
Comparing Text-based, Blocks-based, and Hybrid
Blocks/Text Programming Tools

David Weintrop
Northwestern University

2120 Campus Dr. Suite 332
Evanston, IL, USA 60208

dweintrop@u.northwestern.edu

ABSTRACT
This dissertation investigates the comparative affordances and
drawbacks of blocks-based, text-based, and hybrid blocks/text
introductory programming tools. Blocks-based programming
environments are growing in popularity and are increasingly being
used in formal introductory programming contexts. To date, much
of the work evaluating such tools has focused on their
effectiveness in out-of-school contexts and emphasized
engagement and attitudinal measures over content mastery. Given
their growing presence in classrooms, it is important to understand
the benefits and limitations of the use of the blocks-based
programming approach in formal learning contexts relative to
text-based or hybrid blocks/text alternatives. This dissertation will
carry out a quasi-experimental study in high school computer
science classrooms to answer questions related to the impact of
blocks-based, text-based, and hybrid blocks/text introductory
tools, assess the suitability of such tools for preparing students for
future computer science learning opportunities, and explore the
design space between blocks-based and text-based programming.
The goal of this work is to better understand the tools we are
using to introduce today’s learners to computer science and lay
the foundation for creating the tools of tomorrow.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education.

Keywords
Blocks-based Programming; Introductory Programming Tools;
High School Computer Science Education

1. PROGRAM CONTEXT
I am currently a fifth year PhD candidate in the Learning Sciences
program at Northwestern University. Northwestern University’s
Learning Sciences program was the first of its kind and brings
together cognition, design, and socio-cultural factors to study how
learning happens in the real world. I have defended my
dissertation proposal and, this past fall, I conducted a pilot of my
dissertation study. I have done some analysis of the pilot data and
am in the process of preparing the next iteration of my study,

which will take place at the start of the upcoming school year.

2. CONTEXT AND MOTIVATION
The ability to express ideas in a computationally meaningful way
is becoming a critical skill for students to master in our
increasingly digital world. Bringing programming into K-12
education is a critical step for introducing learners to this
fundamental skill. A growing number of K-12 computer science
classrooms are using blocks-based environments to introduce
students to programming. These tools leverage a primitives-as-
puzzle-pieces metaphor and support drag-and-drop composition,
allowing learners to assemble functioning programs using only a
mouse by snapping together instructions. The use of this
programming modality has become a prominent feature of many
introductory computer science curricula and programming
interventions targeted at K-12 students. Notably, national
curricular efforts including Exploring Computer Science, the CS
Principles project, and Code.org’s curricular materials all utilize
blocks-based tools to introduce students to programming.

Despite its growing popularity and widespread use, relatively little
work to date has focused on the conceptual and affective benefits
of using blocks-based tools in formal educational contexts. Open
questions remain about the effectiveness of the approach for
helping students learn basic programming concepts and whether
or not gains made in introductory environments, be they blocks-
based or textual, effectively prepare students for future computer
science learning opportunities. Further, it is unclear what the
strengths and weaknesses of block-based programming tools are
compared to isomorphic text-based alternatives. Given the number
of initiatives being undertaken to bring programming, and
computer science more broadly, into high school classrooms, it is
essential that we understand the affordances and drawbacks of the
tools we are using to introduce a generation of learners to the
field. The goal of this dissertation is to shed light on these
questions in order to improve curricular and design efforts that are
shaping contemporary high school computer science education
and to better inform teachers on how to make the most of the tools
they are using.

3. BACKGROUND & RELATED WORK
“The tools we use have a profound (and devious!) influence on
our thinking habits, and, therefore, on our thinking abilities.” [3]

A growing body of literature is investigating the effects of the
blocks-based programming approach. Notable work has been
done looking at Scratch with younger learners (e.g., [5]) and Alice
with university students (e.g., [8]), with relatively little work
focusing on high school aged students. A number of smaller
studies have done comparative work looking at textual vs. blocks-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
ICER '15, August 09-13, 2015, Omaha, NE, USA
ACM 978-1-4503-3630-7/15/08.
http://dx.doi.org/10.1145/2787622.2787752

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357390339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

based tools side-by-side, such as Lewis’ [4] study comparing
Scratch and Logo, which found students who worked with text-
based Logo were more confident, while students in the Scratch
condition performed slightly better on some of the content areas
covered. Ben-Ari and colleagues have conducted a number of
studies looking at the suitability of Scratch as serving as the
primary introductory programming language finding both
strengths and drawbacks to the approach [6, 7]. In a recently
published paper, they found that students who learned Scratch in
middle school more quickly grasped concepts in text-based
languages when they reached high school (although they did not
perform better on content assessments) [1]. Another thread of
work has looked at how learning with introductory blocks-based
tools transfers to conventional text-based tools with mixed results
[2, 9]. Work on these questions is growing, but large gaps in the
literature remain, this study will address some of those gaps.

4. STATEMENT OF THESIS/PROBLEM
This dissertation seeks to answer three sets of interrelated research
questions. The first set pertains to the effects of programming
modality (blocks-based vs. text-based) on students’ learning
experience. Specifically, what is the relationship between the
programming modality used and learners’ understandings of
programming concepts? What programming practices do learners
develop when working in different modalities? And how does the
modality affect students’ perceptions of programming with
respect to utility, authenticity, and enjoyment? The second set of
questions look at the effectiveness of introductory programming
tools for preparing students for future computer science learning
opportunities. Namely, how do understandings and practices
developed while working in introductory programming
environments support or hinder the transition to the text-based
programming languages used in non-introductory computer
science courses? Our final research question investigates the
design of introductory learning environments. Can we design
hybrid introductory programming environments that blend the
strengths of blocks-based and text-based programming to
effectively introduce novices to programming and computer
science more broadly? All three sets of questions are designed to
be comparative as we are interested into how aspects of learning
differ across text-based, blocks-based, and hybrid blocks/text
introductory environments.

5. RESEARCH GOALS & METHODS
The goal of this research is to understand the affordances and
drawbacks of different programming modalities in formal high
school computer science contexts. To answer the stated research
questions, a quasi-experimental, mixed-method study will be
used. The study follows three sections of an introductory
programming class for the first 15 weeks of the school year at an
urban public high school. For the first five weeks, students will
use either a blocks-based, text-based, or hybrid blocks/text
introductory programming environments before transitioning to
Java for the remainder of the study. Students are randomly
assigned to the three sections and will follow the same curriculum
regardless of the environment they use. Pre/mid/post content and
attitudinal assessments will be administered during the study. We
will also carry out one-on-one cognitive interviews with students
from all three conditions as well as conduct classroom
observations and record all student-authored programs. By
gathering this set of data and studying students across the three
programming environments, as well as following them as they

transition to Java, we will be able to comparatively evaluate the
environments and answer the stated research questions.

6. DISSERTATION STATUS
I have completed a pilot study where I followed 90 students in 3
sections of a computer science classroom for the first 10 weeks of
the school year. I observed students as they spent five weeks
working in three distinct, customized versions of the Snap!
environment and then followed them as they transitioned to Java.
The customized Snap! environments added features like the
ability to see text-based versions of blocks-based scripts, and
define new block behaviors in JavaScript. I conducted 27
interviews, administered pre/mid/post attitudinal and content
assessments, and collected over 75,000 student-authored
programs. As part of the pilot study, I created all necessary
curricular and assessment materials and designed interview
protocols and automated data collection procedures. To date I
have completed a few analyses of these data, including
comparative evaluations of student perceptions of the introductory
tools and how students performed on the content assessments. I
am currently preparing for the second iteration of the study to be
carried out this upcoming school year, which includes the
development of a hybrid blocks/text tool.

7. EXPECTED CONTRIBUTIONS
I expect that findings of this dissertation will be of great interest to
educators, curriculum designers, and the larger computer science
education research community. The findings from this dissertation
will contribute to our understanding of how the latest generation
of block-based programming tools fit into more formal, structured
educational spaces, as well as provide insight into the cognitive
and affective aspects of such tools. Additionally, this work will
provide insight into how blocks-based introductory tools perform
relative to text-based programming environments designed for
novices and evaluate one potential approach to blending the two
modalities. We are at a critical juncture in the history of computer
science education. The practices, tools, and curricula that are
being developed today will become the standards used for years to
come. It is essential that we are confident that the approaches we
advocate today are effective at teaching the core concepts,
engaging learners from diverse backgrounds, and successful in
preparing students for the computational futures that await them.

8. REFERENCES
[1] Armoni, M. et al. 2015. From Scratch to “Real”

Programming. ACM TOCE. 14, 4 (2015), 25.
[2] Dann, W. et al. 2012. Mediated transfer: Alice 3 to Java.

Proc. of the 43rd ACM SIGCSE, 141–146.
[3] Dijkstra, E.W. 1982. How do we tell truths that might hurt?

Selected Writings on Computing. Springer. 129–131.
[4] Lewis, C.M. 2010. How programming environment shapes

perception, learning and goals: Logo vs. Scratch. Proc. of the
41st ACM SIGCSE, 346–350.

[5] Maloney, J.H. et al. 2008. Programming by choice. ACM
SIGCSE Bulletin. 40, 1, 367–371.

[6] Meerbaum-Salant, O. et al. 2011. Habits of programming in
Scratch. Proc. of the 16th ITiCSE (Darmstadt, Gr), 168–172.

[7] Meerbaum-Salant, O. et al. 2010. Learning computer science
concepts with Scratch. Proc. of the 6th ICER, 69–76.

[8] Moskal, B. et al. 2004. Evaluating the effectiveness of a new
instructional approach. Proc. of the 35th ACM SIGCSE 75-79.

[9] Powers, K. et al. 2007. Through the looking glass: teaching
CS0 with Alice. ACM SIGCSE Bulletin. 39, 1, 213–217.

