic model of inflation
never commences. However, the tachyon field could play the role of dark matter if the problem associated
with caustics could be overcome[19].
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