
VLSI IMPLEMENTATION OF A SWITCH FOR ON-CHIP
NETWORKS

Tomas Henriksson, Daniel Wiklund, and Dake Liu
Dept. of Electrical Engineering

Linköpings universitet, 581 83 Sweden
E-mail: tomhe@isy.liu.se, Phone: +46-13-288956, Fax: +46-13-139282

Abstract. Switch nodes in a 2D mesh SoC connection network have been sug-
gested to solve the SoC integration problem. We have presented a memory buffer
free switch node for connection circuits set up by packet routing. A test chip with
two switch nodes has been implemented. The function of a switch node is to set
up and tear down connections based on small packets and then to transport the
payload data without buffering and with very low latency. The silicon cost of a
node is 0.5 mm2 based on a 2 metal layer 0.8 micrometer AMS CMOS technol-
ogy. The connection latency cost is one clock cycle/switch node. The test chip
works properly at 50 MHz.

1. Introduction

The number of transistors that can be integrated on a single chip keeps increasing exponen-
tially. This leads to the problem that it requires increasing effort to use all the available tran-
sistors in a useful way. The design productivity does not increase as fast as the
manufacturing capability, the so called design gap. A proposed solution to this problem is to
make use of reuse of large IP (intellectual property) blocks. These blocks can for example be
complete processor cores, memories, configurable logic blocks or fixed function blocks.

The obvious problem that follows from the increased integration and reuse is that the IP
blocks need to communicate. The traditional arbitration-based time-division multiplex
(TDM) bus, e.g. the AMBA bus from ARM, Inc. [4], will no longer be able to keep up the
pace when more masters share the bus. The main reason being that the TDM bus only allows
one transfer at the time and thus has to arbitrate when there are multiple requests at the same
time. The direct solution would be to break up the system in smaller domains that each use
their own TDM bus and communicate with other domains via bridges between the local
TDM buses. This will allow for a certain speedup in each domain but will severely limit the
performance when communicating across domain borders. The flexibility of the system will
also be impacted because the system has to be partitioned into the bus domains which will
not allow for later changes in communication patterns.

We proposed the approach to use a switched on-chip network (OCN) as a replacement
for the bus structure [1]. The OCN uses full crossbar switches with five ports, point-to-point
links between the switches, and special format conversion blocks called wrappers to isolate
the IP block port from the network port handling. We were later followed by other research-
ers suggesting similar solutions with switched networks for on-chip communication. The

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357389917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


common denominator in most suggestions including our solution is to connect switches in a
two dimensional mesh network, see Fig. 1. Several recent suggestions use packet switching
following the seven layer OSI model to isolate the different levels of protocols [5][6]. The
seven layer OSI model is very suitable for the understanding of general purpose networks
but is not suitable for direct implementation when it comes to on-chip communication like
the one in an OCN. The principal reasons are that the OCN uses a topology that is fixed at
design time and that the OCN always uses the same communication structure (or only a few
variations) which means that many OSI layers can be collapsed in the implementation.
Another possible drawback with several other suggestions is the packet switching which
unfortunately leads to switches that either are more complex due to the use of virtual chan-
nels or that have to use buffers that can store entire packets in order to avoid situations like
deadlock [7]. The packet latency in the OCN also becomes unpredictable and some packets
can have significant latency (several hundreds of cycles) [8]. The packet-switched OCN is
thus not suitable for hard real-time systems where tight deadlines must be kept at all times.

Instead of true packet switching we use small request packets to set up connection cir-
cuits. The request packets traverse the network in a similar fashion to a packet switched net-
work. When the packet is routed through a node it locks the route which is subsequently
used for the payload transfer that can be done without any buffering (except for a retiming
register) in the switches. Just like the normal packet switching this scheme does not need any
global arbiter or control which may significantly affect the performance. This novel hybrid
packet/circuit switch solution is referred to as packet connected circuit (PCC) [3]. The PCC
solution allows for very low latency in the switches, only five cycles for a route setup
(request packet handling) and one cycle for payload transfer. The simplicity of the proposed
routing scheme also allows for very high speed in the switches (at least 1.2 GHz in a 0.18
micron process) even with a standard cell implementation.

Our proposed system uses five port switches where four ports (north, east, south, and
west) connect to the surrounding switches in the mesh and the fifth port (down) connects to
the local IP block [2]. Since the network connections are fixed at the time of chip design, the
switches can use a simple dynamic routing algorithm based on static knowledge of the direc-
tion to the destination (e.g. north-west) to select a free output link among the ones that leads
closer to the destination. A round-robin scheme is used to select one output if there are sev-
eral free outputs that lead closer to the destination.

The function of the OCN is to send data from the source wrapper to the destination wrap-
per via the shortest possible route. In this paper, we focus on building up and tearing down
connections and on critical path analysis in the switch node. Additional functions such as the
dynamic routing process are not described in this paper.

Figure 1: A two-dimensional switched on-chip network with wrappers and IP blocks.

IP

W
ra

pp
er

IP

W
ra

pp
er

IP

W
ra

pp
er

IP

W
ra

pp
er

IP

W
ra

pp
er

IP

W
ra

pp
er

IP

W
ra

pp
er

IP

W
ra

pp
er

IP

W
ra

pp
er

IP

W
ra

pp
er

IP

W
ra

pp
er

IP

W
ra

pp
er



In order to prove our concept of PCC switching a test chip with 2 simplified switches has
been designed and manufactured. The aim of this paper is to describe that chip and thereby
prove that the concept of circuit-switched OCNs is a viable solution for system-on-chip inte-
gration. In section II the simplifications from a real OCN are outlined and in section III the
switch that has been implemented is described. In section IV the chip implementation is
given in its detail. Section V presents our measured results and finally the conclusions are
drawn in section VI.

2. Simplifications to the On-Chip Network

At the early stage in development when the testchip was built some simplifications to the
switch were necessary in order to make it easily implementable. Since the implementation
was done in a full custom flow instead of a standard cell flow the complexity had to be kept
low so that the design time was not too long. The purpose of all simplifications was to
decrease the design time but still retain the PCC functionality.

The first simplification was to limit the number of ports to three instead of the normal
five ports. The second simplification was to just use four bits (a nibble) wide connections
instead of the intended eight bits. These cuts in the switch specification do not affect the
intended goal which was to prove the concept of PCC, it merely limits the number of con-
current data streams in the switch and the available bandwidth per stream.

The routing algorithm was also limited to a very simple source-addressed scheme where
the source inserts a nibble with an output port number first in the stream for every switch that
the route will traverse. Then each switch will consume the first nibble and use it as an output
address. This scheme does not allow any dynamic routing since the source can not know the
state of the switch at the time the stream will reach it. The payload is then sent directly fol-
lowing the last switch output address in the stream. The specifics of the stream format in this
implementation are described in section 3.

The last simplification is that the implemented switch uses a fixed priority to select
which input port is granted an output port in case of a collision (i.e. when two concurrent
routing requests want to use the same output) in the switch.

The two last simplifications affect the routability of the OCN whenever there is more
than one route active in the network. These simplifications make the OCN less efficient but
does not affect the principles upon which the goal of the implementation relies.

3. The Switch

Since the switch that was implemented in the test chip has 3 ports it can support 3 contempo-
rary data streams that flow through it. An overview of the switch is shown in Fig. 2. The
function of a switch node is to pass a packet from the input port to one output port according
to the address that the packet carries. When a core has data to send, it sends a request to the
switch to which it is connected and then directly starts to send the data. If there is no possi-
ble route to the destination, the switch will send a negative acknowledge back to the core and
the core has to retransmit later on. The switch makes use of a fixed non-preemptive priority
scheme. That means that if a connection is set up it will last until the sender tears it down

Figure 2: Overview of the switch. 3 bidirectional ports are present and can all be used simultaneously.

Switch Port 0

Port 1

Port 2



and that if two requests come to the switch at the same time always the request from the
input port with the lowest port id will be serviced.

The ports consist of 4 data bits (a nibble) and 2 control signals. The data bits are used
both for routing and for data. The 2 least significant data bits are used to route the packet.
The input control signal,req, is used for connection setup, connection tear-down and the
output control signal,nack, is used for negative acknowledgement.

3.1. Switching Functionality

Since the topology of the network is fixed at design time, each core has the knowledge of all
the other cores on the network and how to route packets to them. A packet starts with the
core pulling thereq signal high and putting the first route address on the data bits, then con-
secutive route addresses are put on the data bits until the destination is reached. After the last
address nibble, the data packet starts directly. For example if a core I is connected to switch
A on port 0 and wants to send a packet to core II, which is connected to port 2 on switch B
and switches A and B are connected as shown in Fig. 3. Then if core I wants to send a data
packet to core II the start of the packet will look like the packet shown in Fig. 4. Switch A
will receive the address 1 and pass on the packet to port 1, which goes to switch C. When
doing that, the first address nibble will be removed from the packet and thereqsignal will be
delayed by one clock cycle. So switch C will receive address 0 and route the packet to port 0
which goes to switch B. Also in switch C the first address nibble is removed and thereqsig-
nal is again delayed by one clock cycle. Similarly switch B will receive address 2, route the
packet to core II and remove the last address nibble. Thus, core II will receive the packet
starting with the first data nibble,d0. While the data is sent, the connection stays up, but as
soon as core I has sent the whole packet, thereq signal is pulled low and the connection is
torn down.

If a another connection request comes to port 2 of switch A with address 1 when the data
transfer from core I is still active, that request will be given a negative acknowledgement
because output port 1 is busy. If the request would have had address 0 on the other hand it
would be connected to core I since it is only the input port 0 that is busy, not the output port
0, which is the one needed in this case.

Figure 3: Example configuration of the network-on-chip. Only parts of the network are shown.

I

A C

B
II

0

1 1
0

1

2

2

2

Figure 4: Packet for the example, core I sends data to core II.

req

data

clk

1 0 2 d0 d1 d2



3.2. Interior of the Switch

The switch is constructed from 4 control blocks and 1 crossbar. 3 control blocks are identi-
cal, one for each input port. The 4th control block controls the outputs, see Fig. 5. The input
control blocks (ICBs) keep the connection information in a state register, see Fig. 6 (a).
There is an edge detector in each ICB, which detects edges on thereq signal. If there is a
positive edge on thereq signal, a connection request is sent from the ICB to the output con-
trol block (OCB). The decision logic in the ICB will then wait for a reply from the OCB and
based on that reply it will either generate a negative acknowledgment,nack, or build up the
connection by loading the state register with the address. When a connection is torn-down
(i.e. there is a negative edge on thereq signal), the ICB sends a tear-down order to the OCB
and clears its state register. The decoder generates the crossbar control signals based on the
value in the state register.

The structure of the OCB is shown in Fig. 6 (b). When there are multiple requests for the
same output at the same clock cycle, the input port with the lowest id number has the highest

Figure 5: Block diagram of the switch.

in 0 in 1 in 2

out 2

out 1

out 0

Input
control

Input
control

Input
control

Output
control

Figure 6: The control blocks

Edge
detector

Decision
logic

State
register

Decoder

req

nack

addr(1:0)

cr
os

sb
ar

co
nt

ro
l tear-down

command
to OCB

build up
request to

OCB

reply
from
OCB

build-up

tear-down

load

clear

Register

Decision logic

Decision logic

Decision logic

reply to ICB 0

request from ICB 0

reply to ICB 1

request from ICB 1

reply to ICB 2

request from ICB 2 tear-down
from ICB 2

Decision logic

Decision logic

tear-down
from ICB 1

tear-down
from ICB 0

Register update

(a) One input control block (ICB) (b) The output control block (OCB)



priority. For example, if ICB 1 and ICB 2 try to build up connections at the same time to out-
put port 0. Then the status of output port 0 passes through the first decision logic block
(DLB) unchanged, since ICB 0 did not request output port 0. ICB 1 will thus get a positive
reply from the OCB for the request on port 0. In the second DLB the status will however
change since there is a request from ICB 1. So ICB 2 will get a negative reply and generate a
nack. In the third DLB the status will pass through unchanged, since output port 0 is already
taken. In the register update block, the new status will be computed based on the result of all
connection build-up request and connection tear-down orders.

The crossbar is built up from 9 identical cells. The structure of a cell is shown in Fig. 7.
The 3x3 crossbar is controlled by the crossbar control signals from the state register decod-
ers in the ICBs. Each ICB generates three control signals, one for each of the three crossbar
cells on its input port.

4. Chip Implementation

The chip that was designed consists of two switches. There are also two test sequence gener-
ators (TSGs) on chip. The TSGs were included in the design because of the pin limitation
(the design was limited to one corner of a chip). Only one output port and one input port
from each switch could be accessed from the pins. The other input ports are used for connec-
tion between the switches and for the TSGs. One output port on each switch is used for the
connection between the switches and the third output port is left unused, see Fig. 8.

Figure 7: Structure of a crossbar cell.

nack

d(0)

d(1)

d(2)

d(3)

req

re
q

d(
3)

d(
2)

d(
1)

d(
0)

na
ck

cr
os

sb
ar

 c
on

tr
ol

To
 o

ut
pu

t p
or

t

From input port

Figure 8: Chip overview. Block diagram (left) and chip photo (right)

Switch A

in1out 1

out 2

out 0

in0

in2

Switch B

in1out 1

out 2

out 0

in0

in2

Pads Pads

Test sequence
generator

Test sequence
generator



The TSGs are triggered by a start signal and then they generate a packet which is
addressed to port 1 and then contains the sequence 0x1, 0xD, 0xA, 0x8, 0x4 and 0x2 on the
6 following nibbles. This sequence is routed to the output port 1 which goes to the pads. The
TSGs are used in the testing phase to test the priority of the switches.

The chip was designed using a full-custom design technique in a two metal layer, 0.8
micron technology from AMS. The schematic and the layout were designed in Mentor
Graphics LED and simulations were performed by LSIM and Spice.

All the four blocks in this chip run from the same external clock with little skew, so the
whole chip is synchronous in its operation.

5. Results and Discussion

The chip was manufactured and tested in a HP16500 logic analysis system from HP/Agilent.
The chip photo is shown in Fig. 8. In the upper part, the two TSGs can be seen and below
them there are the two switches. The area of one switch node is 0.5 mm2. All pads are not
shown on the chip photo.

One of the pads was not bonded, as can be seen on the photo (the third from below on the
right pad row). This pad is connected to thereq signal to input port 1 of switch A. We there-
fore cannot use that input port, instead we had to connect the unbonded pad to ground by a
special probe. However, all major functions of the switch could still be tested by using the
other input ports and the other switch.

The test results proved functional correctness for all the planned test cases. Those test
cases were:
• Simple connection build up and tear down
• Test sequences from TSGs to outputs
• Cascaded routing from input port 1 on switch B to output port 0 and continuing to input

port 0 on switch A to output port 1
• The non-preemptiveness of an already existing connection
• The priority mechanism for simultaneous connection requests

The logic analysis system that we used can only have a clock period of multiples of
10 ns. The chip works correctly for 50 MHz clock, but not for 100 MHz clock. The exact
maximum performance of the switch is somewhere in between. The limitation could also be
the board that was used for testing. Since our main interest was not the performance but the
functionality we did not spend time and money on a printed circuit board. Instead we used
an experimental board with hand soldered wires to connect the logic analyzer and the pattern
generator with the test chip. The power consumption for the chip at 5 MHz and 50 MHz
clock frequency at 5 V supply voltage is shown in table 1. The core includes the two
switches and the two TSGs.

The switch that was designed is of course a simplification of a switch for a real OCN. In
a real OCN, the switches will not be synchronous, but can be assumed to run on phase-
shifted clocks from one single source and therefore capturing the input data is relatively
straight-forward. The interfaces to the cores can be converted by a wrapper, which adjusts
bus width and switching frequency of the signals to fit the core.

A switch in a real OCN will also have more than 3 ports and support more complex rout-
ing protocols. Nonetheless our switch implementation has proved that the concept of circuit
switched OCNs where the connections are built up by the headers of the packets is working.

A switch in a real OCN will be designed in a much more modern process technology and
thereby the performance can be increased a lot, even if a standard cell based design flow is
used.



The critical path in the switch is situated in the OCB, in the DLBs that handle the
requests from the ILBs. This path has a delay which is linear to the number of ports in the
switch. When implementing a switch with 5 ports the critical path will therefore be longer.
There are however ways to get around that problem. All the DLBs could be merged into one
combinational logic block with several inputs. This is easy to do when using HDL descrip-
tions and synthesis to standard cells. In this full custom implementation we chose to use one
small DLB cell that we could replicate many times to save design effort. Another way to
speed up the OCB would be to use pipelining technique in the decision chain. By doing so
the critical path is relaxed to only one DLB, but the cost is that the latency until a reply is
generated equals the number of pipeline stages in the OCB.

There is a lot of related work in this area concerning the topology and functionality of the
OCN, as was discussed in the introduction section. However we think that this is the first
actual chip implementation to be published.

6. Conclusions

A fully functional, yet simplified, switch for an OCN has been designed, manufactured and
tested. This proves that circuit-switch based OCNs is a viable solution to the SoC integration
problem.

Future work includes the design and manufacturing of second generation test chip, which
will incorporate switches with all the features discussed in this paper, a larger 2-D mesh net-
work and real-time traffic sources.

Acknowledgments
This study is part of the SoCBUS project, which is sponsored by Swedish Foundation for
Strategic Research (SSF).

References
[1] Daniel Wiklund and Dake Liu, “Switched interconnect for system-on-a-chip designs”,Proceedings of the
IP 2000 conference, Edinburgh, Scotland, Oct 2000, pp 185-192
[2] Daniel Wiklund and Dake Liu, “Design of a System-on-Chip Switched Network and its Design Support”,
Proceedings of the International conference on communications, circuits and systems (ICCCAS), Chengdu,
China, June 2002, pp 1279-1283
[3] Dake Liu, Daniel Wiklund, Erik Svensson, Olle Seger, and Sumant Sathe, “SoCBUS: The solution of high
communication bandwidth on chip and short TTM”,Proceedings of the Real time and embedded computing
conference, Gothenburg, Sweden, Sept 2002.
[4] ARM, Inc., “AMBA 2.0 specification”, http://www.arm.com
[5] William J. Dally and Brian Towles, “Route packets, not wires: On-chip interconnection networks”,Proc of
the Design Automation Conference (DAC), Las Vegas, USA, 2001, pp 684-689
[6] Iikka Saastamoinen, David Sigüenza-Tortosa, and Jari Nurmi, “Interconnect {IP} node for future System-
on-Chip Designs”,IEEE int’l workshop on Electronic design, Test, and Applications (DELTA), 2002, pp 116-
120
[7] Christopher J. Glass and Lionel M. Ni, “Fault-tolerant wormhole routing in meshes without virtual chan-
nels”, IEEE transactions on parallel and distributed systems, vol 7, no 6, 1996, pp 620-636
[8] Pierre Guerrier and Alain Greiner, “A Generic Architecture for On-Chip Packet-Switched Interconnec-
tions”, Proc of the design and test in Europe (DATE), Munich, Germany, 1999, pp 250-256

Table 1: Power consumption

Clock
frequency

Core power
consumption

Pad frame power
consumption

5 MHz 0.95 mW 3.55 mW

50 MHz 3.20 mW 29.85 mW


