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concentrated force are allowed to change independently with time. It is shown that
there are two kinds of dependence on the load path. For certain directions of the
Sforward tangent, the dependence is strict in that the deformations depend on the
Sull details of the path. For other directions, however, the dependence is loose, and
the deformations do not depend on the exact nature of the path as long as the
Sforward tangent falls within given bounds. The problem also shows that, given an

initial state, the load space can be subdivided into different regions each
corresponding to a certain mode of deformations.

Introduction

To conclude the discussion of the example for friction in
elasticity, which was treated earlier for a constant direction of
the applied force [1, 2], we consider the more general case
when the two components of the force can change in-
dependently. This will illustrate the dependence of defor-
mations on the load path. A particularly interesting aspect of
friction in elasticity, which emerges from the analysis, is that
there are two types of dependence. For certain directions of
the load path the dependence is strict in that the deformations
depend on the exact nature of the path. For other directions,
however, the dependence is loose, and the slip process does
not depend on the detailed nature of the path, as long as the
forward tangent of the path falls within certain bounds.

The geometry of the problem is shown in Fig. 1. The two
components of the force P(f) and Q(¢) can vary independently,
but the restriction P(f) = 0 is imposed to avoid singular
normal and shear tractions on the cut because they require
separate considerations [1]. The extent of the separation zone
0 < x < a and the distribution of normal tractions on the cut
do not depend on the slip process, and from [1]

k—1 P

=D o M

172
N(x):~p"°<x~;f> H(x—a), 0<x<oo @

Suppose that there are initial shear tractions S;(x) on the cut
due to some previous loading. The solution for the next
segment of the load path can be constructed by distributing
additional dislocations with the density B$(x) on a finite
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interval. This dislocation distribution gives the corrective
shear tractions

, 0<x<o 3)

S.00= — 2p S max®) Bi(§)dg

w(k+1) Jo E—x
and the total shear tractions, which must satisfy the ap-

propriate boundary conditions on the separation and slip
zones, are then

S(xy=5;(x) + S.(x) C))
The upper limit of integration in (3) denoted symbolically by
max(b) must be chosen so that all of the new dislocations are
included, even if they become locked into a stick zone in case a

slip zone shrinks or there is no slip zone [2].
The friction law can be written as

S() = —fN(x)sngV(x), 0<x<b 5)
valid in both the separation and slip zones. Substituting from
),

xX—a 172
Sx)=sp* (—;—) H(x—a)sgnV(x), 0<x<b ©6)

and consequently
Smax“» BL(®)dE  w(k+1)
0 [ 2u

{5.00

X—a

—fp= ( ) v H(x—a)sgn V(x)} , O<x<b (1)

where 0 < x < ais the separation zone and ¢ < x < b is the
active slipe zone.

X

Expanding Slip Zone

We take for the first initial state that reached by loading
with a force in a constant direction to the point (P,,Q,) in the
P,Q plane. It can be assumed without loss of generality that
Q, > 0. Then the extents of the initial separation and slip
zones, and the normal and shearing tractions are given by {1}
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Fig.1 Geometry of the problem
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x__al 172
Nl(x)=—p°°(—;-—) Hix-a), 0<x<ow (10)

x—a,

s109=0={ - (224) " Hee-a)

N (x_xb‘>lf2H(x_bl)}, 0<x<o (1)

It will be seen that the same initial state can be reached by
other quite different load paths.
For an expanding slip zone

db

— >0 12

ar (12)
and the upper limit of the integral in (7) can be taken as b. It is
not known, however, where b falls in relation to @, and b,
and the right side of (7) must be modified by introducing the
Heaviside step functions H(b —a,) and H(b — b,) to obtain the
governing integral equation. Thus,

i Bf;(f):é _ w(:;: D e - (=) " Hec-aysgny

(1) " He—a)HO - ay)
+ <x—xbl

The solution of the integral equation that is singular at x = 0
but bounded at x = b is

12
) H(x—b,)H(b—bl)}, O<x<b (13)

Bi(x)= K-;lfp {— (?) . H(a—x)sngV

b—x\ 12
+(T> [sgnV+H(b—a,)—H®b-b,)]

a,—x 1/2
~(22) 7 He - 0HO-a)
( bl —X
+
X
The corrective shear tractions computed from (3) are in turn

S.(x)=/p* {(x_;g)r”z H(x—a)sgnV

1/2
> H(b, —x)H(b—b,)}, O<x<b (14)

+ (’be) " He— B[ - senV — H(b - a,)+ H(b— b,)]
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+ (x xa') H(x—a,)H(b—a,)

_b 172
—(xx‘) H(x—bl)H(b—bl)}, O<x<oo  (15)

yielding the total shear tractions

sw = p{(X22) " Hee-apseny

+ (’%b) " He— bylsgnV+ H(b—a,)~ Hb— b))

_ (x“’l ) v H(x—a)[1—H®b-a,)]
X

X — bl 172
+ ( 5 ) H(x-b)1 —H(b—b,)]} , 0<x<oo (16)
The conditions remaining to be enforced are that the slip
velocity derived from the dislocation distribution as
k—1 . X,
Vix)=— 0 o- S Bi(bdt an
I 0

should not be inconsistent because of the sgn ) term in B (x),
and that the tangential shift corresponding to B$(x) vanishes
at the end of the active slip zone, or

k—1 b
h.(b)= i (01 —D- So Bi(£)ds=0 (18)

The time derivative of the dislocation distribution is

1
Bi(x)= “F Jo* {—
4u

@) H(a—-x)sgnV

* ey elsen Y+ HO—a) = HO b}, 0<x<b

(19)

which from (17) yields the slip velocity

Vo) = K+ lf { wasgnV + blsgnV + H(b—a;)

— H(b—b,)]cos~! (1— %")} a<x<b  (20)

Since V(b)=0, we can express b in terms of ¢ and Q, and
substituting for a from (1),

Vix)= —(fPsgnV Q){vr cos"_(l 2;)},

a<x<b 1
It is seen from (21) that. V(x) is of the same algebraic sign over
the whole slip zone, and that for its sign to be consistent with
the previous relations we must have

sgn(fP sgnV — Q)=sgnV (22)

Thus
V(x)>0 requires fP— Q>0 or dQ<fdP (23)
V(x) <0 requires fP+ Q>0 or dO> —fdP  (24)

These are conditions on the forward tangent of the load path,
and they are shown graphically in Fig. 2. It is seen~that the
conditions for V{(x)>0 and W(x)<0 overlap in the right
sector, and that the left sector remains empty.

The condition (18) that the tangential shift vanishes at x =
b gives upon substitution of (14) and (9)
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Fig. 2 Conditions on the directions of the forward tangent for loading
from the initiai state

_ k—1 2
blsgnV+H(b—a))-H(b-b))]= Tt D) I~ +asgnV
—a\[1-H(b~a\)]+b,[1-H(b~-by)] (25)

The evaluation of this relation is tedious because a large
number of cases must considered individually. Most of them
lead to contradictions and are not possible. Consider, for
instance, the possibility V(x) <0 and a<b <a, <b,, for which
(25) gives

k—1
b= 7r(K+1)fp% +a+a;—b,
Then using (1), (8) and (9), it is seen that
a<b requires Q>0Q,
b<a, requires Q<Q, +f(P—-P))

a<a, requires P<P,

which makes the point (P, Q) fall in the empty sector, so that
it cannot be reached under the restriction (24) for V(x) <0.

A full investigation of the various possibilities reveals that
only two cases can be realized under the assumption of
db/dt>0. They will be called regimes I and II and are
described in the next section.

Regimes 7 and I7

Regime I corresponds to the choice W(x) < 0, which
requires dQ > —fdP, and b; < b with max(a,,a) < b.
Relation (25) then yields

k—1 Q
b= wm(x+ 0 fp_°° +’a (26)
and
by <b requires 9>Q, -AP-P)) 27
a,; <b requires Q> —fiP—Py) (28)
a<b requires Q>0 29)

These inequalities contain no contradictions and regime 7 is
achieved if the load path starting at (P,, Q,) satisfies (24) at
all points. The extent of regime 7 in the P, Q plane determined
by (27) and (29) is shown in Fig. 3. Using the inequalities that
describe regime 7 in (14)-(16), we obtain

B = ";“ ]fpm{(f;—x) " Ha—x

- 172 b —
—(”‘ x) H(al—x)+(‘ X
X . X

_ 172y
—(b—~f> } 0<x<b
X

172
) HG -0~

(30)
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Fig.3 Regimes achieved by loading from the point (P, Q4)
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Fig. 4 Distributions of shear tractions for loading from (Py, Qq):
(A)-initial distribution; (B)-regime I; {C)-regime II; (D)-regime NI with k
> 0; (E) regime Il withk < 0

s.9=o={~ () " Hoe-a+ (0) " pe-ay
() e (252) )

O<x<o 31

S(x)=fp°°[— <’%“) " Hi—a)+ (x—;-lf) " H(x—b)},

O<x<oo (32)
The distribution of the shear tractions for regime 7 is shown
schematically in Fig. 4. Loading from (P,,Q,) to the bound-
ary P=0,Q > Q, +fp, leads to

k—=1 Q
= b: e
a=0, w(x+1) fp©

(33)
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S(x)=fp°°{— 1+ (x%b) v H(x~b)}, O<x<oo (34)

Similarly, loading to the boundary Q =
gives

0,P>P + Q/f

k~1 P
— >b 35
wx+1) p= ! . 33

S(x)=0, 0<x<o

thus erasing all shear tractions,

Comparing (11) with (32) it is clear that the initial state
corresponding to (P{,Q;) can be reached from the origin
along any path that satisfies (24).

Regime II corresponds to V(x) > 0, requiring dQ < fdP,
and max(a,,a) < b < b,. These conditions reduce (25) to

(36)

2b= — rfx+ll)ﬁ% +a+b, (37
and
a,<b requires Q<Q,+f(P-P)) (38)
a<b requires Q<Q,-f(P-P)) (39)
b<b, requires Q>-Q, +fAP-P)) (40)

Again, these inequalities contain no contradictions if the load
path starting at (P;,Q,) falls within the three boundaries
given by (38)-(40). The extent of regime I/ in the P,Q plane is
shown in Fig. 3. The resuits obtained from (14)-(16) are for
this regime

a-x

B = %lfp“’[— ()" Ha—

_ (anx-X) " e, _x)+2(b_;.i‘) m}, 0<x<b (41)

s.0=o={(*20) " ooy + (20) " Hoc-a)

—2<xxb)l/2H(x—b)}, 0<x<o (42)
S(x):fpw{<x—;—‘3> v H(x—a)—2<)%b) " Hee-b)
+<x_xb‘) . H(x-b,)}, 0<x<oo (43)

The distribution of the shear tractions for regime II is shown
in Fig. 4. Loading from (P,,Q,) to the boundary P = 0, — Q,

—fP, < Q <Q, — fP, of the regime II gives
_ _ k=1 (-Q+/P + Q1)
a=0, 26= - e (44)
—b 172
S<X>=fp°°{1—2(£7) Hx=b)
_b 172
+ (x . ‘) H(x—b,)], O<x<oo (45)

Loading to the bottom boundary Q = ~Q, + fAP-P)), P <
P, +Q,/fleads to
k~1 fP +
- fP+0Q, “6)
w(xk+1) fo°

S =/fp= {(3‘—;‘3) v Hx—a)

- (x;b) . H(x—b)}, O<x<o

~ @7

50, MARCH 1

The shearing tractions then are the same as for loading from
the origin to the point (P,Q) on the bottom boundary using a
force with a constant direction. Consequently, consideration
of the points below the bottom boundary can be omitted
without loss of generality.

It is seen from (32) and (43) that the distributions of the

“shear tractions for regimes I and I7 are of the same general

nature as for loading and weak friction unloading, respec-
tively, using a force with a constant direction [1]. Moreover,
the dependence on the load path for both regimes 7 and I7 is
loose, in that the exact nature of the path does not matter as
long as the inequalities (23) and (24) are satisfied at every
point of the path. A rather interesting aspect of the problem
arises also from the fact that the inequalities (23) and (24)
partially overlap (see Fig. 2), and that the condition — fdP <
dQ < fdP on the forward tangent of the path is allowable for
regime I (V < 0) as well as for regime /7 (V > 0). Comparing
Figs. 2 and 3 it is seen that we can have — fdP < dQ < fdP
immediately upon departure from (P,,Q,) in regime I, but
that some point under the restriction dQ < fdP must be
reached in regime I7 before —fdP < dQ < fdP becomes
compatible with the conditions under this regime.

Loading from (P;,Q;) along the common boundary Q =
Q, — f(P—P,) between regimes [ and II corresponds to V(x)
= 0. Substituting this value of Q into (26) gives b = b, while
(37) yields b = a. There is no contradiction, however, as (32)
with b = b; and (43) with b = a lead to the same result for the
shear tractions:

S0 =fp°°[— (f—;—f> " Hee—a)

(x—bl
+

X
It is seen from (48) that, in this case, the separation zone

simply propagates into the old slip zone ¢; < x < b, and
there is no new slip.

No Slip Zone and Regime 117/

To complete the study of load paths originating from the
point (P;,Q,) what remains is dealing with the triangle left
between regimes [ and //in the P,Q plane (see Fig. 3). The two
possibilities are either a shrinking slip zone, which implies

db

— <0 49
a (49)

12
) H(x—bl)], 0<x<o» (48)

or no slip zone.

Considering the possibility of a shrinking slip zone first, we
assume that the initial extent of the slip zone isa;, < x < by,
and that the extent of the slip zone at some later timeisaa <
x < b, with @ < a, because P < P, in the empty triangle.
From (7) we have

bo B§(£)d£_7r(f<+1) - x=-a\ 2
I, f=x = 2a P (-(5)  He-asey

_ ("‘“‘ ) " H(x—a))Hb~-a,)
X

._.b 172
+(xx1) H(x-bl)H(b—bl)}, O<x<b<b, (50)

Since the interval & < x < by is a stick zone, the dislocations
in this interval are locked in and do not change with time.
Consequently, differentiating (50) with respect to time we
obtain

b BuHdE  wk+l) . d
SO E—x h 4y P (xZ_ax)l/zH(x'“a)SgnV,
0<x<b 51
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The most general result is obtained by taking the solution of
(51) that is unbounded at x = b. Thus

< +K+1f “ds V{
(bx_x?.)l/z : 4# P gn

1
+ ————
(bx_XZ)l/Z
The slip velocity is computed from (17), and imposing the
condition that V(b)= 0, the result is.identical with (21).
Consequently (22)-(24) must be satisfied, and the empty
region cannot be entered from (P,,Q,) with a shrinking slip

Zone.
Consider next the possibility of no slip zone for which (7)
yields upon differentiation with respect to time

Bi(x) = H(a-x)

(ax_x2)l/2

}, 0<x<b (52)

a B)‘( d
S (£)d =0, 0<x<a (53)
0 E—x
Hence
B;(X)-_- W , O0<x<a (54)
Evaluating C from the requirement that ¥(a¢) = 0 with the aid
of (17), .
. k—1 Q
Bo(x) = — ——
L P P 1 ©3)
Since O = P(dQ/dP) and Pis related to d through (1),
. “k+1) a(dQ/dP
B,‘;(x)=—p (c+1) _aldQ/db) O<x<a (56)

4p (ax—x»)172°
It is seen from (56) that, because of the term dQ/dP, the
solution cannot be carried further without specifying the
actual path in the P,Q plane. This means that the distribution
of shear tractions left on the cut as the separation zone closes
without slip depends on the full details of the load path.
As an example we consider loading along a straight line, or
dQ
—— =kf =const,
dP 4
which is called regime I7I. The problem then is identical to
unloading with strong friction in [2], and

—-1<k<l 67

Bi(x)= %lkfp‘”{— (<) " Ha—x

+ (a’x_x) m}, 0<x<a (58)
Sx)=fp= [k<%) 1/2 H(x—a)
—(1+k)(%) 1/2 H(x—ay)
+<x;b')l/2H(x—bl)}, 0<x<oo (59

The distribution of the shear tractions for positive and
negative k are shown schematically in Fig. 4,

Loading along the common boundary Q = @, — fAP—P))
between the regimes 7 and IIJ corresponds to V(x) = 0, and
the distribution of the shear tractions is given by (48). In
contrast, loading from (P,,Q,) along the common boundary
Q = Q, + f(P—P,) between regimes II and III corresponds
to b = a, = const and V(x) > 0, and

x—a,

S(x) =fp°°{<¥) v H(x—a)~2(—x—) " H(x—a,)

(60)

_.b 1/2
+(X ‘) H(x—b,)}, 0<x<o
X

Journal of Applied Mechanics
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Fig. 5 Regimes achieved by loading from the point (P;, Q,) that
belongs to regime f/

Loading From Regimes 7 and /11

Suppose that loading is carried on from (P,,Q,) to some
point (P,,0,) under the conditions of regime 7, but that
beyond (P,,0,) condition (24) is violated. Comparing (32)
with (11) is it clear that the shear tractions at (P,,Q,) are of
the same nature as those at (P;,Q;). Consequently the
transition to new regimes beyond (P,,Q-) is the same as that
analyzed at (P,,Q;). New transitions must be studied,
however, if the point (P,,Q,) is reached by loading under the
conditions of regime /7. From (1), (37), and (43)

k—1 P,

G o
_ k=1 PP 0i-0;
27 rk+1) 2fp” ©2)
— 1/2 -b 12
Si0=pr={(Fo2) T He-an-2(22) T He-by)
-b i72
+<xx ‘) H(x—bl)}, O<x<oo (63)

Taking S,(x) as S;(x) in (7), the investigation of the different
cases is quite similar to that for loading from (P;,Q,) and,
consequently, the derivations are omitted and only the results
presented.

The general situation is shown in Fig. 5. Regime I7 is of
course continued at (P,,Q,) if (23) is not violated. Otherwise
the two regimes /¥ and ¥V are encountered.

Regime IV is characterized by db/dt > 0, V(x) > 0 (so that
dQ > — fdP must be satisfied at all points), and a, < b < b,.
The extent of the slip zone is given by

k=1 fiP+P)+Q0-0Q,

b= D 2> 64)

The shear tractions

X—-a

§(x) =fp°°{— (T> v H(x—u)

+2(X2) " Ho-by-2( 72 " Hee-by)

(65)

— 172
+(X b‘) H(x—bl)}, 0<x<oo
X
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Fig. 6 Distributions of shear tractions for loading from (P,, Q,) that
belong to regime /I: (A)-initial distribution; (B)-regime /V; (C)-regime V
fork > 0; (D)-regime V fork < 0

are shown in Fig. 6. Loading under regime /V to the boundary
Q= Q, — fIP-P))leadsto

(66)

sw=so={~ (=2) " Hoe-ar+ (F220) 'Hee-b),

O<x< o ©67)
and loading slightly beyond this boundary returns the slip
process to regime /, while involving a sudden jump in the slip
zone from b, to b, .

Regime V is similar to regime IIT in that the separation
zone recedes, and there is no new slip. Again a strict
dependence on the load path is involved as

_ pT(k+1) a(dQ/dP)

Bi(x)y= 1 @’ O0<x<a (68)
For the example considered before, or dQ/dP = k,
xX—a 1/2

S(X)=fp°°{k(7> H(x—a)

- 172 _b 172
+(1—k)(x a2> H(x—-az)—Z(x 2) H(x—b,)

~..b 172
+(x x ‘) H(x—bl)}, O<x<o (69)

The shear tractions are shown schematically in Fig. 6 for
positive and negative values of k.

Loading From Regime 777

We can only continue to consider the example dQ/dP = k
because the shear tractions at (P,,(Q,) need to be known to do
a full analysis. Using

k=1 P,
w(k+1) p~

ay=by= (70)

X—a,

5:09=p={k(*=22) " Hex-ay)

82/Vol. 50, MARCH 1983

-

917

Fig. 7 Regimes achieved by loading from the point (P;, Q,) that
belongs to regime i1/

kfp®
_fpw
Fig. 8 Distributions of shear tractions for loading from (P,, Q) that
belongs to regime /i: (A)~initial distribution for k > 0; (B)-initial
distribution for k < 0; (C)-regime VI for k > 0; (D)-regime V! for k<0;
(E)-regime Vii for k > 0; (F)-regime VI fork < 0.

xX—da,

—(l+k)( )l/zH(x—a,)

71

— 172
-+(x b‘) H(x—bl)}, 0<x<m
X

The analysis leads to the general situation shown in Fig. 7,
which indicates the possibility of continuing under regime /17
if dQ < —fdP and dQ > fdP, and also shows two new
regimes.
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Fig.9 Load path used in the example

Regime V1 involves db/dt > 0, V(x) > 0, and max (a,4,) <
b < a,.The extent of the slip zone is given by
-1 —kPy)—
pe k=L [(P=kP)-0Q+0Q, o2
w(k+1) (1-kyfp~

and the shear tractions are

sw={ (=) " - a- - i

12
— ) Hx-b)
X

~a +k)<¥> " Hee-ay) + (x;b‘ ) " H(x—bl)},

O<x<oo (73)
They are shown in Fig. 8. If the load path crosses the
boundary Q = Q, + f(P—P)) the slip process returns to
regime /1.

Regime VII is characterized by db/dt > 0, V(x) < 0, and
max(a,q;) < b < a; < b,. Theresults are

b=r D) G+ 4

S(x)=/p= {— (f—;—a> UZ H(x—a)

+(1 +k)<x_b> " Hee-b)

X

x—

~( +k)<T”‘> " Hee-a,)

+(x_bl>l/2H(x—b[)},

X

O<x<oo (75)
The shear tractions are shown schematically in Fig. 8. If the
load path crosses the boundary Q = Q, — f(P— P,), the slip
process returns to regime /.

Example

As an example consider a closed rectangular load path
starting and terminating at the origin, as shown in Fig. 9.
Regardless of whether the load path is followed in a clockwise
or counterclockwise direction, the first two legs correspond to
regime / and, consequently from (8), (26), and (32), we have
at point B

an = k-1 i (76)
8 w(k+1) p*
k=1 [P+ .

by = w(k+1) e an
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Fig. 10 Residual shear tractions left on the cut when the loads are
removed: (A)-clockwise traverse; (B)-counterciockwise traverse for f >
Q4/P4; (C)-counterclockwise traverse for f < Q4/P4.

X—dap

5509=1p{ - (*=) " Hoc-an)

X — b 172 N
+(TB> H(x—bﬂ)}, 0<x<oo (78)
Clockwise Traverse. The leg BC corresponds to regime /1.
It follows then from (37) and (43) that at point C
xk—1 2/P +Q,

be= i) Tape )

5c0=p"{(X2) " Hee-ap)

_2<x_xbc) " Hoe—be) + (x_xb‘") . H(x—bB)},

O0<x<oe (80)
The segment CO belongs to regime V with & = 0. Con-
sequently on the basis of (69), the residual shear stress left
upon removal of the loads is

So(x)=fp°°{( ) . H(x—aB)—z(

X—dpg X"bc

172
) Hee-bo)

x— bB 172
+< o ) H(X—bg)}, 0<x<oo 81)
Counterclockwise Traverse. The part BA of the coun-
terclockwise load path corresponds to regime 17 with k = 0
and a, = 0. Thus from (59)

sa=tr={ - (X222) " Hee-ay)

X"'aB

X — bB 172
+( P ) H(X—bg)}, 0<x<o (82)
For loading along the last segment AO of the coun-
terclockwise circuit, it is necessary to distinguish between two
cases. If f > Q,/P,, the whole segment AO corresponds to
regime V1. Then noting that a4 = 0, it follows from (72) and
(73) with & = O that

0

10
w(k+1) fp*®

(83)
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x—by

so00=/p={1 - (220) " Hge by

B <x—xaB> 172 H(x;a3)+ <x—xb3) 172 H(x—bg)},

O<x< (84)

In case of f < Q,/P,, only the first part-of the segment A0
belongs to regime V1. It is seen from Fig. 7 that the point on
AQ at which a transition to a different regime takes place is Q
= @, — fP,. At this point,

k=1 P

T ak—1) p°

X—dag 172

ap (85)

S(x)=fp°°{1—2< Hx—ap)

X - bB 172
+ ( k ) H(x—bB)}, 0<x<o
from (72) and (73). Although loading from regime V7 has not
been considered, there is no need to do new mathematics.
Comparing (86) with (63) fora, = 0, b, = ag and b, = by, it
is seen that loading along the bottom part of A0 is the same
as loading that starts and stays in regime /1. Consequently

(86)

1
bo= 5 ba @7)
from (37), and (43) yields
_b 172
Sy(x) =fp> {1 —2(x 0) Hx— by)
_b 172 .
+<x - ”) H(x—bg)}, 0<x<oo (88)

for the residual shear tractions left when the concentrated
load is completely removed.

The residual shear tractions given by (81), (84), and (88) are
shown schematically in Fig. 10. It is seen that the residual
tractions are quite different not only for the two directions of
traverse, but that also their qualitative features may be af-
fected by the value of the friction coefficient.
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