
Libbraille: a Portable Library to Easily
Access Braille Displays

Sébastien Sablé and Dominique Archambault
INSERM U483 / INOVA - Université Pierre et Marie Curie

9, quai Saint Bernard, 75,252 Paris cedex 05, France
sable@users.sourceforge.net
Keywords: Braille, terminal

Abstract: The TiM project intends to develop and to adapt computer games for visually impaired children.
In order to achieve this project a library which allows to easily access Braille displays was developed. This
library provides all the functions needed to write text on the Braille display, directly raise Braille dots as well
as receive the keys pressed on it. On top of that this library works with many different types of displays and is
freely reusable.

1. Introduction
1.1. The TiM Project
The overall purpose of the TiM project (Tactile Interactive Multimedia computer games for
visually impaired children)([TiM2000] and [AAATE01]) is to offer computer games
intended for visually impaired young children of various levels of psycho-motor
development. These games are used by the children in an autonomous way, without
assistance of a sighted person, like it is the case for sighted children with hundreds of titles.
TiM games are described in a game script independent of the representation or modality.
Those games scripts are interpreted by a game platform running on most operating systems.
To reach the needs of the children aimed by the TiM project, the platform is able to render
those games to all the specific devices they use, each are corresponding to a specific
modality: tactile boards, Braille displays, speech synthesizers and customizable graphical
displays (scalable font prints, adjustable colors and contrast...)
1.2. Support of Braille Displays
An important issue for the TiM project is to supply the support for as many existing models
of Braille displays as possible, that are used currently and that each child may have, as well
as being able to add drivers easily when a new model comes on the market.
Indeed, Braille displays are generally extremely expensive (starting at 5000€). It makes it
very difficult for organizations to have several different models to develop drivers and for
users to buy a different model.
Since there was no existing standard library to access Braille displays, it appeared that the
development of a Braille library, Libbraille, was crucial for the TiM project.
1.3. A Collaborative Approach
The high cost of Braille devices, and the fact that many manufacturers do not release
publicly the protocol of their devices, explain that there was no standard API for Braille
displays. A way to bypass this problem appeared to make this a collective project.
By allowing other people to use and improve the library to suit their own needs, we could
share our improvements and finally correctly support a large number of devices.
That is why the code of the library was released under the LGPL [LGPL] which is used by
many projects including the famous GNU/Linux. This allows people to freely copy,
distribute and/or modify the library as long as they provide their enhancements under the
same license. Developers who want to use the library can freely link it to their programs
without any restriction.
The library was also designed so that it could be as generic as possible. This means that it

mailto:sable@users.sourceforge.net

should be used in any project that requires Braille functionalities.
Indeed other projects had already been done that used Braille displays. Some like BRLTTY
[BRLTTY] or BRASS [BRASS], where quite advanced, however they were complete screen
readers and the Braille functionalities were not independent, so that it was very hard to
reuse them in other projects. The protocols used in those programs were integrated in
Libbraille when the license allowed that, but with a focus on re-usability.

2. Features of the Library
This library is responsible for all the low level interactions with Braille displays. Text can
simply be written on the display, or Braille dots can even be directly raised independently.
It is also possible to get the keys that have been pressed by a user when the device has such
keys.
2.1. Supported Displays
Here is a list of displays that are supported sorted by manufacturer : ALVA ABT3 and 4
series, BAUM Vario, HandyTech Braille Wave, EuroBraille Scriba, NoteBRAILLE,Clio
and AzerBRAILLE, Hermes, ONCE Eco Braille 20, MDV MB 408S and Pulse Data
International BrailleNote
Some of the models are quite recent and many of them have completely different features
(like the number of cells and the number of keys). The library was designed in order to
facilitate design of drivers for new devices.
Other drivers for the following manufacturers are under development or have not yet been
physically tested: Blazie Engineering, Tactilog, Tieman, Telesensory Systems Inc,
Navigator and Papenmeier.
2.2. Portability
Another important concern was that the library should not be limited to one system. So it
was developed using a very portable C code. Then the library works under all versions of
MS Windows (as a dll library) but also under most Unix systems (as a shared library). It
should be easily ported to other platforms if needed.
It was also very important that the library could be accessed from different languages.
Thanks to the SWIG [SWIG] software, it has been possible to very easily generate bindings
with others languages. Currently Python [Python] is supported as well as Java. Other
languages supported by SWIG (Tcl, Perl, Ruby, Mzscheme or Guile) should be very easily
added if needed.
2.3. Architecture
The library is organized in a modular way. A first layer provides a simple API to
developers through a set of functions starting with the braille_ prefix, like
braille_init, braille_display or braille_read.
At initialization and according to a configuration file, this first layer will load a device
dependent module. This module implements the low level interaction with a given Braille
terminal protocol and depends on the manufacturer and model of Braille terminal.
This module must use a lower level layer that provides a set of common portable functions
to all drivers in order to communicate through the serial port or the usb bus, or to log some
debug information. Those low level functions are portable and simplify a lot the
development of drivers that work on different operating systems.
2.4. Internationalisation
The TiM projects aims to access the widest possible concerned population, and in this
focus, multilingual features has been integrated from the beginning of the development.
Many different Braille tables are used in different countries and even among different users

of the same country! Those tables make the link between the ASCII and Braille
representation of a character.
The library already supports the ability to switch between many different tables and a user
can easily create his own.
2.5. Virtual Driver
A graphical virtual driver was developed which displays a virtual Braille keyboard on the
screen. This allows developers to create Braille enabled programs, without owning an
expensive Braille terminal for test purpose.

2.6. Configuration of Keys Layout
This features allow users to customize the layout of keys on the Braille keyboard by editing
a configuration file and to switch between some configurations at runtime. This can be very
convenient for users since then can have different key layout depending on the software or
the context on which they are working.

3. Usage Overview
3.1. Initialisation and Closing
Interaction with the Braille library is done through functions starting with the braille_
prefix1. Those functions are declared in the braille.h header.
The braille_init function should be called before any other function of the library. It
will load the correct driver then initialise and configure the Braille display. On the other
side, the braille_close function must always be called when closing the Braille
library. It will unload the driver, free resources and close the library.
3.2. Displaying a Simple String
The simplest way to write something on the Braille display is to use braille_display.
It must be called with a string and will display that string on the display.
braille_display("test started");
When displaying text, the Braille representation is calculated according to a Braille table
which can be customized by the user.
3.3. Advanced dots displaying
There is a more complex function to display when a better control of what is displayed is
necessary, for example when displaying something other than text. What will be displayed
is a combination of text and a filter that directly manipulate dots, using the
braille_filter and braille_render functions.
3.4. Typing with the Braille Keyboard
It is also possible to know which keys have been pressed on the Braille display with the
braille_read function. This function returns a structure of type brl_key. This
structure has an attribute named type concerning the type of key pressed.
If this type is BRL_CURSOR, the code attribute contains the number of the pressed
cursor routing key starting at 0.
If the type is BRL_CMD, then a function key has been pressed on the Braille display. The
code attribute contains a code depending on the function key. There are many codes which

1The source code of a complete example is available in the annexes.

can be found in the braille.h header file.
If the type is BRL_KEY, then the user has pressed a standard ASCII code on its Braille
display. The code attribute gives the ASCII value.

4. Current Status and Further Works
Libbraille is already a well working library used in different projects requiring Braille
displays support.
The Free Software model appeared to be an excellent model for the development of devices
drivers and many users contributed to the project.
Indeed other libraries were created following the same model for the TiM project
(libspeech which can drives some speech synthesis and libboard a driver for tactile boards).
The library is far however from supporting all the existing models of Braille displays. This
can only be achieved if this library is advertised enough so that owners of those devices can
collaborate to improve the library...
The following enhancements are also planned to be included in libraille:
• Support for more models of displays: it depends on the collaboration of people with

those models or of manufacturers. The integration of recent USB models is currently
under development.

• Development of a simple configuration front-end: at this time, the focus has mostly been
on the developer aspect of the library. It is planned to improve the user friendliness by
adding a simple configuration back-end to configure the device model and the key
layout.

More information can be found at: http://libbraille.org
Acknowledgements
The TiM project is funded by the European Commission, on the program IST 2000 (FP5 -
IST - Systems and Services for the Citizen/Persons with special needs) under the reference
IST-2000-25298. The contents of this paper is the sole responsibility of the authors and in
no way represents the views of the European Commission or its services.

Bibliographie
[TiM2000]: Archambault, D. and al, Tactile Interactive Multimedia computer games for
visually impaired children., 2000, http://www.snv.jussieu.fr/inova/tim
[AAATE01]: D. Archambault, D. Burger, and S. Sablé, The TiM Project: Tactile
Interactive Multimedia computer games for blind and visually impaired children, 2001
[LGPL]: , The GNU Lesser General License, , http://www.fsf.org/copyleft/lgpl
[BRLTTY]: , The BRLTTY Project, , http://www.cam.org/~nico/brltty
[BRASS]: , Braille and speech server, , http://www.butenuth.onlinehome.de/blinux/
[SWIG]: , Simplified Wrapper and Interface Generator, , http://www.swig.org
[Python]: , Python Language, , http://www.python.org
Annexes
Usage Example in C
#include <braille.h>
int main()
{
 // Initialising the library
 if(!braille_init()) {
 fprintf(stderr, "Error initialising libbraille\n");
 return 1;
 }
 // Displaying a Simple String
 braille_display("test started");

http://libbraille.org/

 // Typing with the Braille Keyboard
 while(1) {
 brl_key key;
 key = braille_read();
 switch(key.type) {
 case BRL_NONE:
 break;
 case BRL_CMD:
 switch(key.code) {
 case BRLK_FORWARD:
 printf("reading further right on the display\n");
break;
 default:
 break;
 }
 case BRL_KEY:
 printf("braille: %o, code: %d, char: %c\n",
 key.braille, key.code, key.code);
 break;
 }
 usleep(100);
 }
 // Stopping the Library
 braille_close();
 exit(0);
}

Usage Example in Python
$ python
>>> from libbraille import *
>>> braille_init()
libbraille 0.9.0
Processing file: /usr/local/etc/libbraille.conf
Braille device: /dev/ttyS0
Braille driver: libbrailleno (Fake)
Dot Translation Table: french.tbl
Braille display: 1 row of 40 cells.
1
>>> braille_display("hello world!")

Usage Example in Java
public class test_libbraille {
 static {
 try {
 System.loadLibrary("jbraille");
 } catch (UnsatisfiedLinkError e) {
 System.err.println("Native code library failed to load. " + e);
 System.exit(1);
 }
 }
 public static void main(String argv[]) {
 System.out.println(jbraille.braille_init());
 jbraille.braille_display("test_libbraille started");
 }
}

