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An Educational Elasticity Problem 
With Friction 
Part 3: General Load Paths 
This concluding paper treats general load paths when the two components of the 
concentrated force are allowed to change independently with time. It is shown that 
there are two kinds of dependence on the load path. For certain directions of the 
forward tangent, the dependence is strict in that the deformations depend on the 
full details of the path. For other directions, however, the dependence is loose, and 
the deformations do not depend on the exact nature of the path as long as the 
forward tangent falls within given bounds. The problem also shows that, given an 
initial state, the load space can be subdivided into different regions each 
corresponding to a certain mode of deformations. 

Introduction 

To conclude the discussion of the example for friction in 
elasticity, which was treated earlier for a constant direction of 
the applied force [1, 2], we consider the more general case 
when the two components of the force can change in­
dependently. This will illustrate the dependence of defor­
mations on the load path. A particularly interesting aspect of 
friction in elasticity, which emerges from the analysis, is that 
there are two types of dependence. For certain directions of 
the load path the dependence is strict in that the deformations 
depend on the exact nature of the path. For other directions, 
however, the dependence is loose, and the slip process does 
not depend on the detailed nature of the path, as long as the 
forward tangent of the path falls within certain bounds. 

The geometry of the problem is shown in Fig. 1. The two 
components of the force P{f) and Q(f) can vary independently, 
but the restriction P{t) > 0 is imposed to avoid singular 
normal and shear tractions on the cut because they require 
separate considerations [1]. The extent of the separation zone 
0 < x < a and the distribution of normal tractions on the cut 
do not depend on the slip process, and from [1] 

K - 1 

7T(K+ 1) p" 

N(x)=-
/x-a\ 

* " ( — ) 
H(x-a), 0<x<oo 

(1) 

(2) 

Suppose that there are initial shear tractions S,(x) on the cut 
due to some previous loading. The solution for the next 
segment of the load path can be constructed by distributing 
additional dislocations with the density Bc

x(x) on a finite 
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interval. This dislocation distribution gives the corrective 
shear tractions 

Sc(x) = = - 2/x f 
7r(K+l) J 

max(6) Bc
xti)d£, 

( K + 1 ) J O %-X ' 
0<X<oo (3) 

and the total shear tractions, which must satisfy the ap­
propriate boundary conditions on the separation and slip 
zones, are then 

S(x) = Si{x) + Sc(.x) (4) 

The upper limit of integration in (3) denoted symbolically by 
max(fo) must be chosen so that all of the new dislocations are 
included, even if they become locked into a stick zone in case a 
slip zone shrinks or there is no slip zone [2]. 

The friction law can be written as 

S(X) = -fN(x)sng V(x), 0 < x < b (5) 

valid in both the separation and slip zones. Substituting from 
(2), 

S(*) =/;,<» ( :?LL^ H(x-a)sgnV(.x), 0<x<b (6) 

and consequently 

»*<*> Bx(£)dZ IT(K+1) • 

t-x 2fx 
[s,M 

-fPco{^~^-) H(x-a)sgnV(x)), 0<x<b (7) 

where 0 < x < a is the separation zone and a < x < b is the 
active slipe zone. 

Expanding Slip Zone 

We take for the first initial state that reached by loading 
with a force in a constant direction to the point (Pj ,Qt) in the 
P,Q plane. It can be assumed without loss of generality that 
Q, > 0. Then the extents of the initial separation and slip 
zones, and the normal and shearing tractions are given by [1] 
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Fig. 1 Geometry of the problem 

a, = 
K-1 P , 

TT(K+1) p° 
(8) 

*i = «i + , . „ ^ = -r-r, ,_.<* (9) 7T( /C+l ) / /7» 7T(/C+1) / p " 

1/2 

1/2 

' x - 6 , \ 1/2 

/ x - a , \ ln 

Nl(x)=-pc"{ -) H(x-ax), 0 < x < o o (10) 

5 , ( x ) = / p » [ - ( ^ ^ ) ' / 2 H{x-ax) 

+ (̂  -) H(x-bM, 0 < * < o o (11) 

It will be seen that the same initial state can be reached by 
other quite different load paths. 

For an expanding slip zone 

f > 0 (12) 
at 

and the upper limit of the integral in (7) can be taken as b. It is 
not known, however, where b falls in relation to ax and bx, 
and the right side of (7) must be modified by introducing the 
Heaviside step functions H(b-ax) and H(b -bx)to obtain the 
governing integral equation. Thus, 
[bBW-)dli TT(K+1) r (x-ay* „ 

(x-a, \ x/1 

-(—^j H(x-a,)H{b-a{) 

/ x - b , \ i / 2 •) 
+ { -) Hix-b^Hib-bM, 0<x<b (13) 

The solution of the integral equation that is singular at x = 0 
but bounded at x = b is 

„ , , K + 1 „ r la-x\ 1/2 

* S W = - ^ fP'{-{ — ) H(a-x)sngV 

/b-x\i/2 

+ (̂  J [sgnV + H(b - a A-HQ-bi)] 

/ a , -x\ l /2 

-\-ty-) H{a,-x)H{b-ai) 

(bx-x\ln -) 
+ V ~ T / /f(*i--«w(*-*i)j, o<̂ <& (H) 

The corrective shear tractions computed from (3) are in turn 

^ ^ " [ ( T ) H(.x-a)sgnV 

+ ( ^ — ) H(x- b)[-sgnV-H(b-al) + H(b- bx)] 

/x-a, \ m 

+ \—^r) H^-a,)H(b-ai) 

-{ -J H(x-bx)H(b-bx)\, 0<x«* (15) 

yielding the total shear tractions 

K x — a \ 1/2 

— J H(x-a)sgnV 

+ ( ?~— ) H(x - b)[sgn V+ H(b -ax)-H(b-bx)] 

+ ( ^ - ^ - ) H(.x-bx)[l-H(b-bx)]], 0 < x < ° ° (16) 

The conditions remaining to be enforced are that the slip 
velocity derived from the dislocation distribution as 

V{x)--
K - l 

~4^ Q~\? Bmdt (17) 

should not be inconsistent because of the sgnKterm in Bc
x(x), 

and that the tangential shift corresponding to Bx(x) vanishes 
at the end of the active slip zone, or 

hc{b)=^-(Qx-Q)-\ BS«)d$ = 0 
4fj. Jo 

(18) 

H(a-x)sgnV 

The time derivative of the dislocation distribution is 

K + 1 „ „ f a 

b 

(ax-x2)V2 

£$(*)= ^i/p°°[ 
(ax-x2)l/2' 

[sgnV + H(b - a x)-H(b-bx)]), 0<x<b 

(19) 

which from (17) yields the slip velocity 

V(x) Izl Q _ 111 fp°° \ - irasgn V+ b[sgn V+H{b - ax) 
4/x 4/x 

-H(b-bi)]cos-l(l--^yi, a<x<b (20) 

Since V(b) = 0, we can express b in terms of a and Q, and 
substituting for a from (1), 

K - 1 , ™ . , A . f , / . 2 x N 

KM = 
47T/X 

(/PsgnF-0JV-COS"1 (l - - ^ ) ] , 

a<x<b (21) 

It is seen from (21) that V(x) is of the same algebraic sign over 
the whole slip zone, and that for its sign to be consistent with 
the previous relations we must have 

sgn(/P sgn K - Q) = sgn K (22) 

Thus 

V(x)>0 requires fP-Q>0 or dQ<fdP (23) 

V(x)<0 requires fP+Q>0 or dQ> -fdP (24) 

These are conditions on the forward tangent of the load path, 
and they are shown graphically in Fig. 2. It is seenHhat the 
conditions for V(x)>0 and V(x)<0 overlap in the right 
sector, and that the left sector remains empty. 

The condition (18) that the tangential shift vanishes at x = 
b gives upon substitution of (14) and (9) 
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dO-fdP 0,+fP, 

dQ < -fdP 

Fig. 2 Conditions on the directions of the forward tangent for loading 
from the initial state 

b[sgnV+H(b-al)-H(b-bl)] = 
K - 1 Q_ 

Tr(K+l)fp°° 
4-asgnK -QffP, 

a <bt b, <a 

Pt+(Q,/f) 

0=-0,+f(P-P,) 

- f l 1 [ l - H ( A - f l , ) ] + 6 1 [ l - / / ( 6 - 6 1 ) ] (25) 

The evaluation of this relation is tedious because a large 
number of cases must considered individually. Most of them 
lead to contradictions and are not possible. Consider, for 
instance, the possibility V(x)<0 and a<b<ai <bltfoi which 
(25) gives 

^ r +a + ai-b1 

Fig. 3 Regimes achieved by loading from the point (Pi , Q-)) 

S(x) 

iriK+Dfp" 

Then using (1), (8) and (9), it is seen that 

a<b requires Q>Q\ 

b<at requires Q<Qi+f(P-Pi) 

a<ax requires P<P} 

which makes the point (P, Q) fall in the empty sector, so that 
it cannot be reached under the restriction (24) for V(x) <0 . 

A full investigation of the various possibilities reveals that 
only two cases can be realized under the assumption of 
db/dt>Q. They will be called regimes / and / / and are 
described in the next section. 

Regimes / and / / 

Regime / corresponds to the choice V(x) < 0, which 
requires dQ > -fdP, and b, < b with max(tf,,tf) < b. 
Relation (25) then yields 

O 
kfp<° 
-fp" 

a 

r̂ "̂ =-
°t 

1 

! 

bi 
i 

X 

© 

b= -F- +a 
•K{K+\)fpa (26) 

and 

6, <b requires Q>Qi -f(P~Pt) (27) 

di<b requires Q>-f(P-Pl) (28) 

a<b requires Q > 0 (29) 

These inequalities contain no contradictions and regime / is 
achieved if the load path starting at (P], Q{) satisfies (24) at 
all points. The extent of regime / in the P, Q plane determined 
by (27) and (29) is shown in Fig. 3. Using the inequalities that 
describe regime / in (14)-( 16), we obtain 

B^^K^Y2 Hia-x) 

- - ( ^ ) 1 / 2 / / ( f l | - , ) + ( ^ ) 1 / 2 ^ 1 - , ) -

Fig. 4 Distributions of shear tractions for loading from (P1 , Q^): 
(4)-initial distribution; (S)-regime /; (C)-regime //; (D)-regime /// with k 
> 0; (£) regime /// with k < 0 

C /x — a\ 1/2 /x — ai \ 1/2 

Sc(x)=fp°'[-(K-^) H(x-a)+ty-j±) / / (*-«,) 

-(^)"W6| )+(^)"WB), 
0<X<oo (31) 

( /x — a\ 1/2 /x — b\ u ") 

0<X<oo (32) 

0<x<b (30) 

The distribution of the shear tractions for regime / is shown 
schematically in Fig. 4. Loading from (Pj.Qi) to the bound­
ary P = 0, Q> Qt +fpi leads to 

K - 1 Q 
o = 0, b = 

*K+l)fp° 
(33) 
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S(x)=fp°°[-l + (- ) H(x-b)), 0<x<oo (34) 
' x - & \ l /2 

x 

Similarly, loading to the boundary Q = 0, P > P , + Q\/f 
gives 

" - 1 P u b = a= — >b. (35) 

(36) 

TT(K+1) p" 

S(x) = 0, 0<x<oo 

thus erasing all shear tractions. 
Comparing (11) with (32) it is clear that the initial state 

corresponding to (Pi.Gi) can be reached from the origin 
along any path that satisfies (24). 

Regime / / corresponds to V{x) > 0, requiring dQ < fdP, 
and max(a, ,a) < b < bx. These conditions reduce (25) to 

<c-l Q 
2b = 

TT(K+l)fP° 
+ a + b. (37) 

and 

ax<b requires Q<Q]+f(P-Pl) (38) 

a<b requires Q<Q{ - / ( P - P , ) (39) 

b<bx requires Q>-Qi+fLP-Pi) (40) 

Again, these inequalities contain no contradictions if the load 
path starting at (P\,Q\) falls within the three boundaries 
given by (38)-(40). The extent of regime / / i n the P,Q plane is 
shown in Fig. 3. The results obtained from (14)-(16) are for 
this regime 

K + 1 f /a-x\ln 

B 5 M = — / p » [ - ( — ) Hia-x) 

_ ( ^ i Z ^ ) 1 / 2
/ / ( a i _ x ) + 2 ( — ) ' / 2 ] , 0<x<b(4l) 

C / Y /j\ 1/2 / Y /-» x 1/2 

Sc(x)=fP°°{{ — ) H(x-a)+{—^-) H(x-a,) 

-l{*—\ H(x-b)}, 0<x«x (42) 

C/x — a\ W2 tx— b\ 1/2 

S(x)=fp°°[{~) H(x-a)-2{ — ) H{x-b) 

+ ( ^ ~ ^ i ) H(x-bS\, 0<x<oo (43) 

The distribution of the shear tractions for regime / / is shown 
in Fig. 4. Loading from (Px ,QX) to the boundary P = 0, - Q, 
- / P , < 2 < 2 i - / P i of the regime//gives 

K- i ( - e + / p , + e , ) 
a = 0, 2fc = 

7 T ( K + 1 ) 

' x - _ ^ 1/2 

x 

' x - 6 , ^ 1/2 

/p° 

S ( * ) = / p - [ l - 2 ( ^ - ) 7/ (^-6) 

+ (^Z^i) H(x-t>\)}> °<x« 

(44) 

(45) 

Loading to the bottom boundary Q = - Q , + f(P-Pt),P < 
P\+Q\ / / leads to 

K - 1 / P , + G i 
b = b,= 

S{x)=fp~[(^y2 H{x-a) 

/x-b\W2 -) 

- ^ — ^ J //(*-&)], 0<A:<( 

(46) 

(47) 

The shearing tractions then are the same as for loading from 
the origin to the point (P,Q) on the bottom boundary using a 
force with a constant direction. Consequently, consideration 
of the points below the bottom boundary can be omitted 
without loss of generality. 

It is seen from (32) and (43) that the distributions of the 
shear tractions for regimes / and / / are of the same general 
nature as for loading and weak friction unloading, respec­
tively, using a force with a constant direction [1]. Moreover, 
the dependence on the load path for both regimes / and / / is 
loose, in that the exact nature of the path does not matter as 
long as the inequalities (23) and (24) are satisfied at every 
point of the path. A rather interesting aspect of the problem 
arises also from the fact that the inequalities (23) and (24) 
partially overlap (see Fig. 2), and that the condition —fdP < 
dQ < fdP on the forward tangent of the path is allowable for 
regime I(V < 0) as well as for regime II(V > 0). Comparing 
Figs. 2 and 3 it is seen that we can have —fdP < dQ, < fdP 
immediately upon departure from (Pi.Qi) in regime /, but 
that some point under the restriction dQ < fdP must be 
reached in regime / / before —fdP < dQ < fdP becomes 
compatible with the conditions under this regime. 

Loading from (Pi.Qi) along the common boundary Q = 
Q, - f(P-P{) between regimes / and / / corresponds to V{x) 
= 0. Substituting this value of Q into (26) gives b = bx while 
(37) yields b = a. There is no contradiction, however, as (32) 
with b = bj and (43) with b = a lead to the same result for the 
shear tractions: 

C / x — a\ 1/2 

S(jr)=//>-[-( — J H0c-a) 

+ (^-—L) H(x-bi)\, 0<x<oo (48) 

It is seen from (48) that, in this case, the separation zone 
simply propagates into the old slip zone ax < x < bx and 
there is no new slip. 
No Slip Zone and Regime Z/7 

To complete the study of load paths originating from the 
point (P i ,6 i ) what remains is dealing with the triangle left 
between regimes / and / / in the P,Q plane (see Fig. 3). The two 
possibilities are either a shrinking slip zone, which implies 

db 
<0 (49) 

dt v 

or no slip zone. 
Considering the possibility of a shrinking slip zone first, we 

assume that the initial extent of the slip zone is-o, < x < b0, 
and that the extent of the slip zone at some later time is a a < 
x < b, with a < ax because P < P , in the empty triangle. 
From (7) we have 

"*0 Bc
x($)dZ 7T(K+1) r / v - / 7 \ 1/2 L" t-x 2fx 

) , r /x-a\ in 

•fP"{-\ — ) H(x-a)sgnV 

( ^ ) 
Hipc-afiHip-ai) 

/x-bt \ 1/2 ~) 
+ f -) H(x-bi)H(b-bi)L 0<x<b<b0 

(50) 

Since the interval b < x < b0 is a stick zone, the dislocations 
in this interval are locked in and do not change with time. 
Consequently, differentiating (50) with respect to time we 
obtain 

•oiimdZ niK+Y) 

€- 4M 
fp" 

(x2 -ax)' 

0<x<b 

:H(x-a)sgnV, 

(51) 
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The most general result is obtained by taking the solution of 
(51) that is unbounded a t x = b. Thus 

Bc
x(x) = 

K + l 
fp°°dsgnV[- H(a-x) 

+cte=W^]'0 < x < 6 (52) 

The slip velocity is computed from (17), and imposing the 
condition that V(b) = 0, the result is identical with (21). 
Consequently (22)-(24) must be satisfied, and the empty 
region cannot be entered from (P\,Q\) with a shrinking slip 
zone. 

Consider next the possibility of no slip zone for which (7) 
yields upon differentiation with respect to time 

o £-x 
= 0, 0<x<a 

Hence 

&M-- c 
(ax-x2)1 0<x<a 

(53) 

(54) 

Evaluating C from the requirement that V(a) = 0 with the aid 
of (17), 

K - 1 Q 
Bc

x(x) = - , ^ 5 (55) 
\-K\X, (ax-x1)"1 

Since Q = P(dQ/dP) and P i s related to a through (1), 

P°°(K+1) d(dQ/dP) 
B J ( x ) = - ^ v v ' , 0<x<a (56) 

4fi (ax-x1)"1 

It is seen from (56) that , because of the term dQ/dP, the 
solution cannot be carried further without specifying the 
actual path in the P,Q plane. This means that the distribution 
of shear tractions left on the cut as the separation zone closes 
without slip depends on the full details of the load path. 

As an example we consider loading along a straight line, or 

dQ 

dP 
= kf= const, -\<k<\ (57) 

which is called regime III. The problem then is identical to 
unloading with strong friction in [2], and 

K + l r /a-x\U2 

Bm = _ _ Atfp- [ - (̂  — j H(a-x) 
2>x 

+ ( ^ n , o«<„ 
f / x — a\ "2 

SQc)=fp-\k{ — ) H(x-a) 

( y _ Q \ 1/2 
—^-) H(x-a,) 

(58) 

/ x - b \ \ u l -) 
+ ( -) H(x-bM, 0<x<< (59) 

The distribution of the shear tractions for positive and 
negative k are shown schematically in Fig. 4. 

Loading along the common boundary Q = Q{ - f(P-P\) 
between the regimes I and III corresponds to V(x) = 0, and 
the distribution of the shear tractions is given by (48). In 
contrast , loading from (PX,Q\) along the common boundary 
Q = Q\ + f(P-P\) between regimes II and 7/7 corresponds 
to b = a{ = const and V(x) > 0, and 

f / x - a \ "2 /x-a, \ 1/2 

S M = / / ? " [ ( — J H(x-a)-2{—^-) H(x-0i) 

/ Y h \ 1/2 "\ 
+ ( -) H(x-bM, 0 < x < < (60) 

0,*ff 

0/fP2 -o-oi-f(P^) ® 

Q = Q1-f(P-P1) 

R+(Q/f) 

•Q=-Qt*f(P-P,) 

-Of-f/f 
Fig. 5 Regimes achieved by loading from the point (P2, O2) that 
belongs to regime // 

L o a d i n g F r o m Reg imes / and III 

Suppose that loading is carried on from (P,,Qi) to some 
point (P2,Q2) under the conditions of regime I, but that 
beyond (P2,Q2) condition (24) is violated. Comparing (32) 
with (11) is it clear that the shear tractions at (P2,Q2)

 a r e of 
the same nature as those at (P\,Qi). Consequently the 
transition to new regimes beyond (P2,Q2)

ls the same as that 
analyzed at (P\,Q\). New transitions must be studied, 
however, if the point (P2,Q2) is reached by loading under the 
conditions of regime II. F rom (1), (37), and (43) 

K - 1 P2 

"2 = -rrr-Tx T = - (61> 

b2 = 

TT(K+1) p°° 

K - 1 APi+P2) + Ql-Q2 

7r(K+l) 

1/2 

VP" 
(62) 

S2{x)=fp-{(^-) H(x-a2)~l(^-) H(x-b 

/ x — b, \ 1/2 ~) 

(̂  -J #(*-*,)], 0<x<o= 
(63) 

Taking S2(x) as Sf(x) in (7), the investigation of the different 
cases is quite similar to that for loading from (P\,Q\) and, 
consequently, the derivations are omitted and only the results 
presented. 

The general situation is shown in Fig. 5. Regime II is of 
course continued at (P2,Q2) if (23) is not violated. Otherwise 
the two regimes IVand Kare encountered. 

Regime IV is characterized by db/dt > 0, V(x) > 0 (so that 
dQ > -fdP must be satisfied at all points), and a2 < b < b2. 
The extent of the slip zone is given by 

b = 
K - 1 f(P + P2) + Q-Q2 

7r(K+l) 2fp° 
(64) 

The shear tractions 

S(x) ^H^r«<*-> 
/x-b\"2 /x~b2\

ul 

+ 2 ( — ) H(?-b)-2{-j±) H(x-b2) 

t x — b \ 1/2 ") 
+ { -) H(x-bi)\, 0<x<<x> (65) 
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fpa 
S(x) 

°2 
l \ 

4 ^ 
bf 
i 

X 

~® 
Q,+fP, 
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-~=^ 
""I °2 

i \ 

^V. 
b, 
i 

X 

Id) 

K kfp00 

o 
-fp" 

fp* 

kfp* 

-fp10 

Fig. 6 Distributions of shear tractions for loading from (P2, 0 2 ) that 
belong to regime //: (A)-initial distribution; (B)-regime IV; (C)-regime V 
fork > 0; (D)-regime V for ft < 0 

are shown in Fig. 6. Loading under regime IV to the boundary 
Q = Qi -AP-Pi) leads to 

b = b2 (66) 
1/2 / ^ - A , S ' ^ 

X / ' \ X 

o 3 ? ^ " ^ i\ */ * 

^ 

Fig. 7 Regimes achieved by loading from the point (P2, Q2) that 
belongs to regime /// 

* S(x) 

kfpa 

S{x)=fp-{-(~) ,nH(X-a)+(^) £(*-*>,)], 
O 

kfp* 

a2 °1 
I 

4 
i 

X 

r̂  
0<X<oo (67) 

and loading slightly beyond this boundary returns the slip 
process to regime /, while involving a sudden jump in the slip 
zone from b2 to b\. 

Regime V is similar to regime III in that the separation 
zone recedes, and there is no new slip. Again a strict 
dependence on the load path is involved as 

A,, ^ P°°(K+1) a(dQ/dP) 

™=--^ik%*y*' 0<x<a m 

For the example considered before, or dQ/dP = k, 
( / x-a\ l/2 

SM=fp"[k{ — ) HOc-a) 

/x-a2\
 l/2 / x-b2\

 W2 

+ (l-k){—^-) Hk-a2)-2{—^-) H(x-b2) 

+ ( -) Hix-bM, 0<x<oo (69) 

a b 
i 

ft 
i 

b, 
i 

X 

CF\ 

The shear tractions are shown schematically in Fig. 6 for 
positive and negative values of k. 

Loading From Regime / / / 

We can only continue to consider the example dQ/dP = k 
because the shear tractions at (P2,Q2) need to be known to do 
a full analysis. Using 

K - 1 P2 a2=b2= (70) 
2 2 TT(K+1) p°° 

S2{x)=fpc"{k(^±) ' H(x-a2) 

kfp00 

-fp<° 
Fig. 8 Distributions of shear tractions for loading from (P2, Q2) that 
belongs to regime ///: (A)-initial distribution for fc > 0; (B)-initial 
distribution for k < 0; (C)-regime VI for k > 0; (D)-regime VI for )t<0; 
(£)-regime Vlllork > 0;(F)-regime VII fork < 0. 

/X-a, \ 1/2 

0 + * ) ( — ^ - j H(x-a] 
x 

'x-b-^ l/2 /x—b \ ul ~) 
+ ( -J HOc-bty, 0<x<< 

(71) 

The analysis leads to the general situation shown in Fig. 7, 
which indicates the possibility of continuing under regime III 
if dQ < -fdP and dQ > fdP, and also shows two new 
regimes. 
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Fig. 9 Load path used in the example 

Regime VI involves db/dt > 0, V(x) > 0, and max (a,a2) < 
b < a{. The extent of the slip zone is given by 

K-\ f(P~kP2)-Q + Q2 
b = 

J T ( « + 1 ) 

and the shear tractions are 
1/2 

(72) 
0- * ) / /> " 

„ ( /x-a\ l /2 /x-b\ U1 

S(x)=fp°°[(K-^) H(x-a)-(l-k)( — ) H(x-b) 

-(l+*)(£^i) W2
H(x-ai)+(X^-y/2H(x-b,)}, 

0<X<oo (73) 

They are shown in Fig. 8. If the load path crosses the 
boundary Q = Qx + f(P-Pt) the slip process returns to 
regime / / . 

Regime VII is characterized by db/dt > 0, V{x) < 0, and 
max(«,«2) < b < ai < bx. The results are 

K - 1 f(P + kP2) + Q-Q2 
b = 

7 T ( K + 1 ) 

1/2 

- ) 
X 

S(x) =//>°° [ - ( ~ ) '" H(x - a) 

/x-b\ w2 

+ (l+k){ j H{x-b) 

( x — n \ 1 /2 

—^J #(*-*.) 

0<x<<x 

(74) 

(75) 

The shear tractions are shown schematically in Fig. 8. If the 
load path crosses the boundary Q = Q, - f{P-Px), the slip 
process returns to regime /. 

Example 

As an example consider a closed rectangular load path 
starting and terminating at the origin, as shown in Fig. 9. 
Regardless of whether the load path is followed in a clockwise 
or counterclockwise direction, the first two legs correspond to 
regime / and, consequently from (8), (26), and (32), we have 
at point B 

K - 1 P, 

fp<° 
,S(x) 

oB 

l \ 

A c \ 
*>B X 

- ^ ® ' 

1 \ 

»0 ^ 

bB 
1 ^ - — * 

-fpa 

fp° 

0 

-fp* 
Fig. 10 Residual shear tractions left on the cut when the loads are 
removed: (A)-clockwise traverse; (S)-counterclockwise traverse for I > 
Q1 /Pi; (C)-counterclockwise traverse for f < Q^ /P1. 

SB(x) =fp°° [ - ( " ^ ) W1 H(x- aB) 

/ x~bn\ l /2 ~) 
+ { -) H(x-bB)L 0<x<< (78) 

'x-bB
s 

x 

Clockwise Traverse. The leg BC corresponds to regime // . 
It follows then from (37) and (43) that at point C 

K-1 2fPx+Qx 

br = TT(K+1) 2fp°° 

Sc{x)=fp-[(^^) U1 H{x-aB) 

/ x-br\
xn /x-bB\xn ~) 

-2[—~) H<x-bc)+{—^) H(x-bB)\, 

(79) 

0<x<<x (80) 

The segment CO belongs to regime V with k = 0. Con­
sequently on the basis of (69), the residual shear stress left 
upon removal of the loads is 

S 0 ( x ) = / p » [ ( ^ ) ' / 2 H(X-aB)-2(X-^)W2 H(x-bc) 

+ (^-—^) H(x-bB)), 0<x<oo (81) 

Counterclockwise Traverse. The part BA of the coun­
terclockwise load path corresponds to regime / / / with k = 0 
and aA = 0. Thus from (59) 

SA(*) =//>" [ - ( X ~ ~ ) H(x- aB) 

1 x— b \ l / 2 ") 
+ ( — ^ ) H(x-bB)^, 0 < x < c (82) 

b» = 

TT(K+1) p" 

K - 1 /P1+Q1 
ir(/c+l) fp« 

(77) 

For loading along the last segment AO of the coun­
terclockwise circuit, it is necessary to distinguish between two 
cases. If / > Q\/P\, the whole segment AO corresponds to 
regime VI. Then noting that aA = 0, it follows from (72) and 
(73) with k = 0 that 

K-1 Qi 

7T(/C+1) fp°° 
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S 0 M = / p " [ l - ( — ^ ) H{x-ba) 

/ x-aB\ x/1 /x-bB\ m •) 
- ( B-) / / ( * _ * , ) + ^ _ » j H(x-bB)\, 

0<x<<x. (84) 

In case of/ < Q, / P , , only the first part of the segment AO 
belongs to regime VI. It is seen from Fig. 7 that the point on 
AO at which a transition to a different regime takes place is Q 
= Q, - / P , . At this point. 

b = 
ir(K-\)p° 

1/2 

= aR 
(85) 

S{x)=fp<°{\-2(X-^) H(x-aB) 

( x — b \ 1/2 "i 
) H(x-bB)\, 0<x«x> (86) 

from (72) and (73). Although loading from regime VI has not 
been considered, there is no need to do new mathematics. 
Comparing (86) with (63) for a2 = 0, b2 = aB and bx = bB, it 
is seen that loading along the bottom part of AO is the same 
as loading that starts and stays in regime 77. Consequently 

(87) 

<x<°° (88) 

from (37), and (43) yields 

S 0 W = / p " [ l - 2 ( ^ ^ ) H(x-b0) 

+ ( ^ ) ' / 2 H{x-bB)}, 0 

for the residual shear tractions left when the concentrated 
load is completely removed. 

The residual shear tractions given by (81), (84), and (88) are 
shown schematically in Fig. 10. It is seen that the residual 
tractions are quite different not only for the two directions of 
traverse, but that also their qualitative features may be af­
fected by the value of the friction coefficient. 
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