Activity Counter:
New Optimization for the Dynamic Scheduling of SIMD Control Flow

Ronan Kerydll
Centre de Recherche en Informatique
Ecole des Mines de Paris
77305 FONTAINEBLEAU Cedex, FRANCE
keryell @ri.ensnp.fr

Abstract

SIMD or vector computers and collection-oriented lan-
guages, like C*, are designed to perform the same com-
putation on each dataitem or on just a subset of the data.
Subsets of processors or data items are implemented via
an activity bit and a stack of activity bits when subsets of
subsetsare supported. Thismethodisasousedinviiwpro-
cessors through if-conversion to implement parallel control
flow asin siMD computers. We present anew method of dy-
namic sheduling of severa siMD control flow constructions
which can be nested. Our implementation of activity stacks
isbased on activity counters. At agiven stack depth », the
number of memory bits required is log., n, whereas previ-
ous implementationsrequire » bits. Thelocal controlleris
of equivalent complexity in both cases. This agorithmis
useful for sSIMD, vector or vLIW machines and for compilers
of collection-oriented languages on MIMD computers.

1 Introduction

The data-paralel programming model is seen as an ac-
ceptable solution to efficiently program many paralel ap-
plications on massively parallel machines. In this modd,
a single program is applied on different instances of data,
spread acrossdifferent processors, to gain use of parallelism
on SIMD or MIMD machines.

In an sSiIMD computer there is a unique instruction flow
and thus performsthe same operation on different data. But
alot of numerica problems, like solving partial differen-
tial equation problems, often need to apply different at the
boundary conditionswhich are different from the ones used
on the interior points. Such a control flow is often intro-
duced from aseguential program through vectorization and
if-conversion [1].

A similar problem arises in data-parale collection-
oriented languages like MmPL, C* or POMPC [10] where an
siMD-likecontrol flow must be managed even throughfunc-
tion or procedure boundaries not known at compiletime or

*Major parts of this work were made when the authors were with
the Laboratoire d'Informatique de I’ Ecole Normale Supérieure, 45 Rue
d’ULM, 75005 PARIS, FRANCE. This research and the PomP project
were partially funded by the French Research and Technology Ministry,
Thomson Digital Image, thecNRs (National Center of Scientific Research),
the LIENS, the Ecole Normale Supérieure, the PRC-ANM.

Nicolas Paris *
Hyperparalel Technologies
Ecole Polytechnique X-POLE
91128 PALAISEAU Cedex, FRANCE

pari s@wvyper paral |l el . pol yt echni que. fr

85—

0*

Inactive

1=
fo—

Activity=0

nesting
Active

wher e

Figure 1. Example of amask stack.

with recursion. So adynamic siMD control flow is needed
to follow the locked-step SIMD semantics.

The goa of these parallel approaches isto obtain maxi-
mal performance on straight regular dataparallel problems.
However, it is a least as important to dea correctly with
data parallel control flow and its flexibility.

There seems to be an intrinsic contradiction in the com-
monly used siMD control flow model and the need for a
local instruction stream, i.e. a bounded dissynchronization
in the synchronous siMD model, to deal with parallel con-
trol flow. Thiscontradictionisresolved inturning off some
processor elements (PES) according to local conditionsin
SIMD machines, the activity. The nestling of several paral-
lel i f isusualy managed with an activity stack but here
we present an optimization of this method with an activity
counter instead of a stack.

Section 2 presents our new algorithm with some exam-
plesapplied to PomPC paralld control flow operators. Sec-
tion 3 compares the activity stack with our method ac-
cording to time and space complexity, for SMD and MIMD,
hardware and software. Section 4 presentsrelated work.

2 Activity counter

If we carefully look at the activity bit stack, we seeitisonly
used to determine the level of inactivity. Figure 1 shows
an example of anest of 6 parale control flow statements,
where thefirst three ones havet r ue conditions (shown as
“1” inthefigure) and the conditionisf al se &fter thethird
one (represented by “0").

Before the firgt f al se condition, the stack only con-
tains 1s, indicating that the PE is executing the code. The
exit of a conditiona block does not change this activity:

Table 2: Semantic of the push and pop operations on the
activity counter.

Table 3: Implementation of thewher e/el sewher e with
an activity counter.

Operation Precondition Action Operation Precondition Action
push(cond) c#0 c—c+1 wher e(cond) c£0 (idle) c—c+1
(e=0)A(cond=10) ¢ —1 e=10 (active) ¢ — —cond
(e=0)A(cond=1) c—0 el sewhere e <1 (activatable) ¢ «— —¢c
pop c#0 c—c—1 e &1 c—c
c=10 c—0 End of thewhere | ¢ £ 0 (idle) c—c—1
/el sewher e ce=10 (active) c—0

the PE remains active. These 1s do not have any intrinsic
significance in the stack.

When aPe reaches alocal f al se condition, it becomes
inactive for al itsincluded blocks. The current activity is
thelogical and of the history of activity, i.e. al theactivity
bits on the stack. Once a 0 hit is pushed on the stack,
all the following bits on the stack no longer have meaning
(represented with a“*” in Figure 1) since the activity is 0
(inactive).

2.1 Factorization

Indeed the only useful information in this stack is the
nestling level of parale conditiona blocks after the first
idle block, which indicates when a PE can resume execu-
tion. Therefore, it seems awaste of hardware to use astack
where a plain counter should be enough.

Let push(cond) and pop be the two operations control -
ling the stack (a;);en. We can analyze their functionality
according to f,, the rank of the first 0 on the stack, and s
the current size of the stack, according to Figure 1. The
activity of ape isdefined by A = A’_, ;. ThepPEisactive
if A=1andidleif A =0.

By definition, PEs are al active at initidizationtime, so
s = 1,aq = 1 (active), fo = s + 1 whenthereisno 0in
any stack element. For simplicity apop on an empty stack
returnsan activity t r ue.

Table 1 gives an operational semantics of the activity
stack. A pe isactiveif and only if f, = s + 1, when there
isno Ointhe stack. Infact, it is moreinteresting to do the
variableexchangec = s+1— f, because only acomparison
to O is necessary. This form is easier to implement in
hardware and often even in software [7, 8]. The basic
manipulations on ¢ are the same as on f;: increment or
decrement, load or store, as shown on Table 2.

The push(cond) when ¢ = 0 can be simplified to ¢ —
—cond. A more detailed proof of the equival ence between
an activity stack and an activity counter for paralel control
flow can befoundin[3, 9].

2.2 Application to adataparallel language

Now we can use this mechanism to implement classica
paralel control flow operators such as those in the PompC
C-based language [10]. We present only the wher e and

the swi t chwher e but the method is aso used for the
whi | esormrewher e, ther et ur n of aparadlel function or
procedure.

221 where

The basic operator isthewher e/el sewher e pair which
isfound in most data parallel languages from FORTRAN 90
to C*.

The wher e is equivaent to the push operator but we
have to trandate the el sewhere. A PE isactivein an
el sewher e if and only if the PE was inactive due to the
last wher e, i.e. theinactivity level ¢ = 1. Thevaue 1 can
beseenhereasaspecial valuethat codesfor an*“ activatabl e’
state for thewher e or el sewher e block.

An implementation is presented in Table 3.

222 switchwhere

The compilation of aswi t chwher e, the parald exten-
sion of thelanguage C swi t ch, also has several states. A
PE can be;

1. inactive beforetheswi t chwher e;

2. activeinacase (after matching avaue) orinade-
faul t;

3. inactiveinacase, waiting for amatching val ue;

4, inactive in the swi t chwher e because of a break,
until theswi t chwher e exit.

The br eak is similar to the whi | esonewher e one.
An example of state coding we useisc — 1 for the state 3
and - = 2 for the state 4, as shown in Table 4.

3 Activity counters versus activity
stacks

3.1 Onan SIMD machine

The counter method needsacounter withlog,, ¢ bitsper PEif
at most ¢ levels of paralel conditional blocks are nested. If
each PE has an /.-bit operator, a PE needs [+ log,] cycles
of duration ¢ to do an activity counter operation.

The activity stack needs only 1-bit manipulation on each
PE and takes atime ¢, but needs a stack pointer to manage

Table 1: Semantics of thepush and pop operations on the activity stack.

Operation Behavior Precondition Action
push(cond) se—s+1 Jo#s+1 fo—=Jo
a, +— cond (fo=s+1HA(cond=0) fo—s
(fo=s+ DO A(cond=1) fo—s+1
pop it (s>1),s —s—1 fo#s+1 fo = fo
return(a,) Jo=s+1 fo—s+1

“Notethat if the programis correct, this condition is aways true.

Table 4: Implementation of the swi t chwher e with an activity counter.

Operation Precondition Action
swi t chwhere(value) | ¢ #£0 (idle) ce—c+?2
ce=0 (active) c—1
case constant : (e=1)A(value=constant) ¢—0
br eak ce=0 (active) c— 27
def aul t e=1 (activatable) c—0
swi t chwhereclosing | ¢ < 1 c—0
e L1 ce—c—2

*Must berelative to the current swi t chwher e block, if the br eak isincluded in one or morewher e/el sewher e.

the stack. Since the execution is SIMD, all the stacks are
synchronous and the stack pointer can be:

o centralized on the scalar processor which broadcasts
itsvalueto the PES;

o distributed with local pointers which evolve syn-
chronously.

In the first case, it takes atime 7' on the scalar processor
and the time is negligible on the PEs. In the second case,
atimet[1 log, ¢] isneeded to control the stack pointer on
each PE. The hardware complexity is ¢ for a stack of 1 bit
elements in each case, plus [1 log,] bits for the global
stack pointer in the first case and N [1 log, ¢] bitsfor the
local stack pointersinthesecond case, for a N -PE computer.

The complexity of the three previous methods are sum-
marized up in Table 5.

If thecomputer hasonly finegrainpes, typically 7. = 1 or
4 bits, it is more interesting to subcontract the computation
to the scalar processor with a global stack pointer. Indeed,
thescalar processor isoften larger and morepowerful, sothe
stack pointer computation only uses few cycles, and even
the broadcast is often shorter than the [+ log,, ¢] required
to deal with alocal stack pointer or activity counter by 7.-
bit dlices. Moreover, 1-bit PEs have the advantage that they
easily access memory with 1-bit. This method is used on
computers such as the cm-2 or the Mp-1.

The activity counter algorithmis particularly interesting
for coarse grain SIMD machines and could be interesting

in the MP-2. This method is used in our POMP MC88100-
based ssiMD computer [4, 8]. These computers often have
short cycle time and the local memory access is slow in
comparison to the PE cycle time.

3.2 Onan MIMD machine

The complexity of our method for an MIMD machine is
the same as in table 5 except that since there is no scaar
processor, itisnot interesting to have agloba activity stack
pointer and thusonly local pointersor activity countersare
necessary.

As for the sSIMD computers, the same conclusions arise
according to the size of the PEs. Activity counters can
avoid the 1-bit stack management, specialy inefficient on
the coarse grain PES which are in most MIMD computers.
Besides, theactivity counter on each PE reducesto O(log)
the hardware compl exity to store the activity.

But unlike sSsMD computers, it is not worth implement-
ing the activity counter in hardware since local conditional
jumps are used in fine to efficiently emulate the activity
corresponding to the counter value.

4 Related work

Methodsto change control dependance in data dependence
statically deal more or lesswith activity.

In [1] a complete guard is used and in [6] a minimum
number of guard is produced to control activity.

Table 5: Complexity of the activity counter and activity stack methods.

Parallel Computing complexity Hardware #
conditioning scalar parallel complexity broadcast
Stack (global pointer) T , Ne+ [log, ¢ 1
Stack (local pointers) € t(1+ [+ log,c]) | N(c+ [log,c]) 0
Activity counters € [+ log, c] Nlog, ¢] 0

In[5], al thecontrol flow informationiskeptinan “Exit”
variable similar to our activity counter used for complex
statements like swi t chwher e or whi | esonewher e
withbr eak, case orreturn..

But none of these methods deals with dynamic schedul -
ing, necessary for recursion or any procedure cals.

A counter methodsisalso usedin[2] for dynamic shedul -
ing in a dataflow-like architecture but there is no support
for recursion.

5 Conclusion

We have devel oped a new method to dynamically deal with
nested paralel control flow and recursion for smb and
MIMD computers, and compilers for languages with collec-
tion oriented data parallelism.

This technique allows a reduction to a straight logarith-
mic term of the size in bits of memory used to keep track
of the PE history, more efficient on coarse grain paralel
computers and VLIW processors.

The optimization is aso interesting for compilers tar-
geted to modern MiIMD computers when the nested parallel
control flow cannot be resolved at compile time. For ex-
ample, if different collections are mixed, interprocedural
anaysis is not performed or not possible, or if complex
sub-array selections cannot be determined. If the activity
counter method can often be replaced by MimD local control
flow, for complex nested case it seems a better choice.

Atlagt, itisaway to compilenested paralle flow control
flow ina“flat” normal form asin F90 or HPF where such a
nestling is not allowed.

The activity counters are used in the PoMP computer and
also in the PomPC compiler for cm-2, MP-1, iPsc/860 and
ARMEN.

6 Acknowledgements

The authors of this paper would like to acknowledge many
useful discussionswith al the members of the POMP team
since the beginning of the project.

Specia thanks are due to Luc BOUGE and his team, es-
pecialy Jean-Luc LEVAIRE, for their discussions on SIMD
semantics in parallel control flow and for their interest for
the domain and our work.

At last but not the least, the authors are indebted
to Kathryn MACKINLEY, Frangois IRIGOIN and Pierre

JouVvELOT for their invaluable comments and their appro-
priate suggestions.

References

[1] J. R.ALLEN, Ken KENNEDY, Carrie PORTERFIELD, and Joe WARREN.
<< Conversion of Control Dependence to Data Dependence >>.
In Conference Record of the Tenth Annual ACM Symposium on
Principles Of Programming Languages, pages 177—189. Association
for Computing Machinery, January 1983.

[2] Carl J. BECKMANN and Constantine D. POLYCHRONOPOULOS. <<
Microarchitecture Support for Dynamic Scheduling of Acyclic Task
Graphs >>. In The 25t Annual International Symposium on Mi-
croarchitecture, volume23(1-2), pages140-148.ACM SIG MICRO
Newsletter, December 1992.

[3] Luc BouGk and Jean-Luc LEVAIRE. << Control structures for data-
parallel SIMD languages: semanticsand implementation >>. Future
Generation Computer Systems, 8(3-4):363-378, 1992.

[4] Philippe HOOGVORST, Ronan KERYELL, Philippe MATHERAT, and
Nicolas PaRIS. << POMP or How to Design a Massively Paral-
lel Machine with Small Developments >>. |In PARLE '91 Par-
allel Architectures and Languages Europe, volume 505(1), pages
83-100. Lecture Notes in Computer Science, Springer-Verlag, June
1991. Availableby ft p anonynous onspi . ens. f r inthefile
pub/reports/liens/liens-91-5. Ad. ps. Z.

[5] Bor-Ming HsiEH, Michael HIND, and Ron CYTRON. << Loop Distri-
butionwith Multiple Exits>>. In Supercomputing ' 92 (Proceedings),
pages204—213. Thelnstitute of Electrical and ElectronicsEngineers,
Inc., November 1992.

[6] Ken KENNEDY and Kathryn S. MCKINLEY. << Loop Distribution
with Arbitrary Control Flow >>. In Proceedings of Supercomput-
ing ' 90, pages 407—416. The Institute of Electrical and Electronics
Engineers, Inc., November 1990.

[7] Ronan KERYELL. << POMP2 : D’un Petit Ordinateur Massive-
ment Paralléle >>. Rapport de magistére, LIENS — Ecole Normale
Supérieure, October 1989.

[8] Ronan KERYELL. << POMP : d'un Petit Ordinateur Massiverment
Parallde SSIMD a Base de Processeurs RISC — Concepts, Etude et
Réalisation >>. PhD Thesis, Laboratoired’ Informatique de I’ Ecole
Normale Supérieure— Université Paris XI, October 1992.

[9] Jean-Luc LEVAIRE. << Contribution a |’ éé&ude sémantique des lan-
gages a paralléisme de données; application a la compilation >>.
PhD Thesis, LIP— ENSLyon, Universitéde Paris 7, February 1993.

[10] NicolasPaRris. << Definition of POMPC (Version 1.99) >>. Techni-
cal Report LIENS-92-5-bis, Laboratoire d’ Informatique de I’ Ecole
Normale Supérieure, March 1992. Availableby f t p anonynous
on spi . ens. fr in the file pub/reports/liens/liens-
92-5-bi s. Ad. ps. Z

