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ABSTRACT
We present an analytical form of ground-truth k-space data
for the 2-D Shepp-Logan brain phantom in the presence of
multiple and non-homogeneous receiving coils. The analyt-
ical form allows us to conduct realistic simulations and val-
idations of reconstruction algorithms for parallel MRI. The
key contribution of our work is to use a polynomial repre-
sentation of the coil’s sensitivity. We show that this method
is particularly accurate and fast with respect to the conven-
tional methods. The implementation is made available to the
community.

Index Terms— parallel magnetic resonance imaging,
pMRI, phantom, Shepp-Logan, non-homogeneous coil, ana-
lytic simulation

1. INTRODUCTION

New reconstruction methods for magnetic resonance imaging
(MRI) data have received a lot of attention in the field lately.
Indeed, modern acquisition methodologies require to go be-
yond the traditional reconstruction scheme that is based on
the inverse discrete Fourier transform (DFT). The current
paradigm is to specify the reconstruction as an inverse prob-
lem [1]. One notable example is parallel MRI (pMRI), which
exploits the presence of multiple receiver coils with different
spatial sensitivity maps: SMASH [2, 3], SENSE [4], PILS [5],
GRAPPA [6]. Another trend is the use of non-Cartesian k-
space trajectories such as spiral [7, 8] or pseudo-random [9].

New MRI reconstruction algorithms obviously need to be
evaluated and validated. Usually, the first stage — the quan-
titative evaluation— is based on experiments using synthetic
data. The latter are generally derived from a numerically de-
fined phantom, that provides reference data for reconstruc-
tion. The Shepp-Logan (SL) phantom is a widely-available
candidate (see e.g. [10]) that was originally proposed for com-
puted tomography. It is specified as a collection of ellipses
with associated intensities. Mathematically, the phantom
ρ(r) is a linear combination of R ellipses that encompass the
regions Ai:

ρ(r) =
R∑

i=1

ρi1Ai(r). (1)
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Popular software tools (e.g. Matlab’s Image Processing
Toolkit) include an image-domain version of the SL phantom.
For MRI, however, measurements are performed in k-space;
i.e., the ideal measurement at position k corresponds to

m(k) =
∫∫

R2
ρ(r)ej2πk.rd2r. (2)

Synthesizing these data with straightforward spatial dis-
cretization combined with a DFT can generate significant
aliasing artifacts. In fact, as the phantom is compactly sup-
ported in space, its energy density decreases relatively slowly
for high frequencies.

An analytical form of the SL phantom in k-space has been
proposed before. Smith et al. [11] raised the importance of
accurate simulations for the quantitative validation of MR re-
constructions. They proposed a protocol to generate the data
but without entering in the details of the analytical formula-
tion. Later, Van de Walle et al. [10] presented the analytical
Fourier expression of the SL phantom as a combination of
ellipses. Koay et al. [12] proposed a 3-D extension of the SL
phantom adapted to MRI. Finally, Gach et al. [13] summa-
rized and completed these works by proposing realistic pa-
rameters for the spin density and added the effect of T1 and
T2 relaxation times to simulate even more realistic data. In
all these works, the receiving coil was assumed to be homo-
geneous, making the simulations irrelevant to parallel MRI
(pMRI). We are not aware of previously existing analytical
phantoms suited to parallel MRI.

In parallel magnetic resonance imaging (pMRI), the
model (2) that links the measurements to the phantom is
adapted to take into account a complex-valued receiving coil
sensitivity S:

mS(k) =
∫∫

R2
S(r)ρ(r)ej2πk.rd2r. (3)

The novelty in this work is to come up with an analyt-
ical expression for mS(k) for the case where the sensitivity
function S(r) is non-homogeneous. More precisely, we as-
sume that it is represented by a complex-valued polynomial
of degree D inside the support of the phantom:

S(r) =
D∑

d=0

∑
|α|≤d

sd,αrα, ∀r ∈
R⋃

i=1

Ai. (4)

The analytical derivation of mS(k) is presented in Section 2.
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In Section 3, we present some experiments to validate
the method. In particular, we show that low polynomials
are sufficient for the modeling of physically-realistic sensitiv-
ity profiles. We also check the consistency of our analytical
computation with discretizations at increasing resolutions.
It turns out that the analytical method is computationally
competitive when a reasonable precision is required. Finally,
we present an example of simulation of the acquisition of a
Shepp-Logan phantom with different coils.

In this paper, we focus on the case of 2-D pMRI as the
proof-of-concept. However, there is no major theoretical ob-
stacle that prevents extending the method to higher dimen-
sions, including the temporal one (motion laws for the pa-
rameters of the phantoms, time-dependency of the k-space
sampling and effect of T1 and T2 times).

For concise writing, we adopt the multi-index notations
zα =

∏
zαi

i , |α| = ∑
αi and

∑b

p=a
=

∑b1
p1=a1

∑b2
p2=a2

. . ..

2. THEORY

2.1. Ellipses

Let us consider the ellipse A centered on rc with a rotation
angle θ. The change of coordinates r �→ u that maps A into a
unit disk is given by r = rc +R(θ)Du with D = diag(A, B),
where A ≥ B > 0 are the semi-major and semi-minor axes,

and R(θ) =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
= R−1(−θ) = RT(−θ),

such that:
A = {u | ‖u‖ ≤ 1} . (5)

Figure 1 illustrates our conventions.
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Fig. 1. Illustration of the change of coordinates to map an
arbitrary ellipse into the unit disk.

2.2. Inhomogeneous sensitivity

For each ellipse, we decompose the polynomial coil sen-
sitivity (cf. Eq. 4) in the new system of coordinates∑D

d=0
∑

|α|≤d
td,αuα, and rewrite the measurements as

mS(k) =
R∑

i=1

ρi

D∑
d=0

∑
|α|≤d

ti,d,αfα
A(−2πk) (6)

with
fα

A(ω) =
∫∫

‖u‖≤1
uαe−jω.rd2r. (7)

We now propose a simple but practical way to implement
the change of coordinate system.

In 2-D, there are Np = (D +1)(D +2)/2 complex-valued
parameters sd,α and td,α, where D is the polynomial de-
gree. We build the Ns × Np matrices Mr and Mu that
relate the vectors of parameters s and t to the value of
the sensitivity at Ns ≥ Np randomly chosen points rn, i.e.
[S(r1), . . . , S(rN )]T = Mrs = Mut. The polynomial param-
eters td,α are then determined as t = M†

uMrs1. Note that
if the conditioning number of Mu is too high to ensure the
stability of its inversion, the number Ns of points can be
increased.

2.3. Partial differentials

We define Gn(x) = Jn(‖x‖)/ ‖x‖n as a function of R2, where
Jn is the n-th order Bessel function of the first kind. Gn is
well-defined, continuous and infinitely differentiable on R

2.

Proposition 1. For α ∈ N
2 and fα

A(ω) defined by (7):

fα
A(ω) = 2π|D|j|α|e−jω.rc ∂|α|G1

∂xα
(DR(−θ)ω) . (8)

Proof. First, we observe that
∫∫

‖u‖≤1 e−jx.ud2u = 2πG1 (x)
(see e.g. [10]). By differentiating with respect to x, we get
∂|α|G1

∂xα (x) =
∫∫

‖u‖≤1(−ju)αe−jx.ud2u. We obtain the result
through a change of variable r = rc+R(θ)Du, using the fact
that |R(θ)D| = |D|.

The function Gn has an interesting recursion property:
∇Gn(x) = −xGn+1(x). It follows that for p ∈ N

2 and q ∈
{0, 1}2, there exists a set of integer coefficients Cp,q

i , i =
0 . . . p, such that:

∂|2p+q|G1

∂x2p+q
(x) = xq

p∑
i=0

Cp,q
i x2iG|p+i+q|+1 (x) . (9)

Then, it is fairly easy to write a program that recursively
computes a lookup table of the coefficients Cp,q

i , starting from
C0,0

0 = 1.

3. EXPERIMENTAL RESULTS

In this Section, we present the experimental results. Our
implementation was done using Matlab 7.9 (The MathWorks
Inc. 2009, Natick) on a 64-bits 8-core computer, 4 GB RAM,
Mac OS X 10.6. For comparison of execution times, it must
be noted that most of the intensive computations, like the
FFT, were distributed on the 8 cores. The code is made
available online at http://bigwww.epfl.ch/algorithms.
The Shepp-Logan brain phantom was considered as it is
defined by default in Matlab, with a unitary dynamic range.

3.1. Polynomial approximation of sensitivities

In the first experiment, we tested the appropriateness of the
polynomial representation for the sensitivity function. To
that end, we simulated the (complex-valued) sensitivity in
the 2-D imaging plane for several circular coils, according

1the superscript † denotes the Moore-Penrose pseudo-inverse
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Degree 1 2 3 4 5 6 7 8 9 10
NRMSE 1.34e-01 9.63e-02 6.48e-02 4.10e-02 2.44e-02 1.38e-02 8.02e-03 5.31e-03 4.00e-03 3.23e-03
SER (dB) 3.5 6.4 9.9 13.9 18.5 23.6 28.1 32.5 37.9 42.3
max. error 7.2e-01 5.1e-01 3.3e-01 2.1e-01 1.4e-01 8.7e-02 6.1e-02 4.7e-02 3.8e-02 3.1e-02

Table 1. Polynomial approximation of 12 head-coils sensitivities. Averaged values of normalized root mean square error,
signal to error ratio and normalized maximum absolute error for different polynomial degrees.

to the Biot-Savart Law. We concentrated on the case when
the coils are small and close to the sample, which is com-
monly the case in modern multichannel coils. Consequently,
the sensitivity is highly varying in space. The parameters
were chosen to reproduce the brain imaging conditions with
receiving head-coils: field of view (FOV) of 28 cm, 12 coils
distributed around the skull, 15 cm distant from the center
of the FOV and of radius 5 cm. The pixelization for this
simulation was 256 × 256. We fitted the polynomials in the
least-squares fashion inside the support of the SL phantom
(cf. Eq. 4) which included 27 648 points. We report in Table
1 the fitting errors averaged over the 12 coils, for polynomial
approximation up to degree 10.

As expected, the errors decreases drastically as the poly-
nomial degree increases. We verified that these results are
consistent for lower and larger pixelization resolutions. Given
noise levels in a realistic multichannel setting and the diffi-
culty of inversion (ill-posedness), 30 dB of SER is more that
what can be generally expected for reconstruction. There-
fore, we expect that polynomial degree greater than 8 should
have low impact on the simulations and be sufficient for a
faithful restitution of physical sensitivities.

3.2. Discretization artifacts for pMRI simulation

For the second experiment, we considered the error that re-
sults from the numerical generation of the data mS(k) by
simple discrete Fourier transformation of a pixelized phan-
tom. First, we chose a full Cartesian k-space trajectory sup-
porting a 128 × 128 reconstruction matrix. With that tra-
jectory, we looked particularly at the numerical errors in the
reconstructed spatial domain. Second, we considered a non-
Cartesian spiral trajectory, always supporting a 128×128 re-
construction matrix. This time the goal was to figure out the
impact of approximate non-Cartesian Fourier computations
on the numerical measurements. For these computations, we
used the NUFFT code provided by Fessler [14].

We considered the SL phantom with a single head-coil in
the same configuration as described for the previous experi-
ment. The polynomial sensitivity was of degree 8 (cf. 3.1).

We generated the numerical data with varying pixel res-
olutions and compared it with our analytical computations.
The quality was evaluated in the space domain after applying
the inverse DFT. The results are presented in Table 2 for the
Cartesian sampling and in Table 3 for the spiral sampling.

As expected, the errors diminishes as the spatial resolu-
tion increases. Two cases could make computationally reason-
able the choice of our analytical method: when few k-space
samples are needed or when the trajectory supports a very
large reconstruction image because the FFT routines of the
numerical approach scale less well with increasing resolutions
as it is observed in right part of Tables 2 and 3 (numbers in
bold).

# pixels 2562 5122 10242 20482

NRMSE 3.86e-03 1.20e-03 5.94e-04 1.46e-04
SER (dB) 19.2 29.3 35.4 47.7
max. error 9.27e-03 3.21e-03 1.27e-03 3.45e-04

max. err. space 2.10e-01 8.40e-02 4.87e-02 1.02e-02
time (s) 0.2 0.7 3.0 12.8
rel. time 0.08 0.30 1.21 5.17

Table 2. Numeric simulation with Cartesian sampling. For
increasing resolutions: normalized root mean square error,
signal to error ratio, relative maximal absolute error on the
data and in the (reconstructed) image domain, time of com-
putation and relative time execution w.r.t. the analytical
method.

# pixels 2562 5122 10242 20482

NRMSE 3.49e-03 1.08e-03 5.36e-04 1.32e-04
SER (dB) 19.0 29.1 35.2 47.4
max. error 8.52e-03 2.79e-03 1.16e-03 3.07e-04
time (s) 2.3 2.2 4.8 14.9
rel. time 0.93 0.92 1.96 6.14

Table 3. Numeric simulation with spiral sampling. For in-
creasing resolutions: normalized root mean square error, sig-
nal to error ratio, relative maximal absolute error of the simu-
lation, time of computation and relative time execution w.r.t.
the analytical method.

Finally, for illustration purposes, we simulated a 3-
channel pMRI scan of the SL phantom with full Cartesian
sampling supporting a reconstruction of size 256 × 256. The
analytical computations required 35 s for a full Cartesian
sampling supporting 256 × 256 resolution and a polynomial
degree 8. The analytical data transformed in space domain
(after inverse DFT) are shown together with the difference to
the direct pixelization of the phantom. Space domain data
and differences (modulus of) are presented in Fig. 2. They
exhibit ringing artifacts due to insufficient high-frequency
sampling.

4. CONCLUSION

We presented an extended analytical model of the famous
Shepp-Logan phantom that is suitable for pMRI simulation.
The model is able to incorporate the sensitivity maps of the
receiving coils. The analytical computations allowed to mea-
sure the error that is done when using numerical simula-
tions. It turns out that this error is not negligible when us-
ing small resolutions. On the contrary, these numerical com-
putation seem accurate enough for high resolutions. How-
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Fig. 2. Reconstructed images after inverse Fourier transform
of simulated full k-space data for 3 coil profiles (left column)
and differences with the direct discretization (right column).

ever, the available memory limits the resolution and the ex-
ecution time increases significantly. That is why our ana-
lytical approach is a good alternative to numerical simula-
tions. The Matlab code is made available on the website
http://bigwww.epfl.ch/algorithms, such that all the ex-
periments are reproducible and this work could benefit people
validating and comparing pMRI reconstruction software.

As further extensions to this work, let us mention di-
rections towards a more accurate model: taking into account
relaxation times [13], diversification of the phantom to higher
dimensions including time or towards more shapes available
for analytical computations [15].
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