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Abstract 

Thematic mapping via a classification analysis is one of the most common applications of 

remote sensing. The accuracy of image classifications is, however, often viewed negatively. 

Here, it is suggested that the approach to the evaluation of image classification accuracy 

typically adopted in remote sensing may often be unfair, commonly being rather harsh and mis-

leading. It is stressed that the widely used target accuracy of 85% can be inappropriate and that 

the approach to accuracy assessment adopted commonly in remote sensing is pessimistically 

biased. Moreover, the maps produced by other communities, which are often used 

unquestioningly, may have a low accuracy if evaluated from the standard perspective adopted 

in remote sensing.  A greater awareness of the problems encountered in accuracy assessment 

may help ensure that perceptions of classification accuracy are realistic and reduce unfair 

criticism of thematic maps derived from remote sensing. 
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1.  Introduction 

Image classification is one of the most commonly undertaken analyses of remotely sensed data. 

In even a cursory sweep of the subject‟s main journals it will be apparent that classification 

analyses occur in a significant and often dominant proportion of papers published in many 

issues. Despite the importance of classification analysis within the subject, the evaluation of 

classifications is, however, a problematic issue. 

 

The main reason for undertaking an image classification is, in effect, to convert the image‟s 

information on the spectral response of the Earth‟s surface into a thematic map depicting 

classes of interest such as land cover. Given the importance of classification analysis to the 

subject area, it is not surprising that considerable research has focused on a wide range of 

issues of relevance to its various components. This research has, for example, addressed the 

potential of various classification algorithms and the influence of image properties such as the 

spatial and spectral resolution as well as of various pre- and post-classification manipulations 

on aspects of the analysis. Throughout this research, a major focus has typically been on the 

accuracy of the classification. 

 

Classification accuracy has been a focus of attention for a considerable period of time and is a 

topic that has developed considerably in recent years (Congalton, 1991, 1994; Congalton and 

Green, 1999; Pontius, 2000, 2002; Foody, 2002; Pontius and Cheuk, 2006). Classification 

accuracy is the main measure of the quality of thematic maps produced and required by users, 

typically to help evaluate the fitness of a map for a particular purpose. The accuracy of image 

classifications has also been central to studies that have sought to evaluate different 
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classification approaches and a suite of issues connected with class discrimination. Although 

seemingly a simple concept, classification accuracy is a very difficult variable to assess and is 

associated with many problems (Foody, 2002). 

 

The accuracy of image classifications is often perceived as being inadequate for many users 

(Townshend, 1992; Wilkinson, 1996; Gallego, 2004). Considerable research has, therefore, 

sought to increase the accuracy of thematic mapping through image classification analyses. 

However, from a survey of papers published over the 15 year period 1989-2003, Wilkinson 

(2005) notes no upward trend in accuracy arising from this effort. Indeed, Wilkinson (2005) 

reports no observable trend in classification accuracy over time with a mean accuracy, 

expressed as a kappa coefficient of agreement, of ~0.66. It is, therefore, unsurprising that the 

accuracy of thematic maps derived from remote sensing is often questioned. Sometimes, 

however, this questioning arises from situations in which a map is used for applications other 

than those for which it was designed. For example, this problem may occur when a map 

developed for specific small cartographic scale applications is used at much larger scales than it 

was intended for (Brown et al., 1999). There is also considerable anecdotal evidence of users 

questioning the accuracy of maps, often on the basis of very localized assessments (e.g. 

arguments like „that pixel is misclassified‟). These and other criticisms of thematic maps 

derived from remote sensing may sometimes be unfair. Here, it is suggested that the assessment 

and interpretation of classification accuracy in remote sensing may often be made from an 

overly harsh perspective. This view is discussed with reference to key widely accepted issues in 

accuracy assessment such as the targets used as well as in relation to the assessment of the 

accuracy of maps produced by other mapping communities. 
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2.  Accuracy target 

The evaluation of the quality of a thematic map derived by an image classification should 

ideally be based on a set of criteria defined in advance of its production. As concern is typically 

focused on the accuracy of the classification, commonly its overall accuracy, the definition of a 

minimum level of accuracy required provides a simple criterion on which to base the 

evaluation of classification quality. Thus, classifications are often evaluated in relation to the 

magnitude of their estimated accuracy. A target accuracy value should be stated prior to 

undertaking the classification, not least because this reduces the potential for very subjective 

post-classification evaluations undertaken on a poorly justified ad hoc basis.  Although a target 

accuracy is often not stated explicitly, one value that has been widely used as a target in 

thematic mapping via an image classification is to achieve an accuracy of 85% correct 

allocation (e.g. McCormick, 1999; Scepan, 1999; Wulder et al., 2006); it is very rare to see any 

other target value specified in the literature. Sometimes this 85% target is qualified further to 

indicate that the component classes of the classification should be classified to comparable 

levels of accuracy. However, it is against this 85% target that the acceptability of thematic 

maps derived from remote sensing is commonly assessed. Indeed, the 85% target is often 

viewed explicitly by some as the standard of acceptability for thematic mapping from remotely 

sensed imagery (e.g. Wright and Morrice, 1997; Abeyta and Franklin, 1998; Brown et al., 

2000; Treitz and Rogan, 2004).  

 

The 85% target accuracy often seems to be used without question of its suitability and simply 

because there is some historical tradition associated with it. This target is sometimes stated 
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without apparent need for justification or provision of supporting evidence from the literature, 

it is essentially seen by many as a universal standard for thematic mapping in remote sensing 

(e.g. Fisher and Langford, 1996; Weng, 2002; Rogan et al., 2003; Bektas and Goksel, 2004). It 

is not surprising, therefore, that the 85% target has been used in studies spanning a vast range 

of applications including the mapping of broad land cover classes at a global scale from 1 km 

spatial resolution NOAA AVHRR imagery (Scepan, 1999), mapping of very detailed classes 

such as those depicting variations in forest species cover at a very local or large cartographic 

scale such as ~1:5,000 from aerial photography (McCormick, 1999) and assessments of change 

detection with 30 m spatial resolution Landsat TM imagery (Sader et al., 2001). The studies 

reported in these three examples differ greatly in terms of the nature of the classes, the scale of 

the study and the characteristics of the remotely sensed data used, yet all adopted the same 85% 

accuracy target.  

 

In many cases the origin of this 85% target accuracy can be traced back to the influential work 

of Anderson et al. (1976). Indeed this work is often cited explicitly in relation to the 

specification of the target accuracy in many projects (e.g. Fisher and Langford, 1996; 

Kaminsky et al., 1997; Rogers et al., 1997; Wright and Morrice, 1997; Brown et al., 2000;  

Franklin et al., 2001; Lewis and Brown, 2001; Carranza and Hale, 2002; Yang and Lo, 2002; 

Weng, 2002; Rogan et al., 2003; Shao et al., 2003; Kerr and Cihlar, 2004; Treitz and Rogan, 

2004; Mundia and Aniya, 2005; Yang and Liu, 2005). However, Anderson et al. (1976) do not 

discuss the matter in great detail or set out to propose a universally adoptable set of map 

evaluation criteria. For example, in the 28 pages of the article there is little discussion of the 

map accuracy criteria as the main focus was on the classification system. Indeed, within the 
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article there are actually only two references to the magical 85% figure in the report (both p5), 

with the reader directed to an earlier publication by Anderson (1971) for further information. 

Anderson (1971) also only briefly discusses the map evaluation criteria. The main focus of both 

the Anderson (1971) and Anderson et al. (1976) articles was on the classification schemes that 

could be used with remotely sensed data and not on the evaluation of the accuracy of the 

derived classifications, although that was clearly an important issue. Both of the articles were 

explicitly tentative in their proposals, aware that the sensing technology was rapidly developing 

(the articles were written around the time of the launch of the first Earth resources satellite 

system, Landsat 1) and that it is unlikely that there is one ideal approach to promote. 

Furthermore, both Anderson (1971) and Anderson et al. (1976) were explicit in relation to the 

nature of the thematic map under study and have a reason for the 85% figure, which is 

specified for a particular application scenario. That scenario was the mapping of broad land 

cover classes, such as those at Anderson level I (e.g. urban, agriculture, forest, water etc.), at 

small cartographic scales in the range of 1:250,000 to 1:2,500,000. Moreover, the suggestion 

made was that  

 

“The minimum level of interpretation accuracy in the identification of land use 

and land cover categories from remote sensor data should be at least 85%” and 

that the “accuracy interpretation for the several classes be about equal” 

(Anderson et al., 1976; p5). 

 

Thus, at the possible risk of misinterpreting the intended meaning, the focus was also not on 

overall classification accuracy but on what would be referred to today as a producer‟s accuracy. 
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This is not the emphasis used in some studies that quote the 85% target accuracy. Additionally, 

the basis of the 85% target was because this would be comparable to the accuracy of land cover 

maps derived from aerial photograph interpretation undertaken previously in work associated 

with the USDA‟s Census of Agriculture. That is, an aim was to emulate the accuracy that could 

be achieved for a specific task through the application of conventional approaches such as 

aerial photograph interpretation.  Additionally, it must be recognised that the minimum 

mapping unit for mapping at the specified small cartographic scales is several hundred pixels in 

size. If, for example, it is assumed that the smallest unit to be depicted on a thematic map is 2.5 

x 2.5 mm in size, the minimum area mapped at a scale of 1:500,000, which is appropriate for 

mapping at Anderson level I, is 150 ha (Lillesand and Kiefer, 2000). Thus, in mapping from 80 

m spatial resolution Landsat MSS imagery, the type of data considered by Anderson et al. 

(1976),  the smallest mapped area would comprise at least 234 pixels. Although the component 

pixels of the unit mapped might differ in terms of class of allocation the unit would be given a 

single label (e.g. dominant class). This is entirely sensible as the map is a generalization of 

reality but also highlights the inappropriateness of some pixel based evaluations of image 

classifications derived from remote sensing.    

 

The map evaluation criteria put forward by Anderson et al. (1976) were not proposed as being 

universally applicable. In the context of satellite remote sensing, the 85% target accuracy was, 

essentially, specified by Anderson et al. (1976) for mapping broad land cover classes 

(Anderson level I, 9 broad classes) from Landsat 1 sensor data (e.g. MSS with 80 m spatial 

resolution in 4 spectral wavebands). The criteria proposed were not, for example, suggested for 

detailed class mapping of local regions from imagery of the type available from contemporary 
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satellite sensing systems. It is also questionable whether the 85% target is appropriate for other 

small scale mapping applications. For example, the 85% target was used in relation to the 

IGBP DISCover global land cover map (Scepan, 1999) yet this map contains 17 classes and 

was derived mainly from NOAA AVHRR data with a 1 km spatial resolution (Loveland et al., 

1999). Direct comparison between the IGBP DISCover mapping programme and that 

envisaged by Anderson et al. (1976) is difficult (e.g. the generation of the IGBP DISCover map 

used multi-temporal data and some ancillary information). However, it is evident that the 

Anderson et al. (1976) proposal was made in relation to mapping a small number of classes 

from, what may be considered in this context to be, fine spatial resolution multispectral data 

with a relatively large minimum mapping unit which is very different to the scenario used in 

the production of the IGBP DISCover map, the assessment of which was also based on pixel 

level evaluations (Scepan, 1999). Although generalization is difficult, particularly because of 

inter-linkages between spatial and categorical scale (Ju et al., 2005) as well as a high degree of 

context dependency, classification accuracy commonly, but by no means always, declines with 

an increase in the number of classes (e.g. Foody and Embashi, 1995; Joria and Jorgenson, 

1996) and/or a coarsening of the spatial resolution of the data (e.g. Irons et al., 1985). An 

increase in the detail of the classes is, therefore, generally associated with a reduction in 

classification accuracy (e.g Stehman et al., 2003). Note, for example, Vogelmann et al. (2001) 

report a 21% decrease in the accuracy for part of the US National Land Cover Data set when 

moving from the very general Anderson level I to the more detailed Anderson level II. It, 

therefore, seems reasonable to expect that achieving the 85% target would be more of a 

challenge for the IGBP DISCover map than the scenario presented by Anderson et al. (1976), 

from which the target value stems. Indeed, in direct comparative studies of mapping at 
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Anderson level I, Landsat MSS data have been used to derive more accurate classifications 

than NOAA AVHRR data, especially if the landscape mosaic is heterogeneous (Gervin et al., 

1983). In many contemporary mapping applications, the challenge encountered may also be 

more difficult than that presented by Anderson et al. (1976), commonly a result of trying to 

map a large number of relatively detailed classes and often at a relatively local, large 

cartographic, scale. Consequently, in such applications the use of the 85% target suggested by 

Anderson et al. (1976) may be inappropriate as it may be unrealistically high for the 

application. Moreover, as mapping scenarios vary enormously in terms of key variables (e.g. 

scale and legend detail) and the difficulty of mapping is an interactive function of the classes 

(e.g. their number, detail, spatial arrangement etc.) and the remote sensor data used (e.g. spatial 

resolution, time of acquisition etc.), there probably is no single accuracy value that could be 

adopted universally as a target. Critically, the widely used target of 85% should not 

automatically be used as a criterion for the evaluation image classifications (Laba et al., 2002). 

It may be that 85% is often a perfectly reasonable target to adopt but it should not simply be 

accepted for use without question as for many mapping applications it may be unrealistically 

high. 

 

It should be clear, therefore, that the main application scenario of Anderson et al. (1976), from 

which the widely used 85% target accuracy appears to have arisen, is very different to many 

image classification analyses that have adopted the 85% target. Many studies seek to map 

detailed classes at a large cartographic scale (Wilkinson, 2005). Such classes and scales were 

explicitly outside the scope of discussion of Anderson et al. (1976) who suggested that 

substantial amounts of ancillary information would be required for this type of mapping 
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scenario. Yet much of the remote sensing community appears to have latched on to the 85% 

target accuracy as some general criterion to apply, irrespective of the specific nature of the 

analysis in-hand. Additionally, the community of map users seems to have followed suit and 

appear to have adopted the 85% target too. It is unclear why the 85% target has been used so 

widely, especially as it may not be realistic. If, for example, the aim is to map a small number 

of very spectrally separable classes then the target should perhaps be set at a higher value. 

Alternatively, and perhaps more commonly, if there are many classes that are only subtly 

different it seems reasonable to ask if the target accuracy is too high and unachievable. To be of 

value, a target should really be specified for the particular application in-hand and be realistic. 

 

Instead of seeking a single universally applicable target value, it would often seem to be more 

appropriate to set a target for the specific application in-hand; for general purpose maps, 

producer‟s can provide accuracy information to enable user‟s to determine the data set‟s 

suitability for their specific needs. The target value to adopt may be expected to vary as a 

function of variables such as the nature of the remotely sensed data set used (e.g. spatial and 

spectral resolution), the classes defined (e.g. number and detail of classes) and user needs (e.g. 

tolerance to error and impacts of variation in error severity). There are, therefore, no universally 

defined accuracy standards for thematic mapping from remote sensing (e.g. Loveland et al., 

1999; Kerr and Cihlar, 2004). However, since accuracy relates fundamentally to the fitness for 

purpose, it should be possible to define the level of accuracy required for the application in-

hand. This accuracy value represents the minimum required for the application, it may be less 

than the accuracy level wanted by users but is sufficient to meet their needs. The required 

degree of accuracy may also be relatively low. For example, in testing scientific hypotheses 
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about tree species diversity and co-existence, Atkinson et al. (2007) required maps showing the 

spatial distribution of ash and sycamore trees in a mixed woodland. Although tree species may 

be considered to form very specific classes, more detailed than those at Anderson levels I and 

II, trees can sometimes be identified to species level with a high accuracy from remotely sensed 

data. However, a high accuracy may not actually be required. Indeed, for the seemingly 

complex application of mapping detailed classes, each representing an individual tree species, 

such that the degree of species aggregation in space can be determined required an image 

classification in which omission errors of 50% and commission errors of 5% for the species of 

interest could be tolerated (Atkinson et al., 2007). In such circumstances, especially as there 

was a large number of other species in the woodland, the overall accuracy of an image 

classification that provided the necessary information could be very low, perhaps in the order 

of ~10%. Clearly one would normally want and should strive for a higher accuracy but a 

classification of apparently low accuracy can still yield the information required for the 

application in-hand. 

  

One issue on which the remote sensing community could, however, adopt a harsher approach is 

in deciding whether a thematic map produced by an image classification satisfies the target 

specified. Commonly, the basis of assessing the acceptability of a map is to calculate a measure 

of the map‟s accuracy and compare the derived value directly against the target value (e.g. 

Hayes and Sader, 2001). The map is typically judged to be sufficiently accurate if the 

calculated accuracy value equals or exceeds the target. However, the accuracy statement 

derived in most studies is just an estimate of the accuracy of the classification. In many 
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instances it would be more appropriate to fit confidence limits to the estimate and consider 

these when evaluating the map and deciding if the target accuracy has been achieved.  

 

Although the estimation of confidence limits is relatively simple and the literature encourages 

the community to use them (Thomas and Allcock, 1984; Morisette and Khorram, 1998; Mas, 

2004) they are rarely defined and provided. In many applications, the accuracy statement for an 

image classification should, however, really take the form of the estimated value ± the half 

width of the confidence interval at some specified level of statistical confidence. Assuming  

that the analysis is based on a sufficiently large sample of data acquired by simple random 

sampling and that the data are normally distributed, the half width of the confidence interval 

may be derived from 
1

)1(





n

pp
t where p is the proportion of correctly allocated cases, n the 

number of cases used to assess classification accuracy and the value of t is derived from the t-

distribution at the desired level of confidence (for large sample sizes the value of t approaches 

that for the appropriate z-score).  

 

The fitting of confidence limits around the estimate of classification accuracy may have a 

marked impact on the evaluation of a classification. Sometimes the estimated accuracy of a 

classification may exceed the 85% target value but the confidence limits may suggest that it 

would be unwise to assume that this means the classification has achieved the target level 

desired. However, a classification with an estimated accuracy that barely exceeds the target 

value specified is often viewed as being of acceptable quality (e.g. Hayes and Sader, 2001). For 

example, and so as to not appear critical of others, Foody et al. (2004) accept a thematic map 
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derived from a classification as being satisfactory as its estimated accuracy, 89.5%, exceeded 

the commonly stated target of 85%. Fitting, the albeit wide, confidence limits at the 98% level 

to the accuracy estimate, it may be stated that with 0.98 probability that the map‟s accuracy lies 

within the range 84.7 - 94.2%. The lower limit of this confidence interval lies below the 85% 

target and so, at this level of assessment, the map might not be viewed as being sufficiently 

accurate. At the more widely used 95% level of confidence, the map just passes the threshold 

as its accuracy may be expressed as 89.5 ± 4.00%, with the lower limit on the confidence 

interval just over the target accuracy at 85.5%. Note, however, that with just 1 more 

misclassification in the testing set used to estimate accuracy the resulting classification would 

have had an accuracy of 89.0 ± 4.08% at the 95% level of confidence, failing to achieve the 

target as the lower confidence limit again lies below 85%. The casual comparison of the 

accuracy estimate directly against the target may, therefore, give an inappropriate basis for 

evaluating a classification. The confidence limits fitted around the estimated value provide 

important information that should influence the evaluation of the accuracy of the classification 

and its suitability for later application. The confidence limits are also useful in the comparison 

of classification accuracy statements. In such applications it is, however, also necessary to 

recognise the nature of the testing set used in the estimation of accuracy, particularly if the 

same testing set is used in the evaluation of different classifications (Foody, 2004). Critically, 

however, the remote sensing community should be encouraged to fit confidence limits to 

classification accuracy statements and promote their use in evaluating the classification‟s 

fitness for its intended application. 

 

3. Accuracy assessment methods 
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The most widely used approaches for image classification accuracy assessment are site-specific 

methods based on the analysis of the entries in a confusion or error matrix (Congalton and 

Green, 1999; Foody, 2002). In principal, this matrix provides a simple summary of 

classification accuracy and highlights the two types of thematic error that may occur, omission 

and commission. This not only summarises the accuracy of the classification but may also 

convey useful information to enhance analyses based on the classification (e.g. Prisley and 

Smith, 1987; Fang et al., 2006). In reality, however, the use of the confusion matrix and 

interpretation of the accuracy measures derived from it can be distinctly non-trivial activities. 

For example, the meaning of basic summary measures of accuracy such as the proportion of 

correctly allocated cases, the most widely used index of classification accuracy, is a function of 

the sample design used in acquiring the testing set (Stehman, 1995). Thus, the estimates of 

classification accuracy derived from confusion matrices constructed from testing sets drawn by 

simple random and stratified random sampling from the same map, without any allowance for 

the difference in the sample design, may differ substantially if the classes vary in abundance 

and spectral separability. Additionally, the use of the confusion matrix is based implicitly on 

the assumption that the pixels are pure and the ground data set is perfectly co-located with the 

image classification. Both of these assumptions are rarely satisfied. The proportion of mixed 

pixels in an image is a function of the spatial resolution of the imagery and the land cover 

mosaic but is often very large. These pixels cannot be accommodated directly in the basic 

confusion matrix resulting in error. Similarly, much error depicted in a confusion matrix is 

associated with mis-location of data points in the thematic map and in the ground or reference 

data. Moreover, there is also a tendency to treat the ground data set as being error-free. The 

ground data may, however, contain significant uncertainty and error (Joria and Jorgenson, 
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1996; Khorram, 1999; Mas, 2004) and the direct comparability of the data sets may be limited 

by the use of different ontologies such that the two data sets may appear to have the same set of 

classes but their meaning may differ (Comber et al., 2005). There are other major sources of 

error to be considered. For example, geometric pre-processing operations can introduce very 

large errors in the representation of classes and this can greatly impact on studies such as 

change detection (Rocchini et al., 2004). Despite the various problems with the confusion 

matrix, all of the disagreements between class labels in the thematic map derived from 

remotely sensed data and the ground data are typically interpreted, unfairly, as errors in the 

classification used to produce the thematic map (Fitzgerald and Lees, 1994; Foody, 2002). This 

perspective provides a pessimistically biased starting point for the quantification of 

classification accuracy. 

 

A key concern in the evaluation of a classification is that the confusion matrix, which is 

fundamental to contemporary accuracy assessment (Congalton, 1994; Congalton and Green, 

1999), is associated with considerable uncertainty and error, including non-thematic error. The 

problems associated with the use of the confusion matrix are often ignored in accuracy 

assessment yet will generally act to reduce the magnitude of the estimate of classification 

accuracy. Thus, not only may the target accuracy be unrealistically high, the approach to assess 

accuracy may act to give an unfairly negative view of the quality of the thematic map. 

However, this site-specific and typically pixel-based approach to accuracy assessment is 

commonly used, even if the various sources of error and uncertainty such as those arising from 

mis-registration are recognised (e.g. Zhu et al., 2000). The standard approach to accuracy 

assessment, may, however, be adjusted to help reduce some of the problems. For example, 
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rather than rigidly adopt the site-specific comparison the accuracy assessment could perhaps be 

based on the modal class in, say, a 3x3 pixel window (Vogelmann et al., 2001;  Stehman et al., 

2003) or use made of modified accuracy measures that attempt to provide a degree of tolerance 

for mis-location (Hagen, 2003). It is important, however, to avoid the potential to optimistically 

bias the accuracy assessment. Similarly, it is important to be aware that some promoted 

manipulations of the confusion matrix, such as normalization, can be undesirable (Foody, 

2002; Stehman, 2004). Normalizing the matix has the effect of equalizing what may actually be 

very different user‟s and producer‟s accuracies and the normalized matrix needs to be used and 

interpreted with care. 

 

The problems in constructing a meaningful confusion matrix, sometimes the one of the hardest 

parts of accuracy assessment (Smits et al., 1999), and interpreting its contents are often 

compounded by the use of inappropriate measures to quantify classification accuracy. There 

are, for example, many calls for the remote sensing community to adopt measures such as the 

kappa coefficient of agreement in the assessment of classification accuracy (Congalton et al., 

1983; Congalton and Green, 1999; Smits et al., 1999; Wilkinson, 2005). The arguments made 

for the adoption of the kappa coefficient are typically based on statements such as its 

calculation corrects for chance agreement and utilizes the entire confusion matrix as well as 

that a variance term can be calculated for it which facilitates statistical comparisons and 

because scales exist to aid interpretation (e.g. Congalton et al., 1983; Monserud and Leemans, 

1992; Janssen and van der Wel, 1994; Smits et al., 1999; Wheeler and Alan, 2002). The use of 

the kappa coefficient for accuracy assessment has, however, often been questioned (Stehman, 

1997; Turk, 2002; Jung, 2003). Indeed, each of the commonly argued reasons for using the 
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kappa coefficient as a measure of classification accuracy can be readily criticised. Some of the 

arguments made for the adoption of the kappa coefficient are incorrect. For example, the kappa 

coefficient is not calculated from the entire matrix but on the basis of its main diagonal and 

marginals (Stehman, 1997; Nishii and Tanaka, 1999). Some of the arguments for the adoption 

of the kappa coefficient fail to recognise that they apply equally to other measures of accuracy. 

For example, a variance term can be derived for many other measures of accuracy that are 

widely used, including standard statements based on the percentage of correctly allocated cases, 

and be used in evaluating the statistical significance of differences in classification accuracy 

(Foody, 2004). In addition, widely used scales to interpret the kappa coefficient are problematic 

and arbitrary (Manel et al., 2001; Di Eugenio and Glass, 2004). Most critically of all, the 

allowance for chance agreement, probably the most widely cited reason for the adoption of the 

kappa coefficient as a measure of classification accuracy, has been criticised in several ways. In 

particular, it is evident that the degree of chance agreement may be overestimated, leading to an 

underestimation of classification accuracy (Foody, 1992), and, more fundamentally, that chance 

correction is completely unnecessary (Turk, 2002). The fact that some of the class allocations 

in the classification are correct by chance and not by design is a lucky break or windfall gain, it 

is not necessarily something the users or producers of thematic maps should worry about. 

Essentially, if the aim is to state the accuracy of a thematic map derived from an image 

classification then the source of error is unimportant. What is required in such circumstances is 

an index of map accuracy and not of the map producing technology. One such index that may 

commonly be appropriate is the percentage of correctly allocated cases. If, however, the aim is 

to indicate the ability of the classifier to correctly identify the classes then a more appropriate 
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approach for that application might be to calculate a measure of diagnostic ability (e.g. Turk, 

1979) rather than classification accuracy. 

 

Despite its limitations, the use of the kappa coefficient and related approaches over the last ~20 

years has encouraged an increasingly rigorous and quantitative evaluation of classification 

accuracy which should be regarded as a useful, if somewhat incorrect, step in the direction 

towards an appropriate evaluation method. The key concern here, however, is that the use of 

measures such as the kappa coefficient may have the effect of suggesting on naïve inspection 

that classification accuracy is lower than it really is. In particular, the removal of chance 

agreement compounds the common problem of adopting a pessimistically biased perspective in 

accuracy assessment by adding a pessimistic bias to the quantification of accuracy. 

 

 

4. Comparison with other mapping communities 

While the remote sensing community is gradually moving toward a position in which an 

accuracy assessment is seen as an essential component of a mapping exercise (Cihlar, 2000; 

Strahler et al., 2006) this is not always the situation with other mapping communities. The 

remote sensing community may be being rather harsh on itself by setting high standards and 

using techniques that commonly act to reduce the apparent accuracy of a classification while 

the producers of other maps use very different approaches and criteria. Typically other mapping 

bodies, while concerned about map quality, provide little or no information on map accuracy or 

have relatively loosely defined and tolerant criteria of acceptability. This is not a criticism of 

these communities or their maps as there is often good reason for the situation. It is apparent, 
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however, that the remote sensing community may be harsher in the evaluation of its products 

than other mapping communities are of theirs. The user community also appear harsher in their 

assessments of thematic maps produced by remote sensing than other widely used maps. To 

illustrate this variation in the harshness of evaluations, the approaches adopted by parts of three 

other communities, those concerned with geological, soil and topographic mapping, will be 

briefly discussed.  

 

4.1 Geological maps 

The British Geological Survey claims that its maps are amongst the most accurate geological 

maps in the world (Smith, 2004). This may well be true but the maps are not accompanied by 

accuracy statements of the type commonly provided with thematic maps derived from remote 

sensing. Indeed the accuracy information provided generally available relate predominantly to 

the spatial and cartographic components of the map rather than the thematic, geological, 

information contained. There may, however, be an increase in attention to the accuracy of the 

geological information content in the future.  

 

A geological map is simply an interpretation of the geology, a difficult and subjective task as 

much of the geology is, of course, concealed. Critically, however, the accuracy statement 

generally provided with geological map data explicitly does not address the quality of the 

geological linework or data in general as much of this is a matter of interpretation. As all 

geological units are either represented by a line or contained within a set of lines, the linework 

of the map is of fundamental importance yet its meaning is very uncertain. Plotted boundaries 

are recognised explicitly as being no more than approximations which indicate roughly where 



 21 

an actual boundary may occur. Moreover, the linework does not distinguish between the 

different types of boundary that may occur and the vast majority of the boundaries plotted are 

inferred with many being little more than best guesses. The geological community is no doubt 

aware of the general nature of the maps, including their limitations, and appears to simply 

factor this information into its work when using them. Such maps are, however, clearly likely 

to contain error when viewed from the overly harsh site-specific approach to accuracy 

assessment used in remote sensing. Given that the boundaries depicted on a geological map are 

clearly a simplified generalisation, rigidly accepting them and using testing sites in their 

vicinity in an assessment of accuracy is likely to be a major source of error. Indeed 

misclassification in boundary regions has commonly been noted as a major source of error in 

thematic maps derived from classifications of remotely sensed data. For example, the accuracy 

of a land cover map of Great Britain increased by ~25% to ~71% when boundary regions were 

excluded from the evaluation (Fuller et al., 1994). 

 

 4.2 Soil maps 

As with geological mapping, there has been a long history of mapping soils and there is 

considerable dependence on interpretation. Generally, soil maps show the spatial distribution of 

soil type classes over a region. These classes are often rather uncertainly defined. For example, 

in the UK a soil map may show the dominant soil series (Curtis et al., 1976). Thus, a mapped 

polygon might be dominated by one class but some of its area may comprise a number of other 

soil classes. Moreover, the amount of inclusion is not always evident. Some polygons may 

contain substantial mixtures of soil types and simply be represented in the map as mixtures. 

More precise mapping is avoided as probably unnecessary and impractical and many 
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boundaries are located on the basis of surveyor‟s judgements. In the USDA‟s soil maps, up to 

25% (occasionally >50%) of a mapped polygon may actually be of a type other than that 

labelled (Soil Survey Division Staff, 1993). Clearly a large proportion of the total mapped area 

may, therefore, be mis-labeled. Thus, as a simplistic example, a soil map deemed to be 

completely accurate (100% correct) in which every mapped unit had a 25% inclusion rate 

would have an accuracy of 75% if evaluated from the perspective adopted in remote sensing. 

Additionally, a further concern is that the degree of correspondence between the soil map 

description and field observation may be variable and this has important implications to using 

the soil data for modelling in a GIS (Drohan et al., 2003). As with geological maps, relatively 

little information on thematic accuracy is provided and there is considerable potential for error 

when viewed from the harsh site-specific perspective adopted in remote sensing. The 

evaluation of soil map accuracy is, however, seen as a research topic and, as recognised in 

other mapping communities (Maling, 1989), one that could benefit from reference to accuracy 

assessment methods used in remote sensing (McBratney et al., 2003).  

 

4.3  Topographic maps 

Topographic maps are perhaps the most widely used form of mapped information and the main 

alternative form of map to thematic maps. The quality of such maps is typically evaluated in 

terms of a range of variables such as positional accuracy, completeness and attribute accuracy 

(Maling, 1989; Thapa and Bossler, 1992). A major concern with topographic mapping is 

typically to correctly represent the relief and key physical features of the landscape. Accuracy 

statements, therefore, typically focus on the vertical and horizontal errors present in the data 

set. In common practice, a map would be considered accurate if it satisfied a conventional set 
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of map accuracy standards. For example, in relation to positional accuracy, topographic maps 

are normally considered accurate if the horizontal and vertical errors contained are below some 

specified threshold levels. Although positional and thematic accuracy are different variables 

they are the fundamental properties of topographic and thematic maps respectively. The 

differences between these two types of accuracy make direct comparison of the approaches to 

evaluate accuracy difficult. However, in relation to the evaluation of the accuracy of a map, it 

seems likely that the assessment of a topographic map is less harsh than that applied to 

thematic maps derived from remote sensing. This may be illustrated with an example in which 

errors in a topographic data set were treated as if thematic errors in a thematic map derived 

from a classification analysis.  

 

4.3.1 Topographic map accuracy 

A simple experiment may be used to provide a rough guide to the accuracy of topographic 

maps when assessed from the standard accuracy assessment perspective used in remote 

sensing. A key issue in topographic mapping is the accurate representation of height. Here, the 

accuracy of height information in a topographic data set that satisfied conventional topographic 

mapping standards was assessed using the site-specific accuracy assessment approach widely 

adopted in remote sensing. 

 

A small extract of a digital elevation model (DEM) for a region of hilly terrain in north Wales, 

UK, was acquired. The DEM provided information on location (X and Y) and terrain height 

(Z) for the region with a spatial resolution of 25 m.  Within this region, the range in terrain 

height was 282 m. To help allow the effect of horizontal error to be assessed, this DEM was 
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used to generate a finer spatial resolution surface of the region. For this, the raster DEM data 

was converted to vector (point) format and a new DEM with a spatial resolution of 1 m derived 

via a basic interpolation algorithm. This provided a fine spatial resolution terrain surface for the 

region that was assumed here to be the actual (error-free) terrain surface (Figure 1a).  

 

A further surface that could be taken to be the mapped or modelled representation of the actual 

situation was produced (Figure 1b). This was designed to satisfy the standard type of horizontal 

and vertical tolerances allowed in topographic mapping (Maling, 1989). Here, a widely used 

US standard for mapping at 1:24,000 scale was adopted. As the mapped representation was 

designed to satisfy the map standard it would be considered an accurate representation of the 

actual surface. 

 

The mapped surface was derived by adding distortions to the actual surface. With the widely 

used US map accuracy standards for 1:24,000 scale mapping, a horizontal accuracy such that a 

sample of 90% of points lie within 40 feet (~12.2 m) of their actual location and a vertical 

accuracy such that 90% of points lie within a half-width of the contour interval is required for 

the map to be considered accurate (Maling, 1989). Using the vector file derived from the actual 

surface, horizontal errors that satisfied the horizontal map standards were introduced into the 

data set. This was achieved by adding random values with a uniform distribution within the 

range -7 to +7m to X and to Y for 90% of the points in the actual surface data set. The 

remaining data were divided into two equally sized data sets and given larger errors. For these 

data sets, random values with a uniform distribution between -8 to -14 m and  8 to 14 m were 

added to the data respectively. After the addition of these distortions to the X and Y 
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coordinates of the data set their effect on the horizontal accuracy was assessed. This revealed 

that 90% of the points lay within 11.7 m of their actual location, satisfying the requirement for 

an accurate map. 

 

A similar approach was taken to distort the actual height (Z) data. Assuming that the mapped 

data would have a 10 m contour interval, typical of many maps, distortions were added to the 

actual Z values. Specifically, for 90% of the points selected at random from the data set, 

random values with a uniform distribution from -5 to +5 m were added to the data. The 

remaining data were divided into two equally sized data sets and given larger distortions. Here, 

the values applied to these data sets were in the range -6 to -10 m and 6 to 10 m. Given that the 

mapped representation had a contour interval of 10 m, the data set derived in this manner also 

satisfied the vertical mapping standard for a map to be considered accurate. 

 

The derived data set used to form the mapped representation, therefore, satisfied both the 

horizontal and vertical mapping standard specified. Consequently, the mapped representation 

would be considered accurate. Indeed the mapped and actual representations were very highly 

correlated, r=0.997 (significant at the 99.9% level), and the RMSE was estimated to be 5.8 m, 

indicating a quality of broadly similar magnitude to digital elevation models reported in the 

literature (e.g. Bolstad and Stowe, 1994; Giles and Franklin, 1996).  

 

The accuracy of the map was, however, also assessed from the standard remote sensing 

perspective. For this, height information in the actual and mapped representations were 

grouped into classes which, to match the specified contour interval, were 10 m wide. For a 
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sample of 1678 locations, the height value depicted in the actual and mapped representations 

was extracted from the data set. Cross tabulating the height class in the actual and mapped 

representations yielded a confusion matrix from which basic measures of classification 

accuracy could be derived. From this confusion matrix, it was estimated that the accuracy of 

the height information depicted in the mapped representation was 65.5%. Thus the mapped 

representation, which satisfied the basic map accuracy standards, would appear to be of 

relatively low accuracy when evaluated from the harsh perspective used in remote sensing. It 

should be noted, however, that much of the error was, as expected, associated with 

neighbouring classes. Since the height classes defined lie on an ordered scale, the severity of 

misclassification error varies as a function of the dissimilarity of the classes and this is not 

accommodated in the basic approach to accuracy assessment used in remote sensing which 

treats all errors as being of equal magnitude. Thus, the derived estimate of accuracy could be 

considered to under-represent the map‟s actual quality. It is also important to note, however, 

that many classifications of remotely sensed data include related or ordered classes but are 

evaluated in the standard way with all errors weighted equally (e.g. Joria and Jorgenson, 1996; 

Rogan et al., 2003). For example, 5 of the 17 classes depicted in the IGBP DISCover map are 

of forest and for some users mis-allocations amongst these classes may be of no consequence. 

Indeed for some user‟s the accuracy of the IGBP DISCover map rises from a stated accuracy of 

~78% to ~90%  after the aggregation of appropriate classes (DeFries and Los, 1999). 

 

Clearly, the scenario presented above is limited. It is not meant to be taken as a rigorous and 

thorough example but merely one that indicates the general trend using reasonable values for 

error magnitudes. It would be trivially easy to adjust the approach to yield a mapped 
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representation that was more erroneous (e.g. there is no upper limit to the error magnitude for 

the 10% of cases that can lie beyond the target level specified). Similarly, the analysis could as 

easily be adjusted to show less error (e.g. use of a test site with little variation in height). The 

key concern is that, using reasonable error values on a data set of moderate relief, the accuracy 

of the topographic information was low when viewed from the perspective often used in 

remote sensing. To further illustrate this, it would be necessary for the class width to be 

increased three times, to 30 m, for the accuracy to rise above the 85% accuracy standard widely 

promoted in remote sensing. Specifically, with a 30 m class width the accuracy was 86.3 ± 1.6 

% at the 95% level of confidence. Note, however, that the lower confidence limit on this 

accuracy statement lies below the 85% target and so even this classification should perhaps 

perhaps be viewed as failing to reach the target commonly used in remote sensing.     

 

5.  Use of other community’s maps by the remote sensing community 

Despite the problems with maps produced by other communities (e.g. those concerned with 

soils and geology), especially their limitations in terms of accuracy assessment and reporting, 

the remote sensing community often appears to readily use such maps unquestioningly. For 

example, geological, soil and topographic maps are often used in support of the production of a 

thematic map from remotely sensed data. It is common, for example, for topographic maps to 

be used in pre-processing imagery, especially for geometric and topographic corrections (e.g. 

Hale and Rock, 2003). Error in the topographic map used to geometrically „correct‟ an image 

could be a major source of non-thematic error in a classification of that image. Various types of 

map and other data sources may also be used as ancillary information to help increase class 

separability and thereby classification accuracy (e.g. Loveland et al., 1991; Maselli et al., 1996; 
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Bruzzone et al., 1997; Homer et al., 1997; Vogelmann et al., 1998; Rogan et al., 2003). 

Although information on the quality of such data can sometimes be incorporated directly in the 

classification analysis (e.g. Peddle, 1995) ancillary data are commonly used directly, as if error-

free, even if the analyst is aware of some possible limitations (Mas, 2004). It, therefore, seems 

that the remote sensing community is often prepared to accept other maps as being of 

acceptable quality yet is unduly harsh in the assessment of its own thematic maps.  

 

6. Conclusions 

Accuracy assessment is fundamental to thematic mapping from remotely sensed data. The 

research and user communities, including the remote sensing community, often seems to be 

unfairly harsh in the assessment of thematic maps derived from remote sensing. This is 

apparent in relation to the target accuracy commonly specified, the methods of accuracy 

assessment that are widely promoted and in relative comparison to accuracy assessment in 

other mapping communities.  

 

The 85% target accuracy that is often adopted in thematic mapping from remotely sensed data  

appears to stem from early research on mapping broad land cover classes at a small 

cartographic scale and may be inappropriate for some current mapping applications. The 85% 

target is, however, widely used in a diverse range of thematic mapping application scenarios. In 

working to this target accuracy, site-specific accuracy assessment methods based on the 

confusion matrix are also commonly used although often based on assumptions that are 

untenable (e.g. that pixels are pure and there is no mis-location error) and unfair (e.g. that the 

ground data are error-free). Furthermore, commonly promoted measures of accuracy may 
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unnecessarily remove chance agreement leading to an apparent reduction in map accuracy. 

Commonly, therefore, what may be an ambitiously high target accuracy of 85% is set and an 

approach to accuracy assessment that is geared to provide a pessimistically biased estimate is 

used.   

 

Although it may be good practice to set high and ambitious targets, the remote sensing 

community may, however, often be chasing an unrealistic and inappropriate target and 

compounding the problem by using pessimistically biased techniques. From this perspective it 

is not surprising that many thematic maps derived from remote sensing fail to meet the widely 

specified target accuracy. Other types of map that are widely used without question of their 

accuracy may also fail to satisfy a similar target if evaluated from the harsh perspective used in 

remote sensing. However, such maps are often used without question. Thus, it seems that the 

remote sensing community appears to have a somewhat masochistic tendency in accuracy 

assessment, subjecting its thematic maps to an overly harsh and critical appraisal using 

pessimistically biased techniques yet accepting other maps with little question to their 

accuracy. With this double standard, the remote sensing community may be doing itself and the 

broader research and user communities a dis-service as it may, effectively, be underestimating 

its own products while contributing to the accepted belief that other maps are more accurate 

than they actually are and useable without question.  

 

In no way should the arguments made above be interpreted as suggesting that classifications of 

a low accuracy should be accepted or that there is no room for targets. Rather the discussion 

above should be seen as a call for a critical appraisal of fundamental issues such as the aims in 
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mapping and an awareness of how realistic they are within their context. This may help to 

reduce unfair criticism of thematic maps derived from remote sensing associated with false 

perceptions of map quality inferred from classification accuracy statements. A realistic target 

should be defined for each particular mapping exercise. The specification of the target value 

should recognise the particular features of the specific mapping task (e.g. the nature of the 

remotely sensed data used and level of class detail). This is very similar to what Anderson et al. 

(1976) proposed for their land cover mapping activities, in which a well-justified case for a 

target was specified. There is, however, no reason to believe that the target they suggested for 

their particular mapping scenario should be universally applicable. There is also a need to 

recognise that problems in accuracy assessment can be a source of pessimistic bias. In 

particular, the rigid use of site-specific accuracy assessment methods in which all error is seen 

a arising from the image classification and the inappropriate quantification of accuracy can lead 

to a mis-representation of classification quality. 

 

Classification accuracy assessment is still very much a topic for further research (Rindfuss et 

al., 2004; Strahler et al., 2006). Issues only briefly discussed here such as the minimum 

mapping unit and the unit for accuracy assessment and reporting as well as a suite of issues 

such as those associated with variation in error severity and the assessment of soft 

classifications require further attention. Similarly it must be recognised that other approaches to 

accuracy assessment may be adopted. Accuracy assessment could, for instance, be viewed as a 

map comparison activity, for which a varied range of methods exist (e.g. Boots and Csillag, 

2006; Dungan, 2006; Foody, 2006; Hagen-Zanker, 2006). For example, instead of the widely 

used site-specific approach discussed above attention may focus on the use of pattern based 
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indices. With such approaches the focus is on the configuration of the landscape, which 

typically has an advantageous feature of providing a degree of tolerance to spatial mis-

registration error. These techniques are, however,  also not problem-free, with, for example, 

thematic error impacting on the estimation of pattern indices in a complex manner and limitless 

ways to characterise patterns complicating index selection (Langford et al., 2006; White, 2006) 

but have potential in providing an alternative approach to accuracy assessment. Irrespective of 

the approach adopted, there is additionally, a need to recognise that there are sources of 

optimistic bias in accuracy assessment (e.g. Hammond and Verbyla, 1996) in order to ensure 

that maps of low quality are not viewed acceptable. Given the importance of classification 

analysis within the subject, it is important that the remote sensing community develops 

appropriate and practically sound approaches for accuracy assessment to meet its own needs 

and for the benefit of those in other communities that appear follow its lead on accuracy 

assessment.  
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Figure caption 

Figure 1. DEM showing terrain height (m) used in the evaluation of topographic map accuracy. 

(a) the actual, and assumed error-free, surface and (b) the mapped representation derived from 

(a) which satisfies standard map accuracy criteria. 
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