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Based on the semidefinite programming relaxation of the binary quadratic programming, a rank-two feasible direction algorithm
is presented. The proposed algorithm restricts the rank of matrix variable to be two in the semidefinite programming relaxation
and yields a quadratic objective function with simple quadratic constraints. A feasible direction algorithm is used to solve the
nonlinear programming.The convergent analysis and time complexity of themethod is given. Coupledwith randomized algorithm,
a suboptimal solution is obtained for the binary quadratic programming. At last, we report some numerical examples to compare
our algorithm with randomized algorithm based on the interior point method and the feasible direction algorithm on max-cut
problem. Simulation results have shown that our method is faster than the other two methods.

1. Introduction

In this paper, we consider the following binary quadratic
programming:

min 𝑥
𝑇
𝑄𝑥 + 2𝑟

𝑇
𝑥

s.t. 𝑥
2

𝑖
= 1, for 𝑖 = 1, . . . , 𝑚, (1)

where 𝑄 is real 𝑚 × 𝑚 symmetric matrices and 𝑟 is a real 𝑚-
dimensional column vector.

The binary quadratic programming is a fundamental
problem in optimization theory and practice. Some com-
binatorial optimization problems and engineering problems
can be modeled as binary quadratic programming, such as
VLSI design, statistical physics, max-cut problem [1], the
optimal multiuser detection [2–5], image processing [6], and
the design of FIR filters with discrete coefficients [7]. These
problems are known to be𝑁𝑃-hard [1]. One typical approach
to solve these problems is to construct lower bounds for
approximating the optimal value. Now, the semidefinite
programming (SDP) relaxation approach had been studied
and proven to be quite powerful for finding approximate

optimal solutions. Based on solving its semidefinite program-
ming relaxation, Goemans and Williamson [8] developed
a randomized algorithm for the max-cut problem, which
provides an approximate solution guaranteed to be within a
factor of 0.87856 of its optimal value. Interior point method
is a powerful method for SDP with small and moderate
scale. But the interior point method is limited to problems
of moderate size, which cannot solve SDP with large scale
efficiently [1]. So Goemans and Williamson’s method based
on the interior point method is not adapted to solve the large
scale max-cut problems.

Some efficient nonlinear programming algorithms only
based on gradient for solving the SDP relaxation of the
max-cut problem have been developed. Homer and Peinado
[9] proposed a parallel and distributed approximation algo-
rithms for max-cut problem. In the algorithm, the author
transformed the max-cut SDP relaxation into a constrained
nonlinear programming problem in the new variable 𝑉

for using the change of variables 𝑋 = 𝑉𝑉
𝑇, 𝑉 ⊂

𝑅
𝑛×𝑛, where 𝑋 is the primal matrix variable of the SDP

relaxation. Burer and Monteiro [10] proposed a projected
gradient algorithm for solving the max-cut SDP relaxation
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by using the change of variable 𝑋 = 𝐿𝐿
𝑇, where 𝐿 is a

lower triangular matrix. The rank-two relaxation heuristics
algorithm in [11] relaxed the max-cut problem to form
an unconstrained optimization problem by replacing each
binary variable with one unit vector in space 𝑅2 and then
using polar coordinates. In [12], the rank-two SDP relaxation
model is proposed for maximal independent set problem.
Based on the low-rank decomposition of the semidefinite
matrix, Liu et al. [13] proposed a feasible direction method
to solve a nonlinear programming model of binary quadratic
programming.

In the paper, we propose a rank-two feasible direction
method for the binary quadratic programming. we restrict
the rank of matrix variable to be two in the semidefinite
programming relaxation and obtain a quadratic objective
function with simple quadratic constraints. A feasible direc-
tion method is used to solve the nonlinear programming.We
also give the analysis of the convergence and the complexity of
the method. The randomized algorithm is used to obtain the
suboptimal solution of the binary quadratic programming.
At last, we compare our method with the randomized
algorithmbased on the interior pointmethod and the feasible
direction method on max-cut problem. Simulation results
show that our method costs less CPU time than the two
methods.

2. The SDP Relaxation Method for
Binary Quadratic Programming

In this section, we introduce the SDP relaxation of binary
quadratic programming problem [1].

In problem (1), let 𝑛 = 𝑚 + 1, 𝑧 = [𝑥𝑇, 𝑥
𝑛
]
𝑇
(𝑥
𝑛
= 1), and

𝐶
1
= (
𝑄 𝑟

𝑟
𝑇
0
); then problem (1) can be formulated as

min 𝑧
𝑇
𝐶
1
𝑧

s.t. 𝑧 ∈ {−1, 1}
𝑛
.

(2)

It is well known that problem (2) is also𝑁𝑃-hard [1].
Let 𝐶
2
= 𝐶
1
− (𝜆max(𝐶1) + 1)𝐼𝑛, where 𝜆max(𝐶1) denotes

the largest eigenvalue of thematrix𝐶
1
and 𝐼
𝑛
denotes the unit

matrix; then 𝐶
2
is a negative definite matrix. Problem (2) is

equivalent to the following problem below:

min 𝑧
𝑇
𝐶
2
𝑧 + (𝜆max (𝐶1) + 1) 𝑛

s.t. 𝑧 ∈ {−1, 1}
𝑛
.

(3)

Letting 𝑍 = 𝑧𝑧
𝑇 and ignoring the constant term, then

problem (3) is equivalent to the following problem:

min 𝐶
2
∙ 𝑍

s.t. 𝑧
𝑖𝑖
= 1, 𝑖 = 1, 2, . . . , 𝑛

rank (𝑍) = 1
𝑍 ⪰ 0,

(4)

where 𝐶
2
∙ 𝑍 = tr(𝐶𝑇

2
𝑍) and 𝑧

𝑖𝑖
is the diagonal elements

of matrix 𝑍. In addition, 𝑍 ⪰ 0 denotes that matrix 𝑍 is

semidefinite. Ignoring the nonconvex “rank one” constraint,
the SDP relaxation is given as follows [1]:

min 𝐶
2
∙ 𝑍

s.t. 𝑧
𝑖𝑖
= 1, 𝑖 = 1, 2, . . . , 𝑛

𝑍 ⪰ 0.

(5)

Interior point methods have been proved to be quite
efficient for small and moderate scale SDP. In the 0.878
randomized method by Goemans and Williamson [8], the
author solved the SDP relaxation problem (5) by interior
point methods. However, interior point methods are second-
order method, so they are quite time and memory intensive
and not adapted to large scale binary quadratic problems.The
complexity of the primal-dual interior pointmethod based on
AHO search direction for the SDP relaxation (5) of the max-
cut is 𝑂(𝑛4.5 ln(1/𝜖)) [14, 15].

3. The Rank-Two SDP Relaxation for
Binary Quadratic Programming

In [11], the rank-two SDP relaxation model is proposed for
max-cut problem based on the polar direction. In [12], the
rank-two SDP relaxation model is proposed for maximal
independent set problem. In this section, we present a rank-
two SDP relaxation based on the rank-two approximate
matrix for binary quadratic programming.

In SDP relaxation problem (5), let 𝐶 = −𝐶
2
; we have

max 𝐶 ∙ 𝑍

s.t. 𝑧
𝑖𝑖
= 1, 𝑖 = 1, 2, . . . , 𝑛

𝑍 ⪰ 0.

(6)

Obviously, matrix 𝐶 is positive definite.
Let 𝑍 = 𝑥𝑥

𝑇
+ 𝑦𝑦
𝑇, 𝑥, 𝑦 ∈ 𝑅

𝑛 [12]; then 𝐶 ∙ 𝑍 =

𝑥
𝑇
𝐶𝑥 + 𝑦

𝑇
𝐶𝑦 and 𝑍

𝑖𝑖
= 𝑥
2

𝑖
+ 𝑦
2

𝑖
= 1. We obtain the

rank-two SDP relaxation of binary quadratic programming
as follows:

max 𝑥
𝑇
𝐶𝑥 + 𝑦

𝑇
𝐶𝑦

s.t. 𝑥
2

𝑖
+ 𝑦
2

𝑖
= 1, 𝑖 = 1, 2, . . . , 𝑛;

(7)

where 𝑥
𝑖
and 𝑦
𝑖
are the elements of vector 𝑥 and 𝑦. Obviously,

matrix 𝑍 satisfies that rank(𝑍) = 2, 𝑍 ⪰ 0, so problem (7) is
a rank-two SDP relaxation problem.

Problem (7) is also a nonlinear programming with
quadratic objective function and constraints. Compared to
the 𝑛2 variables of SDP relaxation, the rank-two relaxation has
only 2𝑛 variables, so this approach possesses scalability for
solving large-scale binary quadratic programming problems.

Let

𝑓 (𝑥, 𝑦) = 𝑥
𝑇
𝐶𝑥 + 𝑦

𝑇
𝐶𝑦, ℎ

𝑖
(𝑥, 𝑦) = 𝑥

2

𝑖
+ 𝑦
2

𝑖
− 1,

𝑖 = 1, 2, . . . , 𝑛,

(8)
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then the gradients of the function 𝑓(𝑥, 𝑦) and ℎ
𝑖
(𝑥, 𝑦) are

∇𝑓 (𝑥, 𝑦) = (2𝐶𝑥, 2𝐶𝑦) , ∇ℎ
𝑖
(𝑥, 𝑦) = (2𝑒

𝑖
𝑒
𝑇

𝑖
𝑥, 2𝑒
𝑖
𝑒
𝑇

𝑖
𝑦) ,

𝑖 = 1, 2, . . . , 𝑛.

(9)

The KKT condition for problem (7) is given here. If the
variable (𝑥, 𝑦) ∈ 𝑅

𝑛×2 in problem (7) satisfies the following
condition:

∇𝑓 (𝑥, 𝑦) =

𝑛

∑

𝑖=1

𝜇
𝑖
∇ℎ
𝑖
(𝑥, 𝑦) ,

𝑥
2

𝑖
+ 𝑦
2

𝑖
= 1, 𝑖 = 1, 2, . . . , 𝑛,

𝜇
𝑖
≥ 0, ∃𝑖 for 𝜇

𝑖
> 0,

(10)

then (𝑥, 𝑦) is a KKT point for problem (7).
It is simple to obtain that

∇𝑓 (𝑥, 𝑦) =

𝑛

∑

𝑖=1

𝜇
𝑖
∇ℎ
𝑖
(𝑥, 𝑦) ⇐⇒ ((𝐶𝑥)𝑖

, (𝐶𝑦)
𝑖
)

= 𝜇
𝑖
(𝑥
𝑖
, 𝑦
𝑖
) , 𝑖 = 1, 2, . . . , 𝑛.

(11)

Then we have the equivalent KKT condition for problem (7)
as follows:

((𝐶𝑥)𝑖
, (𝐶𝑦)

𝑖
) = 𝜇
𝑖
(𝑥
𝑖
, 𝑦
𝑖
) , 𝑖 = 1, 2, . . . , 𝑛

𝑥
2

𝑖
+ 𝑦
2

𝑖
= 1, 𝑖 = 1, 2, . . . , 𝑛

𝜇
𝑖
≥ 0, ∃𝑖 for 𝜇

𝑖
> 0.

(12)

4. The Rank-Two Feasible Direction Algorithm
for Binary Quadratic Programming

Feasible direction algorithm is an efficient algorithm for some
special nonlinear programming problems. In [13], the feasible
direction algorithm is applied to solve the low-rank nonlinear
programming relaxation for binary quadratic programming
problems. In [16], the feasible direction algorithm is applied
to solve a rank one nonlinear programming relaxation for
max-cut problem.

In this section, we extend the feasible direction algorithm
to solve problem (7). The algorithm employs only gradient
evaluations of the objective function in problem (7), and no
calculations on anymatrices and no line searches, thus greatly
reduces the calculation costs and increases the efficiency of
the algorithm.

In the rank-two feasible direction algorithm, we give the
following iteration for problem (7):

(𝑥
𝑘+1

𝑖
, 𝑦
𝑘+1

𝑖
) =

((2𝐶𝑥)
𝑘

𝑖
, (2𝐶𝑦)

𝑘

𝑖
)

(






(2𝐶𝑥)

𝑘

𝑖







2

+








(2𝐶𝑦)
𝑘

𝑖








2

)

0.5
,

𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 0, 1, . . . ,

(13)

where (𝑥𝑘+1
𝑖
, 𝑦
𝑘+1

𝑖
) denotes the element pair ofmatrix variable

(𝑥
𝑘+1
, 𝑦
𝑘+1
).

The iteration (13) is very simple and has the following
characteristics.

(1) No matrix calculations and no line searches are
required, and only one gradient evaluation is needed
to get the new iteration.

(2) The new iteration point (𝑥𝑘+1, 𝑦𝑘+1) is feasible to
problem (7).

(3) If the sequence (𝑥𝑘+1, 𝑦𝑘+1) converges to (𝑥
∗
, 𝑦
∗
),

then (𝑥∗, 𝑦∗) is feasible to problem (7).

Define direction ((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)
𝑘
) as follows:

((𝑑
𝑥
)
𝑘

𝑖
, (𝑑
𝑦
)

𝑘

𝑖
) = (𝑥

𝑘+1

𝑖
, 𝑦
𝑘+1

𝑖
) − (𝑥

𝑘

𝑖
, 𝑦
𝑘

𝑖
) , 𝑖 = 1, 2, . . . , 𝑛,

(14)

as a search direction, where ((𝑑
𝑥
)
𝑘

𝑖
, (𝑑
𝑦
)
𝑘

𝑖
) is the elements pair

of ((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)
𝑘
). Then the iteration (13) can be written as

(𝑥
𝑘+1
, 𝑦
𝑘+1
) = (𝑥

𝑘
, 𝑦
𝑘
) + ((𝑑

𝑥
)
𝑘
, (𝑑
𝑦
)

𝑘

) . (15)

The following lemmas show that if ((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)
𝑘
) =

0, then (𝑥
𝑘
, 𝑦
𝑘
) is a KKT point of problem (7), and if

((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)
𝑘
) ̸= 0, then ((𝑑

𝑥
)
𝑘
, (𝑑
𝑦
)
𝑘
) is a feasible increasing

direction for problem (7).

Lemma 1. If ((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)
𝑘
) = 0, then (𝑥𝑘, 𝑦𝑘) is a 𝐾𝐾𝑇 point

of (7).

Proof. It is clear that (𝑥𝑘, 𝑦𝑘) satisfies the constraint in
problem (7). Since ((𝑑

𝑥
)
𝑘
, (𝑑
𝑦
)
𝑘
) = 0, then

((𝐶𝑥)
𝑘

𝑖
, (𝐶𝑦)

𝑘

𝑖
) = (






(𝐶𝑥)
𝑘

𝑖







2

+








(𝐶𝑦)
𝑘

𝑖








2

)

0.5

(𝑥
𝑘

𝑖
, 𝑦
𝑘

𝑖
) ,

𝑖 = 1, 2, . . . , 𝑛 .

(16)

Let 𝜇𝑘
𝑖
= (‖(𝐶𝑥)

𝑘

𝑖
‖

2

+ ‖(𝐶𝑦)
𝑘

𝑖
‖

2

)
0.5; by the KKT condition (12),

we have that (𝑥𝑘, 𝑦𝑘) is a KKT point of (7).This completes the
proof of the lemma.

Lemma 2. Suppose that ((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)
𝑘
) ̸= 0; then ((𝑑

𝑥
)
𝑘
, (𝑑
𝑦
)
𝑘
)

is a feasible increasing direction for problem (7), and iteration
point (𝑥𝑘+1, 𝑦𝑘+1) is feasible to problem (7).
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Proof. The feasibility of the iteration point (𝑥
𝑘+1
, 𝑦
𝑘+1
)

directly comes from definition (13). Using the fact that (𝑥𝑘
𝑖
)
2
+

(𝑦
𝑘

𝑖
)
2
= 1, we have

∇
𝑇
𝑓 (𝑥, 𝑦) ((𝑑

𝑥
)
𝑘
, (𝑑
𝑦
)

𝑘

)

= ∇
𝑇
𝑓 (𝑥, 𝑦) ((𝑥

𝑘+1
, 𝑦
𝑘+1
) − (𝑥

𝑘
, 𝑦
𝑘
))

=

𝑛

∑

𝑖=1

{
{

{
{

{

((2𝐶𝑥)
𝑘

𝑖
, (2𝐶𝑦)

𝑘

𝑖
)

𝑇 ((2𝐶𝑥)
𝑘

𝑖
, (2𝐶𝑦)

𝑘

𝑖
)

(






(2𝐶𝑥)

𝑘

𝑖







2

+






(2𝐶𝑥)

𝑘

𝑖







2

)

0.5

−((2𝐶𝑥)
𝑘

𝑖
, (2𝐶𝑦)

𝑘

𝑖
)

𝑇

(𝑥
𝑘

𝑖
, 𝑦
𝑘

𝑖
)

}
}

}
}

}

=

𝑛

∑

𝑖=1

{(






(2𝐶𝑥)

𝑘

𝑖







2

+








(2𝐶𝑦)
𝑘

𝑖








2

)

0.5

−((2𝐶𝑥)
𝑘

𝑖
, (2𝐶𝑦)

𝑘

𝑖
)

𝑇

(𝑥
𝑘

𝑖
, 𝑦
𝑘

𝑖
) }

≥ 0.

(17)

So direction ((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)
𝑘
) is a feasible increasing direction for

problem (7).

The convergence of the feasible direction method is
concluded by the following lemmas.

Lemma 3. Suppose that ((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)
𝑘
) → 0; then any

accumulation point (𝑥∗, 𝑦∗) is a 𝐾𝐾𝑇 point of (7).

Proof. Let (𝑥∗, 𝑦∗) be an accumulation point of the sequence
{(𝑥
𝑘
, 𝑦
𝑘
)}; it is simple to obtain the result by Lemma 1.

Lemma 4 (see [1]). Let matrixes 𝐴 and 𝐵 be positive definite;
then 𝐴 ∙ 𝐵 is bounded by

𝜆min (𝐴) tr (𝐵) ≤ 𝐴 ∙ 𝐵 ≤ 𝜆max (𝐴) tr (𝐵) , (18)

where 𝜆min(𝐴) and 𝜆max(𝐴) denote the smallest and the largest
eigenvalues of the matrix 𝐴.

Lemma 5. If ((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)
𝑘
) ̸= 0 for all 𝑘 > 0, then

((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)
𝑘
) → 0.

Proof. Since

𝑓 (𝑥
𝑘+1
, 𝑦
𝑘+1
)

= 𝑓((𝑥
𝑘
, 𝑦
𝑘
) + ((𝑑

𝑥
)
𝑘
, (𝑑
𝑦
)

𝑘

))

= 𝑓 (𝑥
𝑘
, 𝑦
𝑘
) + ∇
𝑇
𝑓 (𝑥
𝑘
, 𝑦
𝑘
) ((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)

𝑘

)

+ 𝐶 ∙ (((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)

𝑘

)((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)

𝑘

)

𝑇

) ,

(19)

from Lemma 4, we have

𝑓 (𝑥
𝑘+1
, 𝑦
𝑘+1
) − 𝑓 (𝑥

𝑘
, 𝑦
𝑘
)

≥ 𝐶 ∙ (((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)

𝑘

)((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)

𝑘

)

𝑇

)

≥ 𝜆min (𝐶) tr(((𝑑𝑥)
𝑘
, (𝑑
𝑦
)

𝑘

)((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)

𝑘

)

𝑇

)

= 𝜆min (𝐶)








((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)

𝑘

)









2

𝐹

,

(20)

where ‖𝐴‖ denotes the Frobenius norm matrix 𝐴.
From Lemma 2 and Lemma 4, for any𝐾 > 0, we have
𝐾−1

∑

𝑘=0









((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)

𝑘

)









2

𝐹

≤

1

𝜆min (𝐶)

𝐾−1

∑

𝑘=0

(𝑓 (𝑥
𝑘+1
, 𝑦
𝑘+1
) − 𝑓 (𝑥

𝑘
, 𝑦
𝑘
))

=

1

𝜆min (𝐶)
(𝑓 (𝑥

𝐾
, 𝑦
𝐾
) − 𝑓 (𝑥

0
, 𝑦
0
))

≤

1

𝜆min (𝐶)
𝑓 (𝑥
𝐾
, 𝑦
𝐾
)

=

1

𝜆min (𝐶)
𝐶 ∙ ((𝑥

𝐾
, 𝑦
𝐾
) (𝑥
𝐾
, 𝑦
𝐾
)

𝑇

)

≤

𝜆max (𝐶)

𝜆min (𝐶)






(𝑥
𝐾
, 𝑦
𝐾
)







2

𝐹

=

𝑛𝜆max (𝐶)

𝜆min (𝐶)
.

(21)

This shows that∑𝐾−1
𝑘=1

‖((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)
𝑘
)‖

2

𝐹
is convergent, and

hence ((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)
𝑘
) → 0 holds.

In view of Lemmas 1 and 5, the termination criterion used
in the rank-two feasible algorithm is ‖((𝑑

𝑥
)
𝑘
, (𝑑
𝑦
)
𝑘
)‖
𝐹
< 𝜖,

where 𝜖 is a prespecified constant.

Lemma 6. For all initial point (𝑥
0
, 𝑦
0
) and

𝜖 > 0, the rank-two feasible direction algorithm
terminates in [𝑛𝜆max(𝐶)/𝜖

2
𝜆min(𝐶)] iterations, where

[𝑛𝜆max(𝐶)/𝜖
2
𝜆min(𝐶)] is an integer which does not exceed

𝑛𝜆max(𝐶)/𝜖
2
𝜆min(𝐶).

Proof. Based on Lemma 5, the number of iterations of the
rank-two feasible direction algorithm is finite. Let 𝐾 be the
number of iterations; then

𝐾−1

∑

𝑘=0









((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)

𝑘

)









2

𝐹

= 𝐾𝜖
2
≤

𝑛𝜆max (𝐶)

𝜆min (𝐶)
. (22)

So we obtain

𝐾 ≤

𝑛𝜆max (𝐶)

𝜆min (𝐶) 𝜖
2
. (23)
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Now we conclude that [𝑛𝜆max(𝐶)/𝜖
2
𝜆min(𝐶)] is an upper

bound on the number of iterations.
Since problem (7) is nonconvex, there is no guarantee that

the solution generated from the feasible directionmethod is a
global solution.However, numerical experiments in Section 5
show that the proposed algorithm always converges to the
optimal solution set of problem (7).

Now, we derive the complexity of our algorithm.
The complexity of computation of the gradient is 𝑂(𝑛2).

Each norm of the gradient of the objective function can be
computed in𝑂(𝑛), so we conclude that the overall complexity
to evaluate the next iteration point is 𝑂(𝑛2). Together with
Lemma 6, we get that the overall complexity of the rank-two
feasible direction algorithm is 𝑂((𝜆max(𝐶)/𝜖

2
𝜆min(𝐶))𝑛

3
).

Here we can choose 𝐶 satisfying 𝜆max(𝐶)/𝜆min(𝐶) < 2;
then the complexity does not exceed 𝑂((2/𝜖2)𝑛3). We know
that the complexity of the primal-dual interior point method
based on AHO direction is 𝑂(𝑛4.5 ln(1/𝜖)) [14, 15]. It is
obvious that the complexity of the primal-dual method is
higher than that of our algorithm, so our algorithm is
faster than the interior-point method for the large-scale
SDP relaxation of binary quadratic programming problems.
In addition, the complexity of low rank feasible direction
method is𝑂((2/𝜖2)𝑛3.5) [13], which is higher than that of our
method.

Let the KKT point of problem (7) be (𝑥∗, 𝑦∗); then we
can obtain the rank-two solution 𝑍∗ = 𝑥

∗
(𝑥
∗
)
𝑇
+ 𝑦
∗
(𝑦
∗
)
𝑇.

Since the rank-two relaxation has the same form as Goemans
andWilliamson’s relaxation [8], except that ours has variables
in 𝑅𝑛×2 rather than 𝑅𝑛×𝑛, the same analysis as Goeman and
Williamson, with minimal changes, can be applied. By the
randomized cut generation scheme, the suboptimal solution
of binary quadratic programming problem is obtained.

5. Numerical Results

In this section we present computational results by compar-
ing our method with GW randomized algorithm [8] based
on interior point method and low-rank feasible direction
algorithm to find approximate solutions to the max-cut
problem.

In interior point method, we solve the SDP relaxation
by three SDP solvers, which include SDPpack software [17],
SeDuMi [18], and DSDP [19]. SeDuMi is one of state-of-the-
art SDP solvers. The code DSDP uses a dual-scaling interior-
point algorithm and an iterative linear-equation solver. It is
currently one of the fastest interior-point codes for solving
SDP problems. Low-rank feasible direction algorithm is one
of the efficient methods for the max-cut problem, and the
algorithm is faster than the projected gradient algorithm [13].
The projected gradient algorithm [10] is faster than Homer
and Peinado algorithm [9].

All the algorithms are run in the MATLAB 7.0 environ-
ment on an Inter Core2 D2.0GHz personal computer with
2.0GB of RAM.

5.1. Max-Cut Problem. The max-cut problem is one of the
standard 𝑁𝑃-complete problems defined on graphs [8]. Let

𝐺 = (𝑉, 𝐸) denote an edge-weighted undirected graph
without loops or multiple edges. We use 𝑉 = {1, . . . , 𝑛}, 𝑖𝑗
for an edge with endpoints 𝑖 and 𝑗 and 𝑎

𝑖𝑗
for the weight of

an edge 𝑖𝑗 ∈ 𝐸. For 𝑆 ⊆ 𝑉 the cut 𝛿(𝑆) is the set of edges
𝑖𝑗 ∈ 𝐸 that have one endpoint in 𝑆 and the other endpoint in
𝑉 \ 𝑆. The max-cut problem asks for the cut maximizing the
sum of the weights of its edges. Here, we only work with the
complete graph𝐾

𝑛
. In order to model a graph in this setting,

define 𝑎
𝑖𝑗
= 0 for 𝑖𝑗 ∉ 𝐸. 𝐴 = (𝑎

𝑖𝑗
) ∈ 𝑆

𝑛 is referred to
as the weighted adjacency matrix of the graph. An algebraic
formulation can be obtained by introducing cut vectors 𝑥 ∈
{−1, 1}

𝑛 with 𝑥
𝑖
= 1 for 𝑖 ∈ 𝑆 and 𝑥

𝑖
= −1 for 𝑖 ∈ 𝑉 \ 𝑆. The

max-cut problem can be formulated as the integer quadratic
program as follows:

max 1

2

∑

𝑖<𝑗

𝑎
𝑖𝑗
(1 − 𝑥

𝑖
𝑥
𝑗
)

s.t. 𝑥
𝑖
∈ {−1, 1} , 𝑖 = 1, . . . , 𝑛.

(24)

The matrix 𝐿(𝐺) = Diag(𝐴𝑒) − 𝐴 is called the Laplace
matrix of the graph 𝐺, where 𝑒 is the unit vector whose every
component is 1 and Diag(𝐴𝑒) is the diagonal matrix whose
diagonal elements are 𝐴𝑒. Let 𝐶 = (1/4)𝐿; the max-cut
problem may be interpreted as a special case of the problem
(1).

5.2. Numerical Results for the RandomGraphs. Thefirst set of
test problems contains randomgraphswith twodifferent edge
densities 0.8 and 0.2, which denotes the dense random graphs
and sparse random graphs, respectively. The weight on each
edge is 1. We select problems in size from 𝑛 = 50 to 𝑛 = 350
for comparing the suboptimal value of max-cut problem and
the CPU time of the four methods.

For the interior point method, we use the codes by
two SDP solvers, which include SDPpack software [17] and
SeDuMi [18]. In our algorithm, the iteration stops once
‖((𝑑
𝑥
)
𝑘
, (𝑑
𝑦
)
𝑘
)‖
𝐹
< 𝜀 is found. The result is shown in Table 1.

In Table 1, “SDPpack” stands for randomized algorithm
based on interior point method solved by SDPpack soft-
ware, “SeDuMi” for randomized algorithm based on interior
point method solved by SeDuMi software, “FD” for feasible
direction algorithm coupled with the randomized method,
“R2FD” for our rank-two feasible direction algorithm cou-
pled with the randomized method, “CPU” for the CPU time,
“Values” for the suboptimal value of the max-cut problem
based these methods, and “Density” for edge density of the
random graphs.

TheSDPpack and SeDuMiprovide the currently best con-
clusion on its performance guarantee in theory. The results
in Table 1 show that the approximate solutions obtained by
R2FD are as good as those generated by SDPpack, SeDuMi,
and FD. In addition, the CPU time of our method is less
than that of SDPpack, SeDuMi, and FD. In particular, with
the increase of the size of the max-cut problem, the ratios



6 Journal of Applied Mathematics

Table 1: Comparison results for the random graphs.

Size Density SDPpack SeDuMi FD R2FD
Values CPU Values CPU Values CPU Values CPU

50 0.2 319 0.73 319 0.59 319 0.05 319 0.04
50 0.8 781 0.67 781 0.59 781 0.06 779 0.04
100 0.2 1185 9.27 1185 1.64 1185 0.21 1182 0.09
100 0.8 3074 10.00 3074 1.69 3075 0.28 3071 0.11
150 0.2 2521 54.46 2521 4.23 2524 0.92 2525 0.19
150 0.8 6811 41.99 6811 4.17 6813 1.15 6811 0.22
200 0.2 4404 121.33 4404 8.71 4407 2.19 4413 0.35
200 0.8 12046 152.46 12046 8.02 12051 2.98 12052 0.39
250 0.2 6729 301.64 6729 12.32 6739 4.64 6738 0.47
250 0.8 18703 336.20 18703 15.15 18701 6.87 18711 0.62
300 0.2 9521 618.06 9521 27.17 9527 10.83 9551 0.86
300 0.8 26501 687.51 26501 26.44 26513 13.85 26541 1.05
350 0.2 12934 1076.24 12934 39.13 12945 18.60 12964 1.33
350 0.8 36067 1345.38 36067 40.92 36064 25.31 36094 1.43

Table 2: Comparison results for G-set graphs.

Graph Size DSDP SeDuMi FD R2FD
Values CPU Values CPU Values CPU Values CPU

G01 800 11404 66 11389 590 11446 258 11469 4
G03 800 11403 28 11413 626 11431 72 11444 4
G13 800 552 22 552 542 554 384 540 3
G14 800 2979 45 2979 645 2986 336 2998 4
G15 800 2972 32 2974 728 2975 55 2974 4
G22 2000 12978 817 12979 11213 12995 5630 13146 35
G23 2000 12971 898 12976 12546 12969 6637 13074 34
G24 2000 12959 802 12960 10859 12993 5236 13062 37
G35 2000 7438 1387 7438 13236 7446 7397 7504 38
G36 2000 7421 1717 7422 14078 7427 7104 7480 32
G37 2000 7441 1390 7445 13569 7449 6891 7495 35
G43 1000 6504 91 6497 1192 6525 487 6528 8
G44 1000 6470 90 6479 1195 6507 496 6520 7
G53 1000 3731 70 3738 1135 3747 738 3753 7

of the CPU time between our methods to the three methods
decrease quickly.

5.3. Numerical Results for the G-Set Graphs. The second set
of test problems are from the so-called G-set graphs, which
are randomly generated by the procedure rudy, a machine
independent graph generator written by Rinaldi [20], Helm-
berg and Rendl [21], and Alperin and Nowak [22]. [20–22].
The test problems include 14 randomly generated large size
test problems with nodes from 800 to 2000. Recently, Choi
and Ye [19] reported computational results on a subset of G-
set graphs that were solved as max-cut problems using their
SDP code COPL-DSDP, or simply DSDP. The code DSDP
uses a dual-scaling interior-point algorithm and an iterative
linear-equation solver. The SDPpack software does not work
when the size of the max-cut problems is larger than 350, so

we give the results by the randomized method based on the
dual-scaling algorithm solved by the DSDP software [19].

Table 2 gives the results of comparison among our R2FD
method, the FD method, and the randomized method based
on DSDP and SeDuMi on 14 large size test problems in
the second set. In Table 2, “DSDP” presents the randomized
method based on the dual-scaling algorithm by the DSDP
software.

The results in Table 2 show that the approximate solutions
by our method is nearly as good as those of the DSDP cuts.
But our method which reaches solutions of the problems is at
least 10 times faster than the FD method, 7 times faster than
DSDP, and 100 times faster than SeDuMi. In particular, for
G35, G36, and G37, the CPU time of our method is almost
40 times less than that of DSDP. Furthermore, We observe
that R2FD took less than 5 minutes to return approximate
solutions to all the 14 test problems, which required more
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than 2 hours of computation by the DSDP, more than 11
hours of computation by the FD, and more than 22 hours of
computation by the SeDuMi.

6. Conclusion

Because the interior-point method and feasible direction
method increase the dimension of a problem from 𝑛 to 𝑛2 and
𝑟𝑛 (𝑟 is the function of 𝑛), so the twomethods cost more CPU
time than our method for solving large size binary quadratic
programming problems, especially for problems with a large
number of edges. The rank-two feasible direction method
only increases the dimension of a problem from 𝑛 to 2𝑛, so it is
efficient for solving large size binary quadratic programming.
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