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On the Existence of Circle-Point and Center-
Point Circles for Three-Precision-Point-Dyad
Synthesis

A graphical method is developed for expressing solutions to all possible revolute dyad,
three finitely separated position synihesis problems, where any two rotational displace-
ments are prescribed. Also, cases are discussed where two positions and one velocity
are prescribed. The three-precision-point solutions are shown to be represented by
circular loct of fixed and moving dyad pivots that are derived from an analytical treat-
ment based on bilinear transformation of the synthesis equations. The superposition
of two three-position dyad problems with two common posiitons yields points on the
Jour-precision-point Burmester curves satisfying both problems. A new alternative
explanation for the classical Burmester curve construction 18 offered. Regions of the
plane are found where dyad moving pivots cannot exist for a given problem. Computer
graphics output 1s used to demonstrate several typical solutions.

introduction

Consider fixed and moving planes connected to a link via
revolute joints (Fig. 1(a)). Such a configuration is called a
revolute dyad and appears in most planar linkages [1, 2, 5, 9,
12]. The four-bar linkage, for example, is composed of two
revolute dyads connecting the same fixed and moving planes
(Fig. 1(b)). Two three-precision-point cases of the moving
plane are of interest in this paper:

(1) Case 1 is characterized by moving-plane displacements to
two new coplanar positions. A moving-plane tracer point “P”’
undergoes the displacements 8; and & from an initial position
R: (Fig. 2), while the link rotates by B: and (3;, and the moving
plane rotates by as and as.

(2) Case 2 is characterized by the initial velocity R, and one
displacement 8; of the moving plane tracer point (Fig. 3). The
initial angular velocities of the moving plane and the link are
¢y and B, respectively and the moving plane and link rotations to
position 2 are a; and B3, respectively.

In two of the usual dyad synthesis tasks (motion generation
and path generation with preseribed timing), either 9; and §; or
R: and &, plus two angular parameters are prescribed. Each dis-
placement or velocity condition gives rise to one complex vector

1Based on a Master's thesis by the first author {1].
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loop equation, which contains two scalar equations: one for the
real part and one for the imaginary part. The above motions
therefore define two vector equations or four scalar equations,
From an algebraic synthesis viewpoint, this sytem can be solved
only for four reals such as unprescribed vector components or
unprescribed angles of rotation.

As shown in Fig. 4, the initial dyad position will be charac-
terized by the vector R from the initial tracer point position (R:
is made zero by selecting the origin at the initial tracer point
position) to the dyad’s fixed pivot and by the vector W from the
fixed pivot to the moving pivot. Thus there are six unspecified
parameters (W, R and two angles of rotation or one angle and
one angular velocity), two of which must be additionally pre-
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3
Fixed Plane
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Fig. 1(a) Dyad nomenclature
Flg. 1(b) Four-Bar linkage made up of two dyads
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Fig. 3 Case 2:
positions

Two infinitesimally close and one finitely separated

Moving Plane

Link

Fixed Plane

Fig. 4 Vector representation of a dyad

scribed to allow a solution with only four scalar equations. Two
different strategies for choosing these two ‘“free choices’ have
been used thus far. Most commonly, the two remaining angular
unknowns (unknown angle or unknown angular velocity) have
been picked [9, 12]. This produces a set of linear equations which
is easily solvable for W and Z. Unfortunately, the process of
searching for better solutions is difficult when varying the
angular parameters in this form. In the second approach, the
vector R (defining the fixed pivot) is chosen so that each point
of the fixed plane can serve as the fixed pivot of a link allowing
the prescribed motion [11]. 1t is impractical, however, to pick
all values of R and simultaneously show the dyad associated with
each choice.

This paper describes 8 new approach—the angular parameters
will be considered as candidates for parameters on which the
locations of the fixed and moving pivots of the solution dyads
will depend. If an arbitrary value is chosen for one unprescribed
angular parameter, while the other parameter is allowed to
assume all possible values, the resulting loci of corresponding
fixed pivots m and moving pivots % are found to be pairs of
circles. For example, if Ry, 8, 83, as, By, and B; are picked, then
the m and &, loci trace circles as a; ranges between 0 and 2w.
Henceforth, moving pivot and fixed pivot circles are referred to
as M and K circles, respectively. A complex-number formulation
will be used to generate the circles analytically.

Analytical Modelling

Consider a coordinate system at the initial moving plane
tracer point position, with vectors defined as in Fig. 4. Using
complex numbers, a link rotation # is accomplished by multi-
plying the vector defining the link by e, which will be denoted
simply by 0. The vector loop equations are:

1st position: R+ W — Z =0 1)

2nd Position: R + W@ — Za, = s (2)

3rd Position: R + W@; — Za;y = s 3)

Ist Velocity: Wiy — Zida = Ry, @)
where -~ i = 4/—1

Subtracting equation (1) from equations (2) and (3) yields the
“standard form” equations [(9), (12)] for three-position syn-
thesis:

\K/(Qz - 1) - ]!((!2 - 1) = 82 (2a)

W(Ga — 1)~ Z{ag — 1) = & (3a)

As stated above, the usual technique of solving a three-posi-
tion synthesis task using (2a) and (3a) is to inspect dyads ob-
tained by randomly varying the unprescribed angles in equations
(2a) and (3a) (solving for W and Z via Cramer’s rule). It was
observed here that, if one unprescribed angle is fixed while the
other is systematically varied, the fixed and moving pivots of
the resulting dyads each describe a circular locus: the M-circle
for the fixed pivots and the K-circle for the moving pivots.
The circumscribing circles of the pole triangle and the image
pole triangle discussed in [4] are special cases of these circles.

In equation (1), the location of the moving pivot is defined by
the vector Z with respect to the origin of the coordinate system
which, as shown in Fig. 4, conincides with the initial position
Py of the tracer point of the moving plane. Synthesis problems
can be formulated by specifying 8, and 8;, or R; and 8. plus the
appropriate angular parameters, Vectors R and Z may be
obtained from either equations (1, 2, 3) or (1, 2, 4) (using Cra-
mer's Rule).

When 8; and 9, are specified, equations (1, 2, 3) yield
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01 -1 their properties. This led to the manual graphieal constructiong
& 3 —w ‘ presented in the next section.
& B —a When the circles have been drawn, it remains to coordingty
R= — ~— (5) associated fixed and moving pivots on a pair of circles. This i
11 -1 done using the well known pole or instant-center relationships
1 3 - presented in Figs. 5 and 6, respectively. For example, Tays
1 8 —~a emanating from P, defining an angle 1/2 o, will intersect the
and K circles at fixed and moving pivot pairs m and k1. An angle
or meter (adjustable protractor) rotated about the coordinatiug
—83(Bs — @) + (B — @) ©) pole or instan.t center serves as a convenient tool for revealing
R = @ = w & B — Ba) — Bt + s such pivot pairs.
and Graphical Constructions: Two-Displacement
11 0 Problems
‘ } g: gz Here ,, 93, and two rotations are prescribed. Names have beep
7 = - ) assigned according to which rotations are chosen:
11 -1 .
1 6 - MK circle pairs
1 6 —a generated for
Prescribed different,
or angles Name values of
7 = =8B ~ 1) + 6:(8 — 1) ®) o o Motion generation B:
B:— Bs + s — @ — ooz + @fs B: B Path generation (with o
When R, and 8, are specified, equations (1, 2, 4) yield B a Pﬁiisgégzga:ﬂn(aith Bs
I.h(@z — @) + 5y — Bl) opposite angles prescribed)
R = : - : : 9
— P — 4+ B+ B
, . , Sample computer plots have been generated for each of the
7 - —Rit + B:Ri — Bide (10)

T Bt b - &+ B

If all parameters on the right sides of these expressions are fixed
except one angular parameter 0, which ranges over all possible 2
values, the equations for R and Z can be expressed as functions
of 8 to form “bilinear mappings' [3]:

a0+ b 1)
0+ d )

e0 1+ f
+ (12) o Py
g0+ h -2 ) e
2 oy and 82 having opposite sign
where a — h are known and 8 = ¢‘0, and where 6 stands for the K
angle to be varied (8, a: or B8;) or the angular velocities (81 or ¢1).
When 8 varies from 0 to 2m, 0 describes the unit circle. Tqua-
tions (11) and (12) are tantamount to the following sequence of
transformations:
J

p(0) = ab, a stretch rotation, (13)
q(f) = a0 + b, a change of origin, (14) Note:

R) =

Z(0) =

-180 < angles < 180

f) = cb, another stretch rotation, (15)
s(f) = ¢0 4 d, another change of origin, and (16)

a(6)
s(0)

Since both q(f) and s(6) are circles, it can be shown that t(ﬁ)
is also a circle (reference [3]). Thus, it is seen that the loci o
R(8) and Z(8) are circles, which in the limit can become straight
lines. The complex constants a through h are found by appro-
priately rearranging equations (6) and (8) or (9) and (10) in the
form of equations (11) and (12). The centers of the circular
loci M and K can be found directly from the constants a through
h [1], or more simply by evaluating R and Z at three § values,
yielding three points. Either way the solutions are within the
realm of programmable hand caleulators. Computer programs
have been written to display the M and K circles on a TEK-
TRONIX 4013 graphics terminal [10] in order to examine Fig.5 Pole, circlepoint and centerpoint relationship

I

t(9)

a “bilinear mapping”’

o, and BZ having the same sign
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a and B of Same Sign

a and B of Opposite Sign

Fig. 6 instant center, circlepoint and centerpoint relationship

three problem types (Figs. 7, 8, and 9). The M circles (with
solid ares) are labeled with the values of the angle varied to gen-
erate them. A short line segment is directed from a sample
fixed pivot m on each M circle toward the moving pivot % on
the associated K circle (with dashed arcs). If this moving pivot
lies off the diagram, the K circle is also labeled with the value of
the angle varied to generate it. The poles used in finding con-
jugate m — k; pairs are represented by small rings.

In path generation with prescribed timing, the pole Py, to be
used for finding conjugate pivots on each MK circle pair will be
different, for each such pair, since neither @; nor o; is the same
for different pairs. A shorter line segment is then directed from
the sample fixed pivot of each M circle toward the associated
pole Py, (see Fig. 8).

Motion Generation. Fig. 7 illustrates a motion generation ex-
ample. X, X, and X; mark the prescribed positions of the tracer
point P, with 8; = 1 +4,8; = 2 4 0.5¢, a = 1 rad and o = 2
rad.? The M and K circles are generated for three values of the

———

*Counterclockwise rotations are positive.
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Fig. 7 Circlepoint and centerpoint circles for motion generation

(-5,-5)

Fig. 8 Circlepoint and centerpoint circles for path generation with
prescribed timing

varied angle B8,(42°, 321° and 353°), with B; ranging from 0 to
2w. These three circle-point circles and center-point circles are
sufficient to display the properties of the diagram. It is interest-
ing to note that the M and K circles intersect at points which
can be shown to be the poles Pi; and Py for the M circles and
Py, Py for the K circles, where P'y; is the image pole of Pa.
Similarly notable are the angles subtended by the intersections at
the circle centers (see Fig. 7). The steps needed to construct a
set of circular M and K loci for a motion generation problem are
therefore:

(1) Find the circle-intersection poles: Pi; and Py for the

M circles; Py; and P'y; for the K circles.

101 / 557



(8.8)

(-7,-7) Ky

Fig. 9 Circlepoint and centerpoint circles for path generation with
opposite angles prescribed

(2) Bisect the lines between the intersection pole pairs to
find the lines of centers for the M and K circles.

(3) Tor each value of the varied angle {3, lay off the circle
centers so that

¥ PyCuPoun =

(4) Draw the circle pairs with centers Cx and Cx through
the intersection poles. It can be shown that the complex number
expressions for the poles are:

and X PmCKP'zs = (s — 62

Pe = % , (18)
1—

Py = B and 19)
1 - o3

Py = 20 = Buc (20)
o — 3

where Pjj is the vector from the origin of Ri to the pole Py;

Path Generation With Prescribed Timing. An example of path
generation with prescribed timing is shown in Fig, 8, with §; = 1
+ 24,8 =4+ 4 B = lradand 83 = 2rad. The M and K
circles are generated for a; = 51°, 91° and 302°, with o ranging
from 0 to 360°. The M circles all have common intersections at
the pseudo-poles? Si; and 8z, and exhibit properties that allow
M circle construction with the steps used in motion generation,
except that the varied angle is a. rather than 83

The K circles have no intersections, but a useful property
exists that permits easy K circle construction: the M and K
circle centers are coordinated about the poles as are the m and
ki pivots (see Fig. 5). Referring to Fig, 10, Cx and %, (the moving
pivot corresponding to either fixed pivot on the M circle diameter
through Py;) are found accordingly, allowing the K circle to be
drawn about Cx with radius |Cxki|.

The M and K circles of path generation with prescribed timing
can be found as follows:

(1) Construct the M circles in a manner similar to that used
in motion generation, but vary a; to obtain different circles.

3The pseudo-poles are defined as poles with rotations 8 rather than o,

(2) For each M circle:

(¢) Construct the pole Pia.

(b) Draw the diameter of the M circle through Py; and extend
it.

(¢) From this line, lay off the angle a/2 with Py as the
apex, and the angle 8,/2 with Cy as the apex. The intersectiop
of these two lines is Cx. Choose the intersections of the Cyp,
line with the M circle to be the fixed pivot m. With this poin
as the apex lay off the angle 3:/2 from the PuCym line. The
intersection of this line with the /2 line is k;, and the K eirelo
can now be formed. (See Fig. 10.)

Path Generation With Opposite Angles Prescribed. With B8y and
o prescribed, circle sets can be generated for discrete values of
(s by letting a; range from 0 to 360°. Fig. 9 shows an exampla
[0: = (4 +2), 8% = (1 + 2¢), B = 2rad, az = 1 rad with ¥
and K circles for 85 = 41°, 169° and 217°.] The resulting M cir-
cles appear similar to those of motion and path generation; how-
ever, one of the M circle intersection points must be located
indirectly, because the angle subtended from the M circle cen-
ters by the intersection points is not the varied angle 8; [1),
The graphical procedure is as follows:

(1) On the perpendicular bisector of Ry — R; locate the pseudo-
pole Qs with rotation B, Similarly locate Sy, (see Fig. 11),

%

Fig. 10 K circle construction for path generation with prescribed
timing

Fig. 11 M circle intersection construction for path generation with
opposite angles prescribed
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(2) Draw the SpQu line and from it lay off the angle
1/2)(B2 — o). The intersection of the resulting line with the
1)erl_)endicula,r bisector of Ry—R; is the point J. This point togeth-
or with pseudo-pole Si2 form the pair of common intersections
of all M circles.

Given Sz and J, M circles can be drawn, but the f; — M
circle correspondence is unavailable. Fortunately, however, the
M circle intersections with the (Rs — Ry) bisector are the pseudo-
poles Su;, yielding Bas, and By = B2 + Bis. Car, as, By and Py
are now known; each K circle center and radius can now be found
using the pole relationship of Fig. 5 as in path generation.

Dyad Moving Pivot Existence - Three
Precision Points

When computer plots of the M and K circles were made, it
was found that moving pivots cannot exist within'certain regions
of the plane in path generation with prescribed timing or with
opposite angles prescribed.

Tor path generation with prescribed timing, two circles exist
within which no moving pivots will be found. One of the circles
surrounds the first moving point position and it is possible to
analytically define a distance bound from this point, within which
no moving pivots can exist. All K circles are tangent to both
existence circles and are arranged so that two ki, pivot solutions
oceur for each point outside the circles. In addition to Fig. 8,
TFig. 12 shows the nonexistence circles (labeled as “F” for for-
bidden regions), for the example:

9 = 2 4 2; Bz
6 =441 B; = 1 radian

0.5 radians

I

The circles shown are the K circles which are tangent to the
two non-existence circles, the smaller surrounding the initial
precision point, X, in Fig. 12.

For path generation with opposite angles prescribed, an alge-
braic curve exists, to one side of which no moving pivots are
found. Bach K circle is tangent to this curve at least once, and
again the K circles are arranged to give two moving pivot

solutions for each point within the permissible regions. In
addition to Fig. 9, Fig 13 shows an example where

B = 2 + 15 B =
53 —2+41/, ay =

Again, the areas labeled “F"’ are the forbidden or nonexistence
regions. Expressions for both these moving pivot existence
region boundaries have been derived in [1].

1 radian

1 radian

Four Prescribed Positions: Superposition of
Two Three-Precision-Point Cases

Consider the four-position motion synthesis problem with 3.,
03, 8y, o, 05 and ay prescribed. This can be considered as a
superposition of two three-position, motion generation subprob-
lems, with (s, 8;, ap, o) prescribed in one and (8, 8, o, )
prescribed in the other. For a selected value of the varied angle
(B, an M and K circle can be drawn for each subproblem; M
circle intersections and K cirele intersections define points that
satisfy both subproblems simultaneously.

For example, suppose the following sets of precision positions
were desired:

Set 1
9 =2+ 2 ay = 60°
8 =54+ 2% oy = 120°
Set 2
& =24 2 oz = 60°
8 =4+ 3¢ as = 180°

The intersections of the corresponding M circles and K circles
from both three-point problem define the four-precision-point-
“Burmester curves’’: the “circle-point’”’ and “center-point”
curves.

One begins by finding the intersection poles Py, Pis, Pas, Pas,
Py, and P'y. There will be two sets of M and K circles, labeled

(8,8)

]

(8,8}_/7

Fig. 12_ Example of path generation with prescribed timing showing
Ronexistence circles labeled as F (“forbidden regions’)

Fig. 13 Example of path generation with opposite angles prescribed
showing nonexistence regions labeled as F (“‘forbidden rejions")
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with superseripts (M! corresponds to set 1). The centers of
circles M1, M? K1 K? lie on the bisectors of Pi P, Pu Py,
Py3 P'y, and Py P'y respectively, as shown in Fig. 14. Note that
the following length equalities prevail:

[P1sPys| = |P1aP 5| (21)

and

|P1aPas| = |P1sP s (22)

Up to eight M and K curve points can be found for each value of
¢, the positive angle subtended by the respective pole distances
at the corresponding circle centers. For ¢ = 40° one draws
(Fig. 14) four arcs with radius 1/2|PiPaulcsc(e/2) from rayst
K\, K1-, MY and M1, followed by their respective intersec-
tions with arcs of radius 3.9 from the rays K2, K2, M2, M?*,
and M2?~, Since the M1~ arcs do not intersect the M?~ arcs for
the particular example, they are omitted. The varied angles
corresponding to each intersection pair are (two arcs may inter-
sect at two points):

M+, =+ ¢e= + 40°
K+ By= s — € = 60° — 40° = 20°
K—: = az — (—e) = 60° + 40° = 100°

The K+ and the K~ intersections apply for 8. less than s or
B, greater than s, respectively. Note, for example, that if one
desired the moving pivots for 8, = 40° they would be the K*
intersections for € = a — B2 = 20° > 0.

This proeedure, derived here from the three-position M and
K circles, is the same as the Burmester curve construction
based on the opposite pole quadrilateral [2, 4]. For example,
the M curve points are found as the intersections of circles with
opposite pole quadrilateral sides as chords, which is identical to
the construction used here. In popular kinematic texts [2, 4, 5,
6, 71, however, these circles are not presented as three-point solu-
tion loci, but as loci of points that subtend equal or supplementary
angles at the side of the opposite-pole quadrilateral representing
the chord of the circle. The intersections of circles through op-
posite-pole pairs whose peripheral points subtend equal or sup-
plemantary angles at their respective chords are constructed;
these points satisfy the theorem of Burmester, which states that
the points on the M curve subtend equal or supplemental angles
at opposite sides of the opposite-pole quadrilateral.

4The plus or minus sign in the superseripts of the rays indicates one direction
or the other towards infinity.

= point on K - Curve

= Point an K - Curve
= Pole

A

4 = Precision foint

Fig. 14 Construction for four finitely separated prescribed pasitions
for motion generation

A more direct statement based on the present work might be:
Each circle-pair intersection represents the superposition of twg
three-point synthesis problems with prescribed quantities (@,
B2, 0z, ats) and (Bs By, ¢y, a1s) respectively, together comprising the
four-point problem.

Although the opposite-pole quadrilateral construction tech.
nique is well known, this is the first time (to the authors’ knowl.
edge) that a kinematic derivation of the graphical Burmester
curve generation technique has been introduced.

Dyad Moving-Pivot Existence - Five
Precision Points

For path synthesis problems with more than three precision
points, two moving-pivot nonexistence circles will result for
each distinct combination of three precision points. Thus a
four-point problem will have six such circles, while a five-poing
problem will have twelve. Moving-pivot solutions will not
exist inside these circles. Consider for example a five-point
Burmester path synthesis [8, 14] with four displacements and
corresponding link rotations given:

&, 120°

]

2+ 2, B
4+ 4i, B

60° % =5+ 2, Bs
& = — 242, B

]
]
I

o, 180° 240°

Each pair of prescribed displacements defines two nonexistence
circles; the twelve circles and the Burmester dyad solutions are
shown in Fig. 15. The dyads shown are the only solutions avail-
able. Note that the moving pivots of these dyads are external to
all nonexistence circles.

Graphical Construction: Displacement and
Velocity Problems

Here Ry, 8, 3, or ay, and Bx or ¢ are prescribed. The problem
types are (see Fig. 3):

Fig. 15 Nonexistence circles for path generation with prescribed
timing for five finitely separated positions
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Angle and angular

velocity prescribed Name

oz dn Motion generation

B B1 Path generation with prescribed timing
a: B Path generation Type II

Bs é Path generation Type IIL

Motion Generation. In Fig. 16, M and K circles are generated
for several values of 8. I, is the instant center on the perpen-
dicular to R: drawn from Xi; Py, is the rotation pole for the dis-
placement 8;, oz, The Ck and C center loci both coincide with
the perpendicular bisector of Py,;. The centers are situated like
‘poles of poles’ that rotate I to Py, about Cx and Cy, the angles
of rotation being B and B; — a; respectively. To correlate m
and k& pivots, lines are drawn across the circle pairs though Iy
the circle-line intersections are pivots belonging to the same
link. Two sets of these are shown in the figure.

Fig. 17 shows pairs
All M

Path Generation With Prescribed Timing.
of M and K circles generated for several values of &;.

~

—

\——_——/
Fig. 16 Example of motion generation for two infinitesimally close
and one finitely separated positions

Fig. 17 Example of path generation with prescribed timing for two
Infinitesimally close and one finitely separated positions

circles pass through the pseudo-pole Si2; each is tangent to the
same line through it. The M circle radii are proportional to the
ratios $:/dy. The instant center I;, Cp, Cy all lie on one line.
When & = f, the corresponding M circle passes through S,
and Ig, with its center at C,, where I is the pseudo-instant
center with angular velocity ..

The construction procedure for the path generation with
prescribed timing and discussion of the other two path genera-
tion eases [1} will not be presented here due to lack of space but
will be a part of a future publication.

Conclusion

A complex-number dyadic method of planar body-guidance
synthesis has been presented. It was discovered that, for three
precision conditions, with one unprescribed angle fixed and the
other used as a parameter, fixed pivots m and moving pivots &
of all possible dyads must lie on respective circular loci, named
the “M circles’” and “K circles.” There is one such pair of M
and K circles for each assumed value of the first unprescribed
angle. When the task is path generation with prescribed timing
or with prescribed opposite angles, regions have been found
within which no moving pivots can exist. These were named
“nonexistence regions”; they are envelopes of the K circles.
Graphical methods based on this theory give rise to a new, kine-
matic derivation of the well known geometric construction of
Burmester’s center-point and circle-point curves for four pre-
scribed positions, and of the (up to) four discrete Burmester
Point Pairs for five prescribed positions. The methods have been
programmed for interactive computer graphics.
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