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Redesign of Structural Vibration 
Modes by Finite-Element Inverse 
Perturbation 
A previously developed technique for redesigning the vibrational properties of structures, 

_ by inverting the first-order perturbation analysis of the equations of motion, has been ap
plied to a NASTRAN finite element analysis for plates and shells. The program finds the 
minimal changes to the thicknesses of the plate elements necessary to effect a given set 
of changes in the modal frequencies and shapes. Results have been obtained for a flat can- • 
tilever plate, a cantilever segment of a cylinder, and for a compressor blade for a jet en
gine. 

Introduction 
In a previous paper [1], we described a computer program for re

designing structures to effect desired changes in the shapes and 
frequencies of their vibration modes, by making the smallest possible 
change in the structure. This was the outgrowth of a general pertur
bation analysis of the equations of motion of a structure [2] and the 
development of an inversion of that analysis [3]. The program de
scribed in reference [1] accepted holographically obtained data on the 
vibration modes of a physical model. As a consequence, it was limited 
to plate-like structures with no in-plane vibrations. It was further 
limited as a design tool by the need to build a new physical structure 
after each application of the program. This was required to determine 
the degree to which the redesign was successful and to obtain a new 
starting point should an iterative continuation of the procedure be 
desired [1]. 

Many of these limitations have been eliminated by reformulating 
our inverse perturbation design program to accept vibration mode 
data provided by a NASTRAN finite element analysis. This paper 
presents a discussion of this new program and the results that have 
been obtained for three test structures, the last of which is an actual 
compressor blade designed for a jet engine. In its present form, the 
program accepts mesh point displacements and rotations in global 
coordinates from the NASTRAN output, accepts physical constants 
and a set of desired changes from the designer, and processes these 
data to obtain an ensemble of new element thicknesses so as to effect 
the desired changes with the minimum change to the structure. Be
cause the solution is based on first-order perturbation theory, it is 
approximate, and a new NASTRAN analysis of the redesign can be 
used as a starting point for a second application of the procedure, etc. 
This program is limited only to structures1 that can be analyzed with 
triangular plate elements and for which changes in element thick
nesses alone are desired. 

We will begin with a discussion of the equations involved in this new 
program; this will be followed by a discussion of its component pro
grams; and, finally, the numerical results will be presented and dis
cussed. 

Mathematical Formulation 
Let us present here the specific equations that relate to this pro

gram. First, let the design variable be the percentage change in 
thickness of the plate or shell, Ah(x, y)/h(x, y), where ZiU.y) is the 
thickness of the structure, and x and y are spatial coordinates in its 
surface. This design variable is expanded as a series of functions, B(x, 
y), called perturbation functions, which are functions of the coordi
nates, x and y. The coefficients of the series are determined, in part, 
by the set of changes that are desired, (A), which can be written as a 
row matrix. The A's are related to percentage changes in frequency, 
and to coefficients of admixture between mode shapes. (Admixture 
between mode shapes implies that the mode shapes of an altered 
structure may be expressed as linear combinations of the mode shapes 
of an unaltered structure). The final set of factors in the equation that 
determines the percentage changes in thickness is the inverse of what 
we may call a perturbation matrix, [B]. Thus, the primary equation 
of inverse perturbation is 

Ah(x,y)/h(x,y) = (A)[B]-H0(x,y))T. (1) 

Contributed by the Gas Turbine Division of THE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS found presented at the Gas Turbine Conference 
and Products Show, New Orleans, La., March 10-13,1980. Manuscript received 
at ASME Headquarters January 8,1980. Paper No. 80-GT-167. 

In equation (1), the necessary set of perturbation functions have been 
arranged as a row matrix, (8(x, y)) and the superscript T denotes the 
transposed matrix; i.e., a column matrix. In order to define the matrix 
[B], it is necessary to specify the set of changes (A) and the set of 
perturbation functions (8). (Note: the functional dependence of 8 on 
x andy is implied throughout.) The perturbation functions are formed 
from products of parameters obtained from pairs of vibration modes, 
or from squares and products of parameters obtained from a single 
mode. Thus, we may identify perturbation functions by a double 
subscript 8nk, or 8nn, depending on whether the perturbation function 
is formed from two vibration mode shapes $n(x, y) and $k(x, y), or 
from $n(x, y) alone. Similarly, the change parameters (A) may be 
characterized by double subscripts, Ank being related to the amount 
of mode shape $k that is found added to $„ as a result of the struc
tural change, and Ann being related to the change in frequency of the 
nth mode: The specification of any change parameter requires the 
inclusion of the corresponding perturbation function in equation (1). 
In this way, the number of degrees of freedom in changing the struc
ture (i.e., the perturbation functions) matches the number of con
straints (i.e., the change parameters). 

With this in mind, let us define the elements of the perturbation 
matrix, bpq. The double subscripts of the change variables, and the 
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perturbation functions, may be ordered in some arbitrary, but mu
tually consistent way. Let the double subscript nk correspond to the 
single index p, and some other subscript pair Im correspond to 'q'. 
Then, the element bpq is defined by 

fS6P(x, y)8q{x, y)dxdy, (2) 

where the integration is carried out over the surface of the structure. 
In this particular program, however, the structure has been divided 
into discrete elements so that the integrations will extend only over 
the elements, and the contributions of the elements summed to obtain 
the coefficient bpq. 

In order to define the perturbation functions, we must first define 
the mode functions according to the form they take in the NASTRAN 
program. Each element of the shell-like structures considered in this 
program is a triangular platelet of uniform thickness which may bend 
out of its plane to any shape describable by a cubic polynomial (minus 
the x2y term), and may deform and rotate homogeneously within its 
plane. In terms of a coordinate system local to each element, we may 
define the mode function, vectorially, as 

*n = l*„x+./*,,> + £*„ (3) 

where i, j and k are unit vectors in the x, y and 2 direction, with 2 being 
out of the plane of the element, and the origin located at one of the 
corners of the element. The components of $„ are, in their polynomial 
forms: 

(4) 

(5) 

$ M = a„i + an2x + ansy, 

$ny = bm + bn2x + bnSy, and 

3 w = em + cn2x + cn3y + cnix
2 + c„sxy + cn6y

2 

+ Cnix3 + cn$xy2 + cn9y
3. (6) 

The perturbation functions, which may now be defined, are most 
easily expressed as the sum of four terms: (1) an inertial term, 8m, (2) 
a term related to bending strain, 9S(,; (3) a term related to membrane 
strain, 6sm, and (4) a term relating to transverse sheer strain, 8SS. 
Thus, 

dp = 6mp + dgbp + dsmp + 6ssp (7) 

where the subscript p denotes the mode pair nk. The perturbation 
function, it should be noted, is a scalar. The first term of equation (7) 

, = -(wnph/ukMk)<bn • §.k (8) 

where o>n and oik are the natural frequencies, in radians, of modes n 
and k, p is volume density, and Mk is the model mass of the /eth mode, 
defined by 

Mk = JSph$k- ±kdxdy. (9) 

To define the second and third terms, let us first define the matrix 
Gs as 

G s = [EhlunwkMk(l-v
2)} 

•I v 0 

v 1 0 

0 0 ( 1 - K ) / 2 
(10) 

where E is Young's modulus and v is Poisson's ratio. We may now 
define Gj, as 

Now, 

where 

Gb = Gsh
2/4. 

W = ( * n 2 ) G 6 ( * " f c ) T , 

(*'*.) = mi, Hi 2$E), and 

(11) 

(12) 

(13) 

with the superscripts denoting partial differentiation with respect 
to the superscript variables. Next, 

where 

Finally, 

where 

Bsmp = (Q'nxy) GA&hxy), 

(*'«») = (*S» Hy, **„, + * L ) , and 
(*'*„) = (*L, Hy, Hy + * L ) . 

0ssP=(t?'L)Gss(<i?l)T 

Gss = [Eh5/o>nukMk 12(1 - v2)(l - v)\ and 

(14) 

(15) 

(16) 

(17) 

(*:2) = [(***/ + $ £ * ) , (**// + ***/)] , and 

(*L) = [(*"/ + **?), (ny/ + nv)i 
Define the change parameters, (A), in terms of the percentage 

changes in frequency and coefficients of admixture: 

Ann = [(1 + Awjoin)2 - 1], and 

A„/e = Cnk(<X>2
n ~ <i>l)/(ilnWk, 

(19) 

(20) 

where C„k is the admixture coefficient. The new mode shape, $in, is 
expressable in terms of the old mode shapes by the series 

*'n = *« + Y.Cnh'ik, (21) 

where the term for n = k is omitted from the summation. 
The format of the NASTRAN analysis requires some degree of 

approximation in implementing equation (1). First of all, whatever 
new design is generated, it should have plate elements of constant 
thickness, or else the analysis of the new structure becomes very dif
ficult. This means that the values of the perturbation functions in 
equation (1) should be made constant for each element by taking the 
average value over the element. Another difficulty arises in the 
computation of the matrix coefficients, bpq, via equation (2). If the 
integrations over each element are carried out as indicated, with 
products of the polynomials of equations (4-6), then the resulting 
integrands may be as high as twelfth order polynomials. To avoid the 
awkwardness of having to deal with such large polynomials, we de
cided to approximate the perturbation functions within elements by 
their average values therein. This made evaluation of the matrix 
coefficients, via equation (2), simpler and, simultaneously, provided 
constant changes in thickness for the plate elements. 

C o m p u t e r P r o g r a m D e s c r i p t i o n s 
A number of component programs were required in order to im

plement the design procedure. As described in the following para
graphs, they included the primary routines for: (1) accepting the 
NASTRAN data, processing them and forming coefficient data files 
(POSTPR); (2) accepting the data files and computing the associated 
perturbation functions (NASTY); and (3) accepting the perturbation 
functions and performing the redesign (CHANGNAST), as well as 
various ancillary routines for performing checks (TESTNASTY, C2 
and DISP2V), and subroutines for simplifying some of the pro
gramming. 

POSTPR Program. This program accepts, as input, the dis
placements and rotations of the grid points of the finite elements in 
a NASTRAN vibration-mode analysis, in what is referred to as the 
global coordinate system. These displacements and rotations are 
converted to sets of coordinates that are local to each element. The 
displacements and rotations are then used, together with equations 
(4-6), to solve for the coefficients that determine the internal defor
mations of the elements; i.e., the a's, fa's, and c's of equations (4-6). 
This is done for each NASTRAN vibration mode, and the resulting 
arrays of coefficients are stored in data files for use in subsequent 
programs. 

NASTY Program. This program forms perturbation functions 
from equations (7-15), and takes their average value over each 
triangle. Two subroutines (POLVOL and TRIANG) were written to 
facilitate this computation. POLVOL finds the value of the integral 
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of the product of two polynomials over a triangular region in the x, 
y plane, while TRIANG, a subroutine to POLVOL, integrates any 
term of the two-dimensional polynomial over the triangular region. 
NASTY itself is a subroutine to the main inverse perturbation pro
gram (CHANGNAST). 

CHANGNAST Program. This is the primary inverse perturbation 
design program, and it has been written so that it may use perturba
tion functions generated either by NASTY (and, therefore, NAS
TRAN) or by PERTNAST; an updated version of the original pro
gram that generates perturbation functions from experimental ho
lographic data. CHANGNAST accepts the various material param
eters (Young's modulus, Poisson's ratio, density, and the vibration 
mode frequencies), as well as the desired change parameters, i.e., the 
An£ values. It thereupon computes the necessary perturbation func
tions, forms the perturbation matrix, and generates the new design 
via equation (1), which it can make available on punched cards. It also 
prints the modal masses, the perturbation matrix, the determinant 
of the perturbation functions that comprise the new design, and the 
root-mean-square change in the element thicknesses. Finally, via a 
subroutine called NASTDL, it computes the various perturbations 
that may be expected, even for the parameters that are unconstrained, 
by a formula that is more accurate than the perturbation formula used 
for the inversion process [1]. 

TESTNASTY Program. This program will print the values of the 
perturbation functions formed by NASTY, and compute the Rayleigh 
quotients (the ratio of maximum potential energy to maximum kinetic 
energy in the vibration cycle) and the check for orthogonality of the 
stiffness functions [1]. It will also compare NASTRAN computations 
of the variation modes with holographic data when the vibration mode 
is a scalar function. It does this by computing the mode-function value 
of the NASTRAN solution at the center of each section of the struc
ture for which the holographic data have been digitized. 

C2 Program. This program takes NASTRAN solutions for the 
vibration modes of an original and modified structure, and computes 
the admixture coefficients that best describe the new modes as a series 
of the old modes. 

DISP2V Program. This program computes vectorial displace
ments, in one plane, of a plate or shell from data provided by two 
holographic interferograms of a vibration mode. (The third compo
nent is assumed to be zero). By selecting the centers of the sections 
of the interferograms to be digitized so that they correspond to the 
NASTRAN grid points, direct comparison can be made to the NAS
TRAN analysis. 

A n a l y t i c a l and E x p e r i m e n t a l I n v e s t i g a t i o n s 
NASTRAN Modeling of the Vibration Modes. The first com

putations performed were the NASTRAN analyses of both a uniform 
plate and a uniform shell segment. The plate was 15.24 cm long by 12.7 
cm wide by 0.317 cm thick, and the shell segment was a 45 degrees arc 
of a cylindrical shell, 7.62 cm long, with an outer radius of 7.62 cm and 
a thickness of 0.317 cm. Schematic illustrations of the structures, as 
divided into triangular elements for the NASTRAN analyses, are 
presented in Fig. 1. Material parameters were taken to be: Young's 
modulus, E, 6.1 X 1011 dynes/cm2; density, p, 2.7 grams/cm3; and 
Poisson's ratio, v, 0.31. (These were experimentally determined for 
an aluminum alloy available in stock). The boundary conditions for 
the clamped edges were imposed by requiring that the displacements 
and rotations of the grid points along the clamped edges by zero. 

Real structures were built to check these models. The comparison 
of the mode frequencies of the structures, as obtained via NASTRAN 
and experimentally, are presented in Table 1 for the first three vi
bration modes. 

The NASTRAN computations of the frequencies for the vibration 
modes of the plate are all lower than the experimental values by ap
proximately 14 percent. Four percent of the difference is due to the 
thickness of the experimental plate (0.33 cm not 0.317), while the 
remaining 10 percent is quite probably due to a premature cutoff of 

Table 1 

Vibration 
Mode 

fl 

f2 

f3 

Vibration 
Mode 

fl 

f2 

f3 

Plate 
NASTRAN 

105.6 Hz 

293.3 Hz 

642.2 Hz 

Experimental 

120.6 Hz 

333.8 Hz 

730.6 Hz 

Shell 
NASTRAN 

898.7 Hz 

1280.0 Hz 

4118.0 Hz 

Experimental 

806.0 Hz 

1380.0 Hz 

4080.0 Hz 

CLAMPED EDGE 

A 

Fig. 1 Element break-up of a cantilevered plate and a cantilevered segment of a cylinder 

Journal of Engineering for Power APRIL 1981, VOL. 103 / 321 
Downloaded From: https://gasturbinespower.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



the iterative solution for the eigenvector in the NASTRAN compu
tations. The consistency suggests a systematic error, and this is sup
ported by the Rayleigh quotient checks presented later. 

The NASTRAN computations for the modal frequencies of the 
shell give results that lie both above and below the experimental 
values. It is suspected that the first mode frequency, which is in error 
by over 10 percent, may be the victim of a difficulty in adequately 
modeling the boundary condition where the shell is attached to the 
base. 

System Checks. The mode shapes for both the plate and the shell 
were compared to holographic results. The errors found were quite 
small and within the accuracy of holographic measurement. In the 
case of the shell, the holograms were recorded with two illuminations 
so as to provide vectorial mode shapes. 

The next computations involved the orthogonality checks and 
Rayleigh quotient checks. The former measure the degree to which 

. the stiffness functions between modes are orthogonal, and the latter 
measure the ratio of maximum potential to maximum kinetic energy 
during the vibration cycle of a mode [1]. The orthogonality parameters 
should be zero and the Rayleigh quotients should be unity. These 
results are presented in Table 2. 

Table 2 

Mode Index 
(nk) 

1 , 2 

1 , 3 

2 , 3 

Mode Index 
(nk) 

1 , 1 

2 , 2 

3, 3 

Orthoqonality Parameter 
Plate Shell 

-.01141 

-.00019 

+.00309 

-.000004 

+.085832 

.000000 

Rayleiqh Quotient 
Plate Shell 

1.0735 

1.1047 

1.1082 

1.0282 

1.0245 

1.0852 

\ ^ 03 

.13 \ 

.01 / 

/ -.02 

\ . .01 

.04 \ . 

.02 / 

/ .oa 

.20 \ 

.15 / 

/ .15 

.23 \ 

.26 / 

/ .28 

.09 / 

/ -.09 

N. -.07 

-.03 \ . 

- W / 

/ 04 

\ . .08 

.10 >v 

14 / 

/ 12 

N. .15 

.17 \ 

.19 / 

/ .19 

\ ^ .23 

.28 \ ^ 

\ - . 1 8 

08 \ . 

-.07 y 

/-.02 

N. .02 

.04 \ ^ 

.08 / 

/ .08 

\ 10 

.13 \ 

.14 / 

s 12 

\ '3 

.16 >v 

.19 / 

/ .18 

-.18 / 

/ - 11 

>v -.06 

- . 0 4 \ 

.01 / 

/ .04 

\ ^ .06 

.08 >v 

.09 / 

y .06 

\ ^ .07 

.09 \ . 

.10 / 

/ .06 

\ . .07 

\ ^ -.10 

-.13 \ ^ 

-.07 / 

/ .01 

N. .02 

.03 X. 

.04 / 

/ .03 

\ ^ .02 

.04 N. 

.03 / 

/ -.01 

\ -.03 

-.01 N. 

-.02 / 

/ -.07 

~12 / 
/ .01 

\ 01 

-.01 \ ^ 

.01 / 

/ OS 

^ v .001 

.01 \ ^ 

-.005 / 

y -.05 

\ - . 0 8 

-.07 \ ^ 

\ -.22 

- , 2 o \ 

N. .11 

-.02 N. 

-.01 / 

/ -.003 

\ . 05 

.004 \ ^ 

- . 0 2 / 

/ -.09 

^ \ -.08 

-.09 \ 

- . 1 3 / 

/ -.21 

-.27 \ ^ 

-.34 / 

/ - . 4 5 

Structural Redesign and Correlation. The next two tasks were 
to redesign the structures and evaluate the results via a second 
NASTRAN analysis. Both the cantilever plate and the cylindrical 
shell segment were redesigned subject to four constraints: (1) lowering 
of the first mode frequency by 5 percent (ACOI/OJI = -.049) (2) raising 
of the second mode frequency by 5 percent (A0J2/002 = +.051), (3) an 
admixture coefficient of the first to the second mode of magnitude 
0.125 (C21 = ±.125), and (4) an admixture coefficient of the third to 
the second mode of magnitude 0.025 (C23 = -.025). (For the plate, 
the C21 parameter was positive, and for the shell it was negative. These 
sign conventions were necessary to generate the same shift in the node 
line of the second mode on both the plate and the shell, and they re
sulted only from a change in the sign conventions between the NAS
TRAN analyses of the plate and the shell.) The results provided 
structures which could be fabricated, and which had root-mean-
square thickness changes of 12.7 percent for the plate and 14.5 percent 
for the shell. 

The new designs, as arrays of the fractional changes in thickness 
of the triangular elements of the plate and shell, respectively, are 
presented in Figs. 2(a) and 1(b). 

The designs of Figs. 2(a) and 2(6) were analyzed by NASTRAN to 
determine the new frequencies and mode shapes of these structures. 
The modes of the original structures were then used to form a series 
to approximate (to least-square-error) the shape of the new second 
mode, and, therefore, to give the resulting admixture coefficients C21 . 
and C23-

The final results are presented in Table 3 together with the results 
predicted by the more accurate perturbation calculation mentioned 
earlier in the description of the CHANGNAST program, and con
sidered further in reference [1]. 

Prat t and Whitney Aircraft provided us with an opportunity to 
evaluate the inverse perturbation technique on a compressor blade, 
which they had analyzed using NASTRAN. A diagram of the mesh 
of blade elements used in the analysis is shown in Fig. 3, and a reso
nance diagram of the compressor, made up of a disk and a set of these 
blades, is presented in Fig. 4. The mode frequencies are plotted as a 
function of speed, along with the engine-order excitation curves. It 
was felt that the vibratory performance of the rig could be improved 
by increasing the frequency of the seventh mode, which, at the max
imum rig speed, had the same value as the eighteenth engine order 
excitation. Thus, the design requirements were to increase the fre-

\ .28 

.11 \ 

-.10 / 

/ n 

- . 0 l \ 

.02 / 

\ 15 

.18 \ 

.15 / 

/ ,12 

.22 \ 

. 2 8 / 

/ .33 

.40 / 

/ .06 

\ .01 

10 \ 

.09 / 

/ .12 

\ 14 

.16 \ 

.13 / 

/ .12 

\ '16 

.17 \ 

.18 / 

/ 21 

\ .27 

. 3 3 \ . 

\ -.16 

.05 \ 

.05 / 

/ .02 

\ .07 

.13 \ 

. 1 3 / 

/ -11 

\ .15 

.16 \ 

.15 / 

/ 15 

\ .17 

.19 \ 

.24 / 

/ .27 

- . 1 3 / 

/ - . 1 3 

\ -.04 

.01 \ 

.06 / 

/ .06 

\ ,1° 
.12 \ 

.13 / 

/ .12 

\ 13 

.13 \ 

.15 / 

/ ' 6 

\ .17 

.23 \ 

\ - . 1 2 

-.05 / 

/ .OOI 

\ .05 

.05 \ 

. 0 7 / 

/ .07 

\ .09 

.09 \ 

.10 / 

/ .10 

\ .09 

.10 \ 

1 2 / 

/ ,11 

- . 1 4 / 

/ - . 0 4 

\ .01 

- . 0 0 l \ 

- . 0 0 3 / 

/ .03 

\ .04 

.05 \ 

.04 / 

/ .04 

\ .03 

.CM\ 

. 0 4 / 

/ .003 

\ -.05 

- , 0 2 \ 

\ - . 1 4 

- . 0 4 \ 

- . 0 4 / 

/ -.03 

\ -.02 

.03 \ 

- . 0 1 / 

/ -.01 

\ -.01 

.01 \ 

- . 0 2 / 

/ -.06 

\ -.11 

-.11 \ 

- . 1 5 / 

/ -.23 

. 1 5 / 

/ -.27 

\ -.13 

- , 0 2 \ 

- . 0 5 / 

/ -.10 

\ -.06 

.01 \ 

- . 0 5 / 

/ -.14 

\ -.16 

- . 1 2 \ 

-A9/ 

/ -.28 

\ -.40 

-.41 \ 

Fig. 2(a) New design for the flat plate. The numbers represent the fractional 
change in thickness of each element (Ah/h) and the clamped edge is at the 
top 
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Table 3 

Constraint 

Change in 1st Mode 
Frequency, Aw,/a. 

Change in 2nd Mode 
Frequency, AIÔ /ID? 

Admixture Coefficient 
1st Mode to' 2nd Mode 
C21 

Admixture Coefficient 
3rd Mode to 2nd Mode 
C23 

Design 

-.049 

+ .051 

Plate 
+ .125 

Shell 
-.125 

-.025 

Plate Results 
NASTRAN 

-.027 

+ .076 

+ .102 

-.021 

Perturbation 

-.037 

+ .067 

+ .124 

-.026 

Shell Results 
NASTRAN 

-.042 

+ .084 

-.112 

-.027 

Perturbation 

-.041 

+ .079 

-.118 

-.028 

quency of the seventh mode by 10 percent while containing the 
frequencies of the first six modes to be unchanged. 

The first seven mode shapes for the blade, as provided by the Pratt 
and Whitney NASTRAN analysis, are presented in Fig. 5. The lines 
represents contours of constaint magnitude of vibration, and the 
resonant frequencies were: first mode-321 Hz, second mode-1,196 Hz, 
third mode-1259 Hz, fourth mode-2515 Hz, fifth mode-2639 Hz, sixth 
mode-3240 Hz, and seventh mode-3,813 Hz. No constraints were 
placed on the shape of the vibration modes, nor on the frequencies 
of the modes higher than the seventh. 

Two passes were run on the compressor blade. That is, we used the 
original NASTRAN analysis of the blade and the CHANGES pro
gram to design a new blade (new thicknesses), and the NASTRAN 
analysis of the new blade, using the new thicknesses, was again run 
through the CHANGES program. On the first pass, as shown in Fig. 
6, our design goal was a zero frequency change for the first six modes 
and a 10 percent increase in the seventh mode. The results of the 
NASTRAN analysis of this first redesign indicated that the greatest 
frequency change among the first six modes was 1.6 percent (first 
mode) while the seventh mode frequency was increased by 6.1 per
cent. 

On the second pass, our design goals were to return the first six 
frequencies to their original values, and to increase the frequency of 
the seventh mode by the remaining 3.9 percent. The results of this 
design change provided a total frequency change of plus 8.7 percent 
of the seventh mode and no change, from the original frequencies, 
greater than 2 percent (shown in the third mode) for the first six 
modes. 

The vibration mode shape of the seventh mode was not constrained 
and did change with each redesign, as can be noted by observing line 
number 3 in each of the three diagrams illustrated in Fig. 7. Figure 
8 shows the polarity of the thickness changes for the blade elements; 
the blackened elements are those that were thinned by the design 
process, and the white elements are those that were thickened. Thus, 
it can be seen that there will be a change in the airfoil shape. To ex
amine this effect, we looked at the airfoil shape at the tip and at 70 
percent span which were chosen not because they are typical, but 
because they are the spans with the largest changes in thickness. To 
get a rough plot of how the airfoil changed, we straightened out the 
cord and made the elements of equal size. Thickness changes were 
symmetrically distributed between the two surfaces, and are plotted 
in Figs. 9 (tip) and 10 (70 percent span) using an exaggerated scale 
of 0.1 in..of thickness (vertical), to several in. in length (horizontal). 
The distribution of the centers of the elements (black dots) lie along 
two lines. Therefore, we have drawn a profile for each line. The upper 
row of centers corresponds to the upper airfoil shape, and the lower 
row of centers corresponds to the lower shape. At the tip, the airfoil 
has been thinned at the leading edge, and then thickened, by ap
proximately 25 mils, farther to the left. At the 70 percent span point, 
the new shape is also irregular, but here the new blade is thicker where 

Fig. 3 Element break-up for a compressor blade 
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Fig. 4 Resonance diagram lor a disk with a set ol blades 

the tip airfoil was thinned. It is our feeling that the individual varia
tion in thickness is not as important as the overall envelope of thick
ness, and we are quite confident that these element thicknesses could 
be smoothed without changing the new mode properties. 

Discussion 
The technique of inverse perturbation has been shown to work with 

finite element vibration analyses as inputs. The results obtained with 
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Fig. 5 The first seven modes of the blade modeled in Fig. 3. Lines are contours of constant vibration magnitude 
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Fig. 6 Graph of the result of inverse perturbation design. The third bar in each 
section is the design goal, the first bar is the result of the first redesign, and 
the middle bar is the result of second redesign starting from the results of the 
first. 

the compressor blade illustrate a number of important features of the 
program. First, the program was executed only with the 800 elements 
that model the blade and not with the 54 elements that model the root. 
Consequently, the root was not changed in the redesigning of the 
blade, and it seems resonable that other critical regions of the blade 
could also be withheld from the process in the same way. It is also 
interesting to note that, as shown in Figs. 9 and 10, this program 
generates smaller changes in thickness where the blade is already thin. 
These areas make smaller contributions to the perturbation functions 
and, therefore, receive smaller changes. This fact makes it desirable 
to use the program iteratively when a large change in the modal 
frequencies or shapes is attempted. A large change, applied in one 
step, can generate negative thicknesses, whereas its application in 
several small changes would avoid this. If an area became thin as the 
result of the first step in the design, it would not be thinned so much 
in the successive steps because of the reformulation of the perturba
tion functions. 

With regard to Fig. 6, the question may be asked as to whether a 
third iteration could be expected to achieve a design closer to the goal. 
This seems doubtful for the following reason. The resulting changes 
in the first six modal frequencies indicate an error level in the com
putations. This error level appears constant between the two itera-

Fig. 7 Changes in the seventh vibration mode shape 
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Fig. 8 Polarity of design changes of element thicknesses 
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Fig. 9 Simplified representation of change in airfoil at tip 

tions, and the remaining increase desired for the seventh mode after 
the second iteration is of the same magnitude as the error level. Thus, 
a third iteration may have only a random chance of moving toward 
the design goal. The source of this error level has not been established, 
but there is good likelihood that it is inherent in the NASTRAN 
analyses, which are approximate. 

Finally, it is of interest to know how this redesign affected the entire 
•weight of the blade. This may be computed by summing the change 
in masses of all the elements and dividing by the total mass. The result 
is that the blade increased in weight by 4.25 percent. The product of 
element mass times radius from the center of the disk, when summed, 
gives a parameter, which multipled by the square of rotation speed, 
gives the centrifugal loading of the blade. Similarly, the sum of the 
product of element radius times change in element mass normalized 
by the total mass-radius product gives the change in centrifugal 

Fig. 10 Simplified representation of change in airfoil at 70 percent of 
span 

loading. This is an increase of 4.48 percent. 
In conclusion, it must be kept in mind that this program does not, 

as yet, allow for design of such usual parameters as cord length, aspect 
ratio, twist, camber, etc. It is hoped that further work will permit 
modification of this design routine to make it more general. 
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