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Practical Extensions to Cycle Time Approximations
for the G=G=m-Queue With Applications

James R. Morrison, Member, IEEE, and Donald P. Martin

Abstract—Approximate closed form expressions for the mean
cycle time in a -queue often serve as practical and
intuitive alternatives to more exact but less tractable analyses.
However, the -queue model may not fully address issues
that arise in practical manufacturing systems. Such issues include
tools with production parallelism, tools that are idle with work in
process, travel to the queue, and the tendency of lots to defect from
a failed server and return to the queue even after they have entered
production. In this paper, we extend popular approximate mean
cycle time formulae to address these practical manufacturing is-
sues. Employing automated data extraction algorithms embedded
in software, we test the approximations using parameters gleaned
from production tool groups in IBM’s 200 mm semiconductor
wafer fabricator.

Note to Practitioners—We develop extensions to intuitive
closed-form approximations for the mean cycle time in queueing
networks. Such approximations can be used to analyze the
tradeoffs between equipment utilization and cycle time in a
manufacturing facility. The extensions incorporate issues of
practical import that have not been modeled in the literature and
were motivated by the inability of existing models to accurately
describe the performance of manufacturing in IBM’s 200 mm
semiconductor wafer fabricator. The utility of our extensions is
that, using automated data collection systems, we are able to well
model production tools and elucidate the sources of cycle time.

Index Terms—Production management, queueing analysis,
semiconductor device manufacture.

I. INTRODUCTION

SEMICONDUCTOR wafer fabricators, like many manufac-
turing systems, suffer from a myriad of complexities not

commonly accounted for in traditional queueing models. Ex-
plicitly incorporating such complexities into analytic queueing
models for system behavior can result in the loss of model
tractability. As a consequence, exact or numeric solutions
and performance bounds for the cycle time in models such
as multiclass queueing networks and -queues are not
commonly employed by practitioners. Rather, simulation and
approximate queueing formulae are primarily used to evaluate
system cycle time performance. While simulation may allow
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one to incorporate a diverse array of model features, it seldom
provides closed-form expressions for system metrics (such
as the mean cycle time), which can be used to understand
the behavior. Simple approximation formulae can provide
intuition regarding the influence of key parameters on system
behavior and, thus, have arisen as a tool of choice at IBM’s 200
mm semiconductor wafer fabricator for assessing cycle time
performance and identifying improvement opportunities.

Over the years, closed-form rough cut approximations for
the mean cycle time of failure prone queues have been devel-
oped, see [1]–[6]. For a single-server queue, such approxima-
tions agree with exact solutions under specific assumptions on
the distributions and failure characteristics ([7]–[9]) and, in gen-
eral, perform well for multiserver queues. Queueing networks
have been analyzed using approximate coupling terms intended
to capture the essence of interactions between the output of each
queue in the network and the variation in the arrivals to other
queues [10]–[12].

A practical difficulty with the application of performance
evaluation techniques, even when using parameters drawn
from actual manufacturing data, is that the manufacturing
system’s mean performance may not agree with that predicted
by the model. One reason for this is that the approximations
provide mean cycle time values which deviate from the exact
performance of the model. In [12], such errors were frequently
less than 10%. Another source of difference, and the problem
that we address in this paper, is that there may be unmodeled
phenomenon which can contribute substantially to fabricator
cycle time. In [13]–[20], the authors attempt to bridge the gap
between measures of actual system performance and mean
values predicted by simple queueing models such as the M/D/1
queue or, more generally, the -queue. This paper incor-
porates four practical manufacturing realities into a common
closed-form approximation for the mean cycle time behavior
of a -queue in an attempt to expand the practical
applicability of existing approximations. Some of the results of
this paper first appeared in [21].

In Section II, we recall approximate cycle time formulae and
bounds for -queues subject to server failure. Our intent
in this section is to provide a brief survey of exact results, pop-
ular approximations and bounds possessing simple closed-form
expressions, and demonstrate the efficacy and intuitive nature
of the approximations. We extend the approximations for tools
possessing parallel processing capabilities in Section III. This
extension is essential since many important classes of tools in
semiconductor manufacturing possess parallel processing ca-
pabilities (e.g., photolithography cluster tools, copper plating
tools, and ion implant tools). Section IV incorporates the time

1545-5955/$25.00 © 2007 IEEE



524 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 4, NO. 4, OCTOBER 2007

Fig. 1. A multiserver queue.

that a tool remains idle even when available work is present
(often referred to as idle with work in process). Cycle time off-
sets, such as travel time from one queue to another or hold time
(during which a lot is removed from the production queue, pos-
sibly pending the resolution of a process issue), are addressed in
Section V. In Section VI, we incorporate tool failure behavior
allowing for a lot to defect from a failed server and return to
the queue (it can be inferred that typical cycle time approxima-
tions assume that lots are loyal to a failed server) as may be
common for certain tools or lengthy down time events. The im-
plementation of the approximations to tool sets from IBM’s 200
mm semiconductor wafer fabricator is discussed in Section VII.
There we demonstrate that the new formulae can well serve to
elucidate the sources of cycle time in a practical manufacturing
system. Concluding remarks are presented in Section VIII.

II. APPROXIMATIONS AND BOUNDS FOR THE

MEAN CYCLE TIME

Consider a system in which customers arrive to a waiting
room (or queue) of infinite size that is catered to by identical
servers or tools. The service time of a customer at a tool is a
random variable with general distribution and mean (every
service time is drawn from the same distribution). The interar-
rival times between customer arrivals to the queue are random
variables with general distribution and mean (every interar-
rival time is drawn from the same distribution which may differ
from the service distribution). All service and interarrival times
are assumed independent. Arriving customers are served in a
first-come first-served manner (FSCS), though this restriction
can be relaxed (so long the process time for a customer is not
part of the decision). An idle tool accepts a waiting customer
as soon as one is available, only one customer may receive ser-
vice from a tool at a given time, and only one tool may attend to
each customer at a time. Such a system is often ([6], [7]) referred
to as a -queue, following Kendall’s notation [22] (the
first and second indicate the generally distributed interarrival
and service times, respectively, and is the number of servers).
Fig. 1 depicts such a queue. Hereafter, we refer to customers as
lots (a lot in semiconductor wafer manufacturing refers to a con-
tainer filled with up to 25 wafers) and servers as tools.

A. Cycle Time Approximations and Bounds

An important measure of performance in a queueing system
is the total time that a lot spends in the system, termed the cycle
time. For a queue, cycle time consists of queue time
and service time. Based on the work of [1], [2], and [11], the

following approximation for the mean cycle time in a
-queue has been proposed (see [6]):

(1)

Here, the system loading is assumed less than one,
is the number of servers, is the coefficient of variation of

the interarrival time ( , where is the standard
deviation of the interarrival time), and is the coefficient of
variation of the service time ( , where is the
standard deviation of the service time). Note that as the number
of servers increases, the effect of loading on the queue time
is reduced. Also, as the coefficients of variation for the interar-
rival and service times increase, so too does the approximation
for the queueing. The intuitive value of such a formula is clear.
Note that the bounds of [4] could be employed instead of (1) to
possibly obtain a tighter approximation.

It is interesting to compare the mean cycle time prediction
of this simple approximation against exact performance and
simple closed-form bounds. Based on the work of [23] and
[24], queueing texts [25] provide performance bounds for

-queues

A lower bound may be computed [23]–[25] as

where is the random variable for the service distribu-
tion, is its second moment, and is the expected
cycle time for a -queue with arrival process as in the

-queue and service process given by the random vari-
able (so that and ).
In the event that an exact expression is not known for , a
lower bound can be used. When the lower bound is less than
the service time, one can use the service time instead.

The upper and lower performance bounds along with two ap-
proximations for the mean cycle time of an -queue are
shown in Fig. 2 as a function of the loading . Since there is a
readily calculable explicit solution for the mean cycle time [7],
[25], one is able to compare the performance of the quartet of
the bounds and approximations to the true behavior. The Martin
approximation is the name we at IBM Vermont have given to the
formula

which is exact for the -queue. This expression, which
is simpler and less accurate, but perhaps more intuitive, than the
approximations of (1) or [5], suggests that the mean queueing
time in a multiserver queue is approximately that of a single-
server queue with loading . Note that the bounds depicted
in Fig. 2 only become meaningful in heavy traffic (as ).
The approximations of [6] are within 3% of the exact value and,
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Fig. 2. Bounds, approximations, and the exact solution for the cycle time of an
M=M=2-queue.

together with the Martin approximation, are virtually indistin-
guishable from the exact solution at the (very reasonable) scale
employed.

It is important to note that there are other approximations for
the mean cycle time in -queues that can be more ac-
curate, such as those of [4] and [5]. There is, however, an in-
crease in the computation required to evaluate such approxima-
tions and the expressions can be less intuitive.

B. Tool Failure With Loyal Lots

Queues with failure prone tools have been studied since [26].
For the -queue with its tool subject to independent ex-
ponentially distributed available time and generally distributed
repair intervals, solutions for system performance have been
obtained; see, for example, [8], [27], and [28]. For generally
distributed times until failure, bounds have been derived, see
[29]. For a queue with a single tool, the literature addresses dif-
ferent assumptions for how lots respond to a tool failure. Two of
the common behaviors are preempt-resume and preempt-repeat.
The preempt-resume behavior assumes that the service time de-
voted to a lot whose service is interrupted (preempted by tool
failure) is not lost and service is resumed once the tool returns
from failure. Preempt-repeat behavior assumes that service time
is lost and the production run must be started from the beginning
when the tool returns.

Consider such an -queue, subject to preempt-resume
failures, with exponentially distributed available intervals of
mean and generally distributed failure intervals with mean

and coefficient of variation . The mean availability of the
server is, thus, . Let be the arrival
rate of lots, be the service rate and be the coefficient of
variation of the service times as before. The mean cycle time
(see [8]) is

where satisfies . Note that as the
loading approaches 0, one expects no queueing and the mean
cycle time has the form

(2)

where indicates the right-sided limit.
The expression of (2) for the mean cycle time in the low

loading regime is not surprising on account of the following
conceptual argument (which elucidates how the terms arise and
will guide our development later). Consider a lot arriving ran-
domly to an empty queue (zero loading implies zero probability
of queueing). With probability , the arriving lot faces a
failed tool and must wait a certain amount of time for that tool
to return to service [let (residual repair time) denote its mean].
Once the tool is available, the lot requires on average time
units of service from the tool. During this time, the tool may fail
a number of times, and each such failure adds an additional re-
pair time (with mean ) to the overall cycle time. The number
of failures during the process time is the number of counts of a
Poisson process of rate in the time interval (since the
time until a failure is exponentially distributed with rate ).
Combining these terms gives

The summation is just the expected number of counts of the
Poisson process, which is . Hence

The mean residual repair time is , see [7], so
that this expression agrees with (2). Intuitively, the low loading
cycle time consists of the expected time until the server is first
available plus the amount of time it takes the server to complete
the work given that on average the server is available a propor-
tion of time equal to .

Approximations have been proposed for -queues with
preempt-resume tool failure (exponential time to failure and
general repair distribution). The following is suggested in [6]:

(3)

where and the effective coefficient of variation of the
service time (intended to capture the essence of the system
behavior in response to less than perfect server availability) is

Fig. 3 compares the exact performance of an -queue
subject to tool failures with the approximation of (3). Here the
failure and repair times are exponentially distributed, preempt-
resume service is employed, , , and .
The squared coefficients of variation are all 1.0 for the expo-
nential distributions and the average availability of the tool is
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Fig. 3. Exact performance and an approximation for the cycle time of a failure
prone M=M=1-queue.

. Particularly in the medium to
low loading regime, the approximation is unsatisfactory. Note
that it is in this regime that one is cautioned about using such
approximations [4].

For multiple tools serving the queue, assuming preempt-re-
sume tool failure behavior, the approximation of [6] becomes

(4)

where and . As the loading ,
. From this we infer that the approxima-

tion should serve best when the lots are assumed loyal to a
failed server, though the residual repair time is not included.
One might also consider this approximation as a compromise
between the behavior of loyal lots and lots that defect from a
failed server and return to the queue (Section VI discusses the
distinction in more detail).

Fig. 4 compares the exact [9] and approximate expres-
sions above for the mean cycle time performance of an

-queue subject to tool failures. The failure and repair
times are exponentially distributed, preempt-resume service
is employed, lots defect from a failed server and return to the
head of the queue, , , and . The
squared coefficients of variation are all 1.0 for the exponen-
tial distributions and the average availability of the tool is

. The approximations perform
reasonably well (see Section VI).

III. TOOLS WITH PARALLELISM

Many tools employed in the manufacture of semiconductor
wafers conduct multiple operations on each wafer sequentially
within the same chassis. A lot may enter production once all
wafers of the preceding lot have completed the first operation.
A special class of such tools is the cluster tool which can
serve to model the photolithography cluster tool [16], [18].
For brevity, let all lots consist of wafers. Consider a tool

Fig. 4. Exact performance and approximations for the cycle time of a failure
prone M=M=2-queue.

comprised of modules, each of which can provide a distinct
necessary operation for up to wafers simultaneously (require
that , preventing partially filled module). Let

denote the deterministic process time for the wafers in
a module. A lot is processed in groups of wafers, each of
which proceeds sequentially through the modules in the tool
as they are available. When the first module completes the last

wafers in a lot and is vacated, the subsequent lot may enter
production. Refer to such a tool as a parallel processing tool.

Label lots in the order in which they are processed, so that lot
follows lot . Letting denote the maximum throughput

rate (lots per unit time), denote the total service time for a
lot, denote the completion time of lot , and denote the
time lot begins production, we have

is the time between the completion of lots, so long as the tool
is not idle between them. The symbol is, thus, a measure of
the achieved production parallelism. The parallelism achieves
its maximum value when a lot is started immediately upon va-
cancy of the first module. Use to denote the maximum paral-
lelism, so . Note that is not equal
to .

The following theorem is suggested in [16] and [17] and
proved in [18]. It is an extension of [30] to batch arrivals.

Theorem 1: The mean cycle time for a parallel processing
tool with exponential interarrival times of rate and determin-
istic process times is

(5)
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Here, and for the deterministic process time.
We explicitly include the term (even though its value is 0

in the theorem) to suggest the appropriate place for such a term
for the case of more general service distribution. Note that the
queueing term is proportional to the time that it takes for a lot
to vacate the first module (thereby allowing another
lot to enter production). In fact, this time is the inverse of the
maximum production rate .

The insight of Theorem 1 is that, for deterministic module
process times, the first module behaves as an -queue
with service rate . The subsequent modules simply add addi-
tional service time, but are irrelevant to the queue.

As a first-order attempt to incorporate parallelism into our
approximations for a failure prone -queue served by
parallel processing tools (each with mean service time taken
from the general distribution and maximum parallelism , so
that ) with arrival rate , we resort to the following
two assumptions.

Assumption A1: The time for lot , with service time , to
exit the first module is given as .

Assumption A2: Each lot, upon exit from the first module, is
considered to depart the system. The parallelism is modeled as
additional service time (equal to ) subsequent to the
departure and independent of the system state. This additional
time is delayed each time the server fails.

Queueing time is unchanged and (4) becomes

(6)

where and is as in Section II. The use
of the same follows since, if and denote the mean
and standard deviation of the process time, respectively, then
the mean and standard deviation of the time to vacate the first
module is and . The coefficient of variation of the
time to vacate the first module is .

We thus model the cycle time by considering the first module
to be a -queue and incorporate the parallelism as an
added post production increase in the process time (which is
delayed when its server fails). Of course, this blithely ignores
the fact that for true parallel processing tools the modules after
the first are shared by all lots on the tool and the interactions
can not truly be ignored. Thus, variation in process times and
nonideal tool availability will wreak havoc on the neat formula
(5). However, the approximation is exact for and ,
if the service time is deterministic and interarrival times expo-
nential, and does begin to capture important features of parallel
processing tools in the general context.

IV. IDLE WITH WORK AVAILABLE

In many manufacturing systems, including both manual and
automated systems, tools may lie fallow while awaiting lots that
are considered to be in queue (by virtue of having completed the
previous stage of production). Such a tool is said to be idle with
work in process, or idle with WIP. An idle with WIP condi-
tion can occur for many reasons, including lack of an operator
and delays between the arrival of a lot to the tool area and its

Fig. 5. Approximate cycle time performance for a G=G=m-queue with and
without idle with WIP.

subsequent loading onto the tool (e.g., the automated material
handling system may only begin to move a lot to a tool once the
previous lot has vacated the tool). Algorithms for measuring the
duration of idle with WIP have been proposed in [13]. There the
idle with WIP time is termed operator and deployment loss.

Suppose that each lot experiences a random preproduction
delay which is independent of the production time itself, during
which time the tool is idle. Let and denote the average and
standard deviation, respectively, of the idle with WIP time as-
sociated with the loading of each lot. To incorporate this feature
into a -queue with parallel processing tools, we con-
sider the idle with WIP to be an independent random increase
in the process time (note that this is a special case of the nonpre-
emptive outages discussion of [6, p. 258]). As a consequence,
the effective process rate and effective squared coefficient of
variation become

where is the standard deviation of the service time. The re-
sulting cycle time approximation for a -queue with idle
with WIP is

(7)
where and all variables not defined in
this section are as in Section II. Note that the effective process
time , and as a consequence the effective loading , are
increased above the case when there is no idle with WIP (i.e,

). The resulting cycle time curve is thus shifted “up and
to the left,” as depicted in Fig. 5. There, perfect tool availability
is assumed , , , , ,

, and . The effective process time is thus 1.1
time units per lot, while time unit per lot.
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While the time that tools are idle with WIP in queue can
be measured [13], it generally consists of three parts. The first,
which is modeled above, is caused by activities that cannot be
avoided or conducted while the tool is busy. Examples include
time required to load a tool with a single load port (when the
load time is not considered as part of the production time) or a
setup that must be conducted after the lot is loaded on the tool.
The second source of measured idle with WIP time is caused by
activities that can be performed while the tool is busy, but are
not. These include administrative tasks that an operator may be
required to perform as a routine part of the job. A third source
of idle with WIP time is insufficient track or operator resources
resulting in contention that leaves the tool idle.

Typically, as the loading and cycle time on a toolset increase,
the operator or track resources dedicated to serving the toolset
also increase. In addition, tasks that can be performed while the
tool is busy are conducted more often during tool busy time at in-
creased loading. As a consequence, the measured idle with WIP
time decreases at higher loading! Thus, a measured value of idle
with WIP obtained at a specific loading will not necessarily
apply for a different value of loading. One could consider this
as rendering the value of a function of loading. In general,
we will ignore this fact and assume the is constant for pur-
poses of generating performance curves which are a function of
loading.

V. CYCLE TIME OFFSETS

In many manufacturing facilities, production involves activi-
ties not requiring the capacity of a wafer processing tool. Such
activities may include the travel of lots from one tool group to
the next, removal of a lot from the queue pending the resolution
of a process issue (termed hold), or delay in removing the lot
from the tool once production has ended. These activities can
often be considered as independent of the queue length of the
tool group. As such, the total mean cycle time for a lot requiring
service from a tool group is the mean cycle time incurred during
travel, hold and post production unload activities plus the mean
cycle time incurred in queueing and process time.

Let denote the mean time spent by a lot traveling from the
previous stage of production to the one of interest, including
queue time for the travel service and travel time but excluding
possible time waiting for the destination tool group to request
the lot (this measurement perspective is key to allowing one to
suppose independence of the travel time from the tool queue).
Let denote the mean time spent by a lot on hold. Denote by
the mean time each lot waits to be removed from the tool (and is
thereby unavailable to begin transport to the subsequent stage of
production). Assuming independence of the cycle times at each
phase, the approximation of (7) becomes

(8)

where all variables have been defined previously. The approx-
imation suggests that if the independent cycle time offsets are
reduced, the overall cycle time will improve. The consequence

of this for a factory, which consists of many such tools, is that
if the average travel time or hold time in the entire factory can
be reduced the overall cycle time of the entire facility should
improve.

VI. DEFECTION OF LOTS FROM A FAILED TOOL

As discussed in Section II, the previous approximations may
perform poorly in the low to moderate loading regime when the
tools are failure prone. Note that when the loading
(approaches 0 from the right) and ignoring cycle time offsets
and idle with WIP, (4) provides the cycle time approximation of

. If the tool average availability is 80% (not an unrea-
sonable number for an implant tool including planned and un-
planned down time), the cycle time prediction is thus .
This prediction is independent of the number of tools, a general
behavior which is correct when lots are loyal to a failed tool.
However, when lots are allowed to defect from a failed server
and return to the head of the queue (where they may immedi-
ately continue service with another server if one is available),
the low loading cycle time should be a function of the number
of servers.

Allowing lots to defect from a failed server and return to the
head of the queue, for low loading (there is small probability of
queueing behind other lots) an arriving lot expects that there is
only a delay in entering production when all servers fail. Once
production begins, the average proportion of time that at least
one server is available is

. Thus, we roughly expect that

where is the residual time until at least one server returns
from failure, given that all are down.

Final Approximation: The mean cycle time for a
-queue with exponential time to tool failures, gen-

eral repair times, preempt-resume processing, lot defection
from failed servers to the head of the queue, parallel processing
tools with maximum parallelism , idle with WIP, and cycle
time offsets is approximately

(9)

Here, the effective process rate and effective squared coefficient
of variation are as in Section IV.

Note that the idle with WIP portion of the effective process
rate has also been deflated here. This agrees with the interpre-
tation of the idle with WIP as a one time preprocessing. If the
idle with WIP is, in fact, to be interpreted as loading the tool,
our cycle time approximation may be too low. Since each time
the server fails, the idle with WIP will occur again when loading
the lot on another tool. The assumption regarding the character
of the idle with WIP will not matter when we implement the
approximations as the idle with WIP time associated with each
lot will be explicitly measured (it will not then matter how it
arises).
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TABLE I
MEAN OF MINIMUM OF RESIDUAL REPAIR TIMES—E[R ]

The residual time until a server is available
, where is the residual repair time

of the th tool. Let denote the cumulative distribution
function of the repair time. The residual repair time has
probability density function given as (see [7, p. 172])

In general, may not be easy to calculate. Table I pro-
vides values for the cases of deterministic and expo-
nential repair times. For practical purposes, one could
use these values to approximate the value for an unknown repair
time distribution with calculable .

The approximation of (9) incorporates many features of prac-
tical import which have not, to the authors’ knowledge, been in-
cluded in existing models. In the subsequent section, the efficacy
of the new approximations are demonstrated by application.

VII. IMPLEMENTATION OF THE APPROXIMATIONS

The extensions to cycle time approximations proposed were
inspired by the study of tool groups in IBM’s 200 mm wafer
fabrication facility. Numerous studies had been conducted
and algorithms developed to close the gap between observed
tool performance and predictions given by the -queue
model, or more generally, the -queue model (see, for
example, [13]–[15] and [18]–[20]). Yet, for many tool groups,
the cycle time approximation formulae did not adequately
reflect the measured system behavior. A primary reason for the
remaining discrepancies was unmodeled system dynamics. We
have attempted to capture the essence of these dynamics with
our extensions.

A. Assumptions and Measurement of Parameters

There are three notable caveats and some further comments
on parameter estimation worth mention prior to delving into im-
plementation examples.

First, no tool group at IBM’s 200 mm wafer fabricator (even
with the extensions) is actually a -queue operating in
equilibrium. Lot process times are not drawn from a single prob-
ability distribution, but rather are close to deterministic with du-
ration dependent upon the stage of production. The tool groups
are not independent of each other; each is part of a queueing
network. Further, fabricator demand cycles subject each group
of similar tools to time varying arrival rates.

Second, it can be difficult to determine the number of servers
that may provide service to a given lot. For example, even
though a fleet of ion implant tools may contain say a dozen

similar tools, each lot may only be officially qualified (for yield
loss detection) to run on three of the fleet at a given stage of
production. Further, tools may not be grouped in the same geo-
graphic area and even if they are, bays and operator assignment
can create virtual subsets of tools. As a consequence, a small
number of servers are typically available to a given lot (a fleet
of similar tools operates as a collection of queues, each with a
much reduced number of servers).

Third, though the approximate cycle time curves are a func-
tion of loading, we have assumed that no parameter changes
with the loading. One parameter which we have observed to
change with loading is idle with WIP, as discussed in Section IV.
The performance approximation remains accurate for a given
loading level studied, however, one must remain cognizant that
parameters could change with loading. Note that the coupling
terms of [11] and [12] use a loading dependent coefficient of
variation of the interarrival times.

In IBM’s 200 mm wafer fabricator, the CACTUS measure-
ment system [13] enables the acquisition of the required statis-
tics and parameters. The measurement algorithms determine the
idle with WIP experienced by each lot during its sojourn through
a given tool group. As such, there is no need to specify the char-
acter of the idle with WIP, as discussed in Section VI. In addi-
tion, means of the process time , travel time , hold time

, post production unload time , loading (mostly),
and availability are calculated automatically by the data ac-
quisition systems. Other data was calculated manually.

The parameters used in the examples of Sections VII-B and
VII-C were extracted from a two week time period. The param-
eters were then used to generate a performance approximation
as a function of loading (9) and the achieved mean cycle time
during the same period was measured. Longer time frames en-
able one to more accurately capture random events which occur
at slow time scales. However, many of the random events occur
with mean on the order of one hour. Hence, observing a two
week period for multiple tools enables us to observe on the order
of thousands of events. The parameters used to construct the
mean cycle time approximation in the example of Section VII-D
were obtained from about one year of data; the actual perfor-
mance points were observed during that time period. In the first
example of Section VII-B, we show the calculations necessary
to reach the final mean cycle time approximation. Otherwise,
we immediately report the final approximation.

B. Copper Plating Example

The normalized parameters provided in Table II were ob-
tained from the study of two weeks of data from a copper plating
tool group in IBM’s 200 mm wafer fabricator. We purposely
omit the manufacturer of the tool and the time frame under con-
sideration. There are six tools in the fleet, roughly segregated
into two (not too distant) groups.

With these parameters, one obtains
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TABLE II
MEASURED TOOL PARAMETERS

Fig. 6. Normalized cycle time (XF) prediction and actual performance for a
copper plating toolset with six servers. The approximation is within about 9%
of actual.

Setting the value of time units, the
cycle time approximation of (9) becomes

For the same time period from which the parameters were ob-
tained, the measured loading was and the mea-
sured normalized mean cycle time was 2.73 (when normalized
by the mean process time, cycle time is termed flow factor or
X-factor). The actual performance and the approximate perfor-
mance curves are depicted in Fig. 6. There, the first horizontal
line indicates the mean process time and the second the mean
process time plus the mean cycle time offsets. The curve above
the lines indicates the additional cycle time incurred due to idle

TABLE III
NORMALIZED CYCLE TIME FOR COPPER PLATING

with WIP and queueing. For comparison, the approximation of
(6), which includes only the parallelism feature, is plotted as
well. Note the difference between the approximations.

Table III compares the normalized mean cycle time predic-
tions for an -queue, the failure prone -queue
approximation of (6) (which includes only the parallelism fea-
ture) and the extended approximation of (9) with the actual per-
formance for the loading . All models include the
idle with WIP in the effective process rate. The prediction of
(9) performs well. Note that the number of servers appears too
high, perhaps on account of the fact that the tool group has some
geographical separation.

C. Many Server Chemical Mechanical Polish (CMP) Example
at High Loading

In this section, we study a chemical mechanical polish (CMP)
tool group in IBM’s 200 mm wafer fabricator consisting of 38
essentially identical tools grouped into a single geographical
area. The performance parameters used were obtained from two
weeks of data. We purposely omit the type of polish, the manu-
facturer of the tool, and the time frame under consideration. In
addition, the time units have been normalized.

The cycle time approximation of (9) is

The measured loading for the time period from which the pa-
rameters were obtained was and the measured nor-
malized mean cycle time was 3.33 time units (the flow factor or
X-factor). The actual performance and the approximate perfor-
mance curve are depicted in Fig. 7. The number of servers and
the cycle time offsets play important roles.

Table IV compares the normalized mean cycle time pre-
dictions for an -queue, the standard failure prone

-queue approximation of (6) (including only the paral-
lelism feature), and the extended approximation of (9) with the
actual performance for the loading .

The prediction of (9) does not perform as well in this case as
does the approximation of (6). However, it much more clearly
demonstrates the components of the cycle time.

D. Chemical Vapor Deposition (CVD) Example

We consider the approximation based on one year of data
from a chemical vapor deposition toolset (CVD). This class of
CVD tool is a cluster tool with maximum achievable parallelism
of . Again, we omit the details of the tool and time
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Fig. 7. A comparison of actual and predicted normalized cycle time (XF) in a
38-tool CMP toolset.

TABLE IV
NORMALIZED CYCLE TIME FOR CMP: 38 TOOLS

Fig. 8. One year of data, aggregated by month, is used to predict the normalized
cycle time (XF) in a CVD toolset with parallelism and three servers.

frame. With the measured parameters, the (normalized) cycle
time approximation of (9) becomes

The actual performance for about one year aggregated every
four weeks and the approximate performance curve are depicted
in Fig. 8. For comparison, the approximation of (6), which in-
cludes only the parallelism complexity, is plotted as well. It ap-
pears that the new approximation performs well.

TABLE V
AVERAGE OF THE XF DATA POINTS FOR CVD

An interesting issue arises when studying data collected from
such a long time period. The loading during the study varied
quite significantly from about 0.60 to 0.90. This reflects changes
in the fabricator loading as discussed above. During each four
week time frame, the approximation performs well (noise about
the mean value is expected). Table V shows the overall actual
mean cycle time (normalized and termed XF) for the entire time
frame. The table also gives the overall predicted mean cycle time
(normalized), which has been obtained by averaging the cycle
time approximations we obtain for the loading at each data point
(weighted by the number of lots, naturally). The resulting error
is about 2.7%.

VIII. CONCLUDING REMARKS

By incorporating features found in practical manufacturing
systems, we have suggested extensions to popular and intu-
itive closed-form approximations for the mean cycle time in

-queues. We tested the approximations using data
obtained from IBM’s 200 mm semiconductor wafer fabricator
and found, not only that the extended approximations per-
formed well, but that the model features incorporated played a
significant role in the system performance.

It is important to note that the particular form of the loading
term [e.g., ] used in the mean cycle time approxi-
mation is not important to our extensions. One could readily use
others.

Many opportunities remain. Though we do not study them
here, batch processing tools should be amenable to our ap-
proach. The model used to address production parallelism
ignored interactions between lots with different production
times (i.e., nonzero ) and nonideal availability. Further
investigations should explore these issues. A more accurate ap-
proximation for idle with WIP would be obtained by separately
measuring and treating the true increase in effective process
time and the time that can be performed in parallel. Algorithms
to deduce the effective number of servers should be investi-
gated. A method for determining the tendency of lots to remain
loyal or defect from a failed tool should be investigated as most
tool sets will experience both. More rigor could be applied to
the resulting approximation for defection. Investigations into
the validity of assumptions such as the additivity of the cycle
time offsets could be conducted. Networks of such tools should
also be studied to assess the effect of the practical dynamics
discussed.
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