
Calculation of Delay Times for Workflows with Fixed-Date

Constraints

Martin Bierbaumer, Johann Eder, Horst Pichler

Institute for Informatics-Systems, University of Klagenfurt, Austria

Abstract

Workflow participants are faced with the problem to
select one out many work items in their worklist. The
decision to execute one specific work item implicitly
postpones the execution of all other items. This may
lead to disproportionately increased execution durations
of the associated workflows, especially if fixed-date con-
straints are defined on succeeding tasks. In this paper
we show how to utilize a workflows control structure
augmented with information about timing behavior to
calculate what delay to expect when the execution of a
work item is postponed to certain dates. This informa-
tion can be used to assist the participant in order to in-
crease the workflow throughput and avoid time-related
escalations.

1 Introduction

Workflow systems execute tasks according to a pro-
cess definition. Each manual task refers to a work item
which is assigned to a workflow participants worklist.
As a worklist usually holds multiple work items from
different workflows the participant has to decide which
work item to handle next. The decision of a workflow-
participant to work on a particular work item implic-
itly holds the decision to postpone every other work
item in the work list. This may have grave effects
on the execution duration of the workflows to which
these postponed work items belong. Common policies
for this decision problem, like first-in first-out (FIFO)
or earliest due date first, are known to be suboptimal
[1]. Two reasons (among others) are that this policies
do not consider the following: a) the postponement of
a task may not immediately delay a workflow due to
eventually existing buffer times, and b) even a slight
postponement may lead to a disproportionately high
delay due to fixed-date constraints [8] on succeeding
tasks (e.g. ’meeting on 5th of a month’).

Consider the workflow JobPosting to announce open

positions of a big company in the local newspaper, as
visualized in Fig. 1: A department initializes the pro-
cess by generating a claim. At first the claim will be
forwarded to the personnel division where it is prepared
for further processing. Then the claim is validated by
the personal manager. After this, a job offer for the
open position is created. Then the offer is mailed to
the newspaper. Finally the job offer is finished (fil-
ing, notification of departments, etc.). The expected
duration in days is displayed on top of each task. Ad-
ditionally, as the newspapers special ”Job & Career”
edition appears only once a month (on each 15th) a
corresponding fixed-date constraint (fdc) has been de-
fined on the last activity mail, demanding that it must
be finished on the 14th of a month. Currently, on Sun-
day May 8th 2005, Mr. Smith, employed in the com-
panies personnel division, has two work items from two
different JobPosting-processes in his worklist. For sake
of simplicity, we assume that every day is a working
day, Saturdays and Sundays included.

Scenario 1.a) According to the FIFO-policy, sug-
gested by the worklist client, he starts to execute the
first work item, the task prepare of process JobPosting1,
which will presumably take 6 days. Although the exe-
cution of prepare starts immediately, the job offer will,
according to the expected task durations, not appear
in the May-issue, as the mail-task will presumably be
finished on May 21st and the process will be finished
at May 24th. Unfortunately, the decision to execute
prepare first implicitly postpones the execution of his
second work item, the task create of process JobPost-
ing2, for 6 days, to May 14th. create can be finished on
May 16th and the next step mail on May 17th. Thus
the job offers of the second process will, presumably,
also not appear in this month special issue.

Scenario 1.b) If Mr. Smith had chosen to execute
the second work item first, the mail-task of process
JobPosting2 could have been finished on time, until
May 11th. Thus the FIFO-policy unnecessarily delays
the second process for 30 days. Although this decision
postpones the first work item prepare, the JobPosting1

Proceedings of the Seventh IEEE International Conference on E-Commerce Technology (CEC’05)

1530-1354/05 $20.00 © 2005 IEEE

derntl
Text Box
© 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Worklist for Mr. Smith Sunday, May 8th 2005
ID Task Process Received

34848 prepare JobPosting1 May 6th 2005
34856 create JobPosting2 May 7th 2005

Prepare
Claim

Validate
Claim

Create
Job Offers

6 days 5 days 2 days
Mail

Job Offer

1 day

fdc: 14th of a month

Finish
Job Offer

3 days

Figure 1. Scenario1: job posting workflow

process will not be delayed, as it will also end at May
24th (which is the same end date as in Scenario1). Due
to the fixed-date constraint defined on mail, enough
buffer time exists to compensate the postponement!
The scenarios demonstrate that an intelligent and pre-
dictive selection of work items can help to decrease the
turn-around times of processes.

Although different aspects of time and time man-
agement have been investigated extensively in related
research areas such as project management or job-
scheduling none of the proposed techniques are suit-
able for time management in workflows, mainly due to
the complex issues involved in workflow modelling and
instantiation [?, 10]. Nevertheless several publications
can be found in the area of workflow time management,
e.g. [3, 6, 7, 9]. They propose the calculation of time
plans which define execution intervals for each activity
in a workflow, such that deadlines will not be violated.
As far as we know no publication exists which examines
the relation between postponement and delay.

In this paper we introduce the basics of a method
which exploits knowledge about the workflow structure
and time properties, to assists workflow participants
when deciding which work item to handle next, in or-
der to decrease turnaround times, increase throughput
and avoid time-related escalations, by providing infor-
mation about the delay to expect when selecting or
postponing tasks.

2 Time properties

In addition to the workflows control-structure cer-
tain time properties have to be defined during the mod-
elling process. Each node N is augmented with the
expected duration N.d in an arbitrary time unit like
hours or days. Control nodes (like start end, splits and
joins) usually have a duration of 0. The workflows over-
all execution duration is limited by a workflow dead-
line δ, which is defined as a time value relative to the
start of the workflow. Additionally the execution of a
node can be constrained to certain dates by a fixed-
date constraint fdc(N, F), expressing that the end of
node N can only occur on certain dates specified by the
fixed-date object F , where F.valid(Date) returns true

if the arbitrary date is valid for F. F.next(Date) and
F.prev(Date) return the next and previous valid dates
after Date. Assume that a fixed-date object f may for
example be defined as a list of valid dates f = (12th of
March, 25th of September) or as an expression like f =
every 3rd sunday starting with 6th of September.

Based on the workflow structure and time proper-
ties, it is possible to calculate the earliest possible end
(EPE) for each node, relative to the start time of the
workflow. It depicts the earliest possible point in time
an activity may end, defined by the sum of durations
of preceding nodes. The EPE of a node is basically the
sum of all durations of nodes executed before it, start-
ing from the current node Cur and at current time
now. The EPE of each node is calculated in a for-
ward pass, starting from the current node. Consider
the workflow from scenario 1 with Cur = prepare and
now = may8 (depicting the current time 8th of May
2005): prepare.epe = may14, validate.epe = may19,
create.epe = may21 and mail.epe = may22. Accord-
ing to the fixed-date constraint defined on mail, the
EPE must be shifted to the next valid date adhering to
fdc(mail,14th of a month), yielding mail.epe = jun14.
Then we calculate finish.epe = jun17. Finally, as
control nodes like End have a duration of 0, the earli-
est possible end of the workflow is is equal End.epe =
jun17.

3 Postponement and Delay

A postponement designates the shift of the execu-
tion of an activity, which is ready to be executed by a
participant, to a later point in time. A delay is gen-
erated if due to a postponement the earliest possible
end of the workflow (= End.epe) would be increased.
In our running example with start = now = may8
(start depicts the start time of the workflow and now
the current time) and Cur = prepare we additionally
define an overall workflow deadline of δ = 90, there-
fore the workflow (or the node End) must be finished
until start + δ = aug6. The examination of depen-
dencies between delay and postponement must start
at the last node. One can see, that the workflow can
not end before End.epe = jun17 and must not end af-
ter now + δ = aug6. Thus, the following can be stated
(for End): if it is not postponed it will not be delayed
and end at jun17, if it is postponed by 1 day it will
be delayed by 1 day and end at jun18, and so on. Fi-
nally we can state, that if it is postponed by 50 days it
will be delayed by 50 days and end at aug6. A further
postponement will lead to a violation of the workflow
deadline now + δ = aug6.

Based on this knowledge it is possible to de-

2

Proceedings of the Seventh IEEE International Conference on E-Commerce Technology (CEC’05)

1530-1354/05 $20.00 © 2005 IEEE

jun14
jun15
+++
aug3

0
1
+
50

mail.dt

jun14
jul14

0
30

mail.dtaggD

jun17
jun18
+++
aug6

0
1
+
50

End.dt=
finish.dt

jun13
jul13

0
30

create.dt

jun11
ju11

0
30

validate.dt

jun6
jul6

0
30

prepare.dt jun14
jun14

jul14
jul14

jul14

0
1
*

30
31
*

50

mail.dtadj

calculation direction

Figure 2. Delay tables for Scenario1

fine a relation between a delay deadline (d) and
a delay time (t), where t is the delay, if the
end of the node is postponed to d. This rela-
tion is captured in the delay table (DT). E.g. the
DT of End is End.dt={(jun17,0),(jun18,1),(jun19,2),
+++,(aug6,50)}. The +++ between two tuples
(d1, t1),+++,(dn, tn) symbolize that the set holds ad-
ditional tuples (di, ti), such that di = di−1 + 1 and
ti = ti−1 + 1 for 1 > i > n.

To express queries on DTs we define the operation
selectT , which yields the delay time for a given delay
deadline, e.g. selectT(End.dt, jun18) = 1 states that
the workflow will be delayed by 1 day if the node End

ends at jun18. If no tuple with the requested delay
deadline exists, the delay time of the tuple with the
next greater delay deadline is selected. The selection
of a point in time greater then the maximum delay
time in a DT returns a result of ∞. This expresses
the possibility of workflow deadline violation: e.g. se-
lectT(End.dt, sep12) = ∞ states that if the workflow
ends at sep21 the deadline will be violated.

4 Calculation of Delay Tables

4.1 Sequences
The DT of each node is calculated in a backward

pass, starting from the end node, which must be ini-
tialized as stated above. For nodes, which are to be
executed in a sequence, the DT of a predecessor node
is calculated by applying an operation which subtracts
the duration of the successor from each delay dead-
line in the successors DT, yielding finish.dt = End.dt -
End.d and mail.dt = finish.dt - finish.d and so on (see
also Fig. 2). As a fixed-date constraint fdc(mail,f) ex-
ists, the end of mail may only occur on valid dates, de-
fined by the fixed-date object f=14th of a month. Thus
the delay deadlines in mail.dt must be adjusted using
the previous function of the fixed-date object. The op-
eration yields mail.dtadj = {(jun14,0),(jun14,1),***,
(july14,30), (july14,31),***, (july14,50)}. The *** be-
tween two tuples (d1, t1), ***,(dn, tn) symbolize that
the set holds additional tuples (di, ti), such that di = d1

and ti = ti−1 + 1 for 1 > i > n. As one can see that
this operation may result in a DT with multiple iden-
tical delay deadlines (but different delay times). As
exactly one delay deadline must unambiguously deter-
mine a delay time, all tuples with identical delay dead-

Prepare
Claim

Validate
Claim

Create
Job Offers6 days

5 days 2 days
Mail

Job Offer

1 day fdc1: 14th of a month

Finish
Job Offer

3 days
AJ

Check
Claim fdc2: every 3d Monday,

 starting with may9

1 dayAS

Figure 3. Scenario2: Parallel execution

lines must be removed, but the one with smallest delay
time, yielding mail.dtaggD = {(jun14, 0), (jul14, 30)}.
This is interpreted as: if mail ends at jun14 or before,
the delay will be 0; if it ends after jun14 and before
or exactly at july14 the delay will be 30. The next
possible end, according to the fixed-date constraint, is
aug14. But if mail would end at aug14, the workflow
deadline would be violated. Thus the last allowed de-
lay deadline (or end time) is jul14. The DTs of the
remaining nodes are calculated using the subtraction
operation.

4.2 Parallel Execution

Workflows may also contain control nodes of type
and-split and and-join. Routes after an and-split will
be processed in parallel and will be synchronized at the
according and-join, which does not proceed until all
predecessor nodes are finished. We adapt the example,
as visualized in Fig. 3: The company decides that the
management’s staff unit must be informed about every
claim. Additionally a fixed-date constraint is attached
to the new activity check (which takes 1 day), as the
staff unit team only meets every 3d monday (starting
with may 9th) to discuss and check new claims. As-
sume that the semantics of finish is now: finally the job
offer and the claim are finished together (filing, noti-
fication of departments, etc.). Note that it is assumed
that control nodes have a duration of 0.

Again Cur=prepare, now=may8 and δ=90. At first
the EPEs must be calculated: Start.epe=may8,
prepare.epe=may14, AS.epe=may14, vali-
date.epe=may19, create.epe=may21, mail.epe=jun14,
check=may30, AJ.epe=jun14, finish.epe=jun17 and
End.epe=jun17. The EPE of the new activity check
has been adjusted to the next valid date may30 (=
may9 + 3weeks) according to its fixed-date constraint.
And, as the execution will not proceed at the and-joins
until all predecessors are finished, the EPE of the
and-split AJ is equal to the maximum EPE of its
predecessors (mail and check), which is mail.epe.

The calculation of DTs again starts with the ini-
tialization of the last node (based on End.epe and
start + δ), followed by the subsequent calculation of
finish.dt and AJ.dt (see also Fig.4). The DTs of nodes
which are predecessors of an and-split are calculated

3

Proceedings of the Seventh IEEE International Conference on E-Commerce Technology (CEC’05)

1530-1354/05 $20.00 © 2005 IEEE

may30
jun20
jul11

0
6

27

check.dtFDCcheck.dt' jun17
jun18
+++
aug6

0
1
+
50

finish.dt
= End.dt

jun6
jul6

0
30

validate.dt'

...
may29
jun19
jul10

0
6

27

may29
jun9

jun19
jul9

0
6

30
30

AS.dtmerge
may29

jun9
jul9

0
6

30

prepare.dt
= AS.dtaggT

jun14
jun15
+++
aug3

0
1
+
50

mail.dt
= check.dt
= AJ.dt

jun14
jul14

0
30

mail.dtFDC

Figure 4. Delay tables for Scenario2

like nodes in a sequence: mail.dt = AJ.dt – AJ.d and
check.dt = AJ.dt – AJ.d. Since AJ.d=0, their DTs are
equal to AJ.dt. For the upper parallel route we refer
to the calculations of Scenario1, as the DTs are equal.
For the single node check of the second route we have
to apply its fixed-date constraint fdc(check, every 3d
monday starting with may9), resulting in check.dtfdc

(to save some space we did not show the intermediate
results check.dtaggD and check.dtadjust).

Before combining DTs of and-split successors, their
durations must be subtracted (resulting in an in-
termediate dt′): validate.dt’={(jun6,0),(jul6,30)} and
check.dt’ = {(may29,0),(jun19,6),(jul10,27)}. At the
and-split the DTs of all successors must be merged.
The merge-operation selects the greatest delay time (as
all routes are processed in parallel) for every possible
delay deadline, which is for the running example ac-
complished as follows: First a set D which holds all
delay deadlines of both sets is generated, which is for
our example D={may29,jun6,jun19, jul6, jul10}. Then
for every delay deadline in D the selectT -operation is
applied on both DTs and the maximum of the results
is selected, which yields 0 for may29, 6 for jun6, 30
for jun19, 30 for jul6 and ∞ for jul10: AS.dtmerge

= {(may29,0),(jun6,6),(jun19,30), (jul6,30)}. The de-
lay deadline jul10 has been filtered out as ∞ indicates
an upcoming deadline violation. As one delay deadline
must refer to exactly one delay time, it is necessary
to remove the tuple with the earlier delay deadline re-
sulting in AS.dtaggT = {(may29,0),(jun9,6),(jul9,30)}.
And finally, due to AS.d = 0, the DT of the current
activity prepare is prepare.dt = AS.dtaggT – 0.

4.3 Conditional Execution: A Problem Statement
The workflow in Fig. 3 is rather simplistic as one fun-

damental concept has not been addressed so far: con-
ditional execution. At an or-split exactly one route out
of many will be selected according to a run-time evalu-
ated condition. The corresponding or-join proceeds if
one predecessor node is finished (the one on the route
selected at the or-split). This raises some problems,
e.g.: the EPE of an or-join can not be determined un-
ambiguously, as it depends on the path which has been
selected at the or-split. Which one this will be, is un-
known at a current node Cur. To tackle this problem
we introduced the concept of probabilistic delay tables

along with detailed definitions and algorithms partially
presented in this paper (see technical report [4]).

5 Conclusions and Future Work

We introduced the basics for a method to calculate
delay tables which contain information about the delay
to expect if a workflow participant postpones the end of
a task in his worklist to a given date. This information
may be used to provide additional selection criteria to
the participant, e.g. tasks where the delay time does
not change if postponed for some days or even weeks, or
tasks where a deadline miss is very likely to occur. This
will assist participants to select work items in order to
decrease turnaround times, increase throughput avoid
time-related escalations and subsequently save costs.

Currently we proceed with our investigations on the
integration of probabilistic information about workflow
execution and to find optimization algorithms for au-
tomatically presorted worklists. Furthermore we plan
to investigate how to adapt our algorithms for non full-
blocked workflows, which for instance allow the defini-
tion of arbitrary cycles.

References

[1] G. Baggio and J. Wainer and C. A. Ellis. Applying Schedul-
ing Techniques to Minimize the Number of Late Jobs in
Workflow Systems. In Proc. of the 2004 ACM Symposium
on Applied Computing (SAC). ACM Press, 2004.

[2] C. Bettini, X. X. Wang, and S. Jajodia. Temporal reasoning
in workflow systems. Distributed and Parallel Databases,
11(3), May 2002.

[3] C. Bettini, X. X. Wang, and S. Jajodia. Temporal reasoning
in workflow systems. Distributed and Parallel Databases,
11(3), May 2002.

[4] M. Bierbaumer, J. Eder and H. Pichler. Probabilistic Delay
Times for Workflow Systems. Technical report, Universität
Klagenfurt, Institut für Informatik Systeme, 2005.

[5] C. Bussler. Workflow Instance Scheduling with Project
Management Tools. In 9th Workshop DEXA’98. IEEE
Computer Society Press, 1998.

[6] C. Combi and G. Pozzi. Temporal conceptual modelling
of workflows. In Proc. of the Int. Conf. on Conceptual
Modeling (ER 2003). LNCS 2813. Springer, 2003.

[7] J. Eder and E. Panagos. Managing Time in Workflow Sys-
tems. In Workflow Handbook 2001. Future Strategies INC.
in association with Workflow Management Coalition, 2000.

[8] J. Eder, E. Panagos, and M. Rabinovich. Time constraints
in workflow systems. In Proc. International Conference
CAiSE’99. Springer Verlag, 1999.

[9] O. Marjanovic, M. Orlowska. On modeling and verification
of temporal constraints in production workflows. Knowl-
edge and Information Syst., 1(2), 1999.

[10] S.Sadiq, O. Marjanovic, and M. E. Orlowska. Managing
Change and Time in Dynamic Workflow Processes. In In-
ternational Journal of Cooperative Information Systems.
Vol. 9, Nos. 1 & 2. March - June 2000.

4

Proceedings of the Seventh IEEE International Conference on E-Commerce Technology (CEC’05)

1530-1354/05 $20.00 © 2005 IEEE

