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With the advent of social networks such as Facebook and LinkedIn, and online offers/deals web sites, net-
work externalties raise the possibility of marketing and advertising to users based on influence they derive
from their neighbors in such networks. Indeed, a user’s knowledge of which of his neighbors “liked” the
product, changes his valuation for the product. Much of the work on the mechanism design under network

externalities has addressed the setting when there is only one product. We consider a more natural setting
when there are multiple competing products, and each node in the network is a unit-demand agent.

We first consider the problem of welfare maximization under various different types of externality func-
tions. Specifically we get a O(logn log(nm)) approximation for concave externality functions, a 2O(d)-
approximation for convex externality functions that are bounded above by a polynomial of degree d, and
we give a O(log3 n)-approximation when the externality function is submodular. Our techniques involve
formulating non-trivial linear relaxations in each case, and developing novel rounding schemes that yield
bounds vastly superior to those obtainable by directly applying results from combinatorial welfare maxi-
mization.

We then consider the problem of Nash equilibrium where each node in the network is a player whose strat-
egy space corresponds to selecting an item. We develop tight characterization of the conditions under which
a Nash equilibrium exists in this game. Lastly, we consider the question of pricing and revenue optimization
when the users in the network are selfish agents, and their private information is the vector of valuations
for different items. We show that for single parameter settings (when an agents’s intrinsic valuation for
every item can be described using one parameter), all our approximation results for welfare maximization
extend to revenue maximization. For the multi-parameter setting, we design an O(1)-approximate revenue
optimal mechanism for IID agents, when the action of a single agent does not affect the externality enjoyed
by remaining agents.

Categories and Subject Descriptors: F.2.2 [Theory of Computation]: Nonnumerical Algorithms and Prob-
lems; J.4 [Computer Applications]: Social and Behavioral Sciences

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: Mechanism Design, Approximation Algorithms

1. INTRODUCTION

Externalities exist in many online commercial settings. Such settings include the
hugely popular social networks such as Facebook and LinkedIn and more adhoc net-
works such as those induced by a particular Groupon offer, online blogs and product
review pages. In each context, the externality can be respectively characterized by the
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number of friend’s ”likes” in Facebook, the number of participants in an online deal
offer and the number of positive and negative reviews/comments on a product web
page. Such models of externalties raise the possibility of marketing and advertising to
users based on influence they derive from such networks. In this paper, we consider
allocation and pricing problems when agents in a network derive positive externalities
from their “neighbors” in the network. The broad question we study is not new: there
has been a significant body of work that considers allocation and pricing (see [Hartline
et al. 2008; Akhlaghpour et al. 2010; Candogan et al. 2010]), as well as equilibrium se-
lection problems (see [Haghpanah et al. 2011; Bhattacharya et al. 2011]) in the context
of allocating multiple copies of a single item. These works essentially assume users (or
agents) in the network are unit-demand, and the item itself is available in unlimited
supply; the literature mainly differs in the model of externality (positive, submodular,
negative), as well as the class of allocation and pricing mechanisms (sequential pricing,
auctions, differential pricing).

In this paper, we depart from the single item assumption, and consider the more re-
alistic situation where there are multiple competing products available, and the users
in the network are demand-constrained. We show that this leads to new algorithmic
and technical challenges that are entirely absent in the single item setting. Though
our theoretical model is very basic, it has the concrete practical aforementioned moti-
vations. In these contexts, there are typically a large number of advertisers who rep-
resent diverse products. Each of these products is typically targeted at a specific set
of users depending on reported and inferred interests. Furthermore, for each of the
products, each user enjoys positive externalities that depend on which of his neighbors
in the network the ad was shown to. In fact, in the case of Facebook, the user would
know which of his neighbors “liked” the ad. In another context, a web site showing
multiple online coupon/deal offers may also report how many people have already pur-
chased a coupon or shown interest in a deal. In order to charge the advertiser, the
network will either use a simple model of externality a user will derive, or infer a more
complex model from historical data. We do not consider the inference problem in this
paper; instead, given a generic model of externality, we consider the computational
and economic questions that arise in optimizing for this model.

1.1. Externality Model

Without further ado, we present the model that we study. The social network is mod-
eled by a directed graph G(V,E) on the users, where edges represent users who are
connected in the network. This connection can either be symmetric (in networks such
as Facebook) or asymmetric (in networks such as Twitter). In either case, we assume
vertex j sees influence from vertices k such that there is a directed (resp. undirected)
edge from k to j. Let Nj denote the set of neighbors k such that there is a directed edge
from k to j. For simplicity in exposition, we assume that j ∈ Nj .

The seller has m distinct types of items (or ads), each with an unlimited supply. We
denote a generic item by i. We define intrinsic valuation of agent j for item i as his
valuation in absence of any externality effect; we denote it by vij . We denote the set
of items for which agent j has non-zero intrinsic valuation by Ij . Buyer j’s valuation
of item i is affected for the set of other agents in the network possessing the item; we
refer to this effect as the network externality. If S(j ∈ S) is the set of agents possessing
the item i, then agent j’s valuation for item i is given by vijFij(S), where Fij : 2

[n] → R

is the externality function for agent j and item i.a In this paper, we restrict attention
to positive, monotone and non-decreasing externality functions.

aIn this paper, we consider a multiplicative model for simplicity of exposition; our results extend to an
additive model of externality, such as vij + Fij(S) quite easily.



Our results differ depending on the precise functional form of the externality func-
tion. Suppose Si is the set of vertices that are allocated item i.

Compact Externality. In this class of externality, for any given vertex j(j ∈ Si) and
item i, we have ∀Si ⊆ V, Fij(Si) = Fij(|Si ∩ Nj |), where Fij : N → R

+ is an arbi-
trary non-decreasing function. Within this class of functions, we distinguish linear,
convex, and concave externality, corresponding respectively to the cases where Fij

is linear, convex, and concave. If Fij is such that Fij(1) = 0 and Fij(k) = 1, ∀k ≥ 2,
then we term it as step function externality. In other words, a vertex requires at
least one of his neighbors to be allocated the same item for his intrinsic valuation
to realize.
Submodular Externality:. In this case, for all i, j, S ⊆ V , Fij(S) = Fij(S), where the

function Fij(S) : 2
[n] → R

+ is an arbitrary sub-modular function.

The key assumption that makes our model interesting is that vertices (or users) in
the network are unit demand,b and that the user cannot be allocated more than 1 item.
This is typically imposed due to constraints on the number of ads that can be shown to
a user without causing fatigue or cluttering his screen real estate. c In this model, we
consider several problems, studying both computational as well as economic aspects.

1.2. Problem Statements and Results

Allocation and Welfare Maximization. We first consider the problem of allocating
items to users (or vertices) in order to maximize the overall welfare. This is a special
case of combinatorial welfare maximization problems [Blumrosen and Nisan 2007]. In
these problems, there are m agents and n items. Each item can be allocated to only
one agent; if agent i is allocated subset Si of items, then his welfare is hi(Si). The goal
is to allocate the items to agents in order to maximize the total welfare. For welfare
maximization, the results depend on the nature of the functions hi. If these are sub-
modular, there is a constant factor approximation [Lehmann et al. 2001; Feige and
Vondrák 2010; Calinescu et al. 2007]; these results extend in the so-called demand or-
acle model to sub-additive functions; on the other hand, if these functions are general,
the problem encodes independent set and becomes hard to approximate [Blumrosen
and Nisan 2007] to within a factor of

√
n where n is the number of items.

To see that our problem is a special case of combinatorial welfare maximization, we
map the items i in our problem to agents, and the users j in the social network to items.
If a set Si of users is assigned item i, the function hi(Si) =

∑

j∈Si
vijFij(Si ∩ Nj). We

note that even if Fij is submodular (or concave), the function hi will not be submodular,
so that we cannot directly use results from submodular welfare maximization.

We present approximation algorithms for the welfare maximization version of our
problem. Our main technique involves formulating non-trivial linear relaxations in
each case, and developing rounding schemes that yield bounds that vastly improve
bounds obtainable by directly applying results from combinatorial welfare maximiza-
tion. The key hurdle to using a simple relaxation is the non-linear nature of the ex-
ternalities - this causes such relaxations to have arbitrarily bad integrality gaps. To
get around this problem, we write the linear program over possible values of the ex-
ternality. This in itself is a key technical contribution of this paper. Our techniques are

bAgain, the unit demand assumption is for simplicity of exposition; our results easily extend to a user i

having a limit Ki on demand.
cWe assume that the agent can only be allocated one item (as opposed to being allocated many items but
consuming only the one that yields maximum utility). This is motivated by applications like Facebook where
there are inherent constraints on the number of ads that can be shown to a user, as well as by the nature of
the externality - if a user does not consume an item, he cannot influence his neighbors using that item.



inspired by algorithms for the metric labeling problem [Kleinberg and Tardos 1999;
Calinescu et al. 2004]; however, as already mentioned, since we are dealing with con-
vex or concave functions, linear relaxations for the metric labeling problem cannot be
applied directly, and we need significant new ideas.

We show the following approximation bounds, which depend both on the nature of
the externality, as well as the nature of the underlying social graph. In these bounds, n
is the number of vertices in the graph. In order to motivate the need for approximation
algorithms, we first show (Section 3) that the welfare maximization problem is MAX-
SNP hard even for a complete graph and linear externality.

— For concave externalities (Section 3.2), we present a O (logn(logn+ logm)) approx-
imation for general graphs; the bound improves to a constant factor for complete
graphs.

— For submodular externalities, we present a O(log3 n) approximation in the demand
oracle model. Its proof is deferred to the full version of the paper.

— For convex externalities (Section 3.3), we present a 2O(d) approximation if the func-
tion Fij is bounded above by a degree d polynomial. As a special case, for linear
externalities, we present a constant factor approximation.

— We get a O(1)-approximation for step-function externalities; our LP relaxation in
Section 3.4 directly implies a O(1) approximate truthful-in-expectation mechanism
(where the agents are vertices in the social network, with private valuation for each
item). Further, we show that this result implies a O(log2 n) approximation to the
optimal revenue of a truthful-in-expectation mechanism in a prior-free setting.

Nash Equilibria. We next consider selfish behavior on the parts of users in the net-
work. Suppose users could decide which items they are allocated, and choose that item
which maximizes their individual welfare given the allocation to the other agents.
Then does this process converge to a Nash Equilibrium, and if so how good is the wel-
fare of this equilibrium compared to the optimal social welfare? In Section 4, we show
that Nash equilibria with good price of anarchy exist when for any given item i and
the set Si ⊆ V of users that are allocated item i, the externality effect observed by
every user for item i is same. This corresponds to the setting where the underlying
social network is a complete graph, and for any given item i, the externality function
(Fij) for all users is same. We show that these assumptions are tight, and a Nash
equilibrium may not exists without these assumptions. Our techniques for showing
existence involve careful construction of potential functions, hence showing that the
Nash dynamics leads to a pure Nash equilibrium.

Bayesian Mechanism Design: Pricing and Revenue Maximization. We finally turn to
the question of pricing and revenue optimization in Section 5. In our model, the users
in the network are selfish agents, and their private information is the vector of valua-
tions for different items. We assume that the externality function is public knowledge,
since it is typically inferred from the network topology and shared interests.

Single Parameter Setting: In Section 5.1, we first consider the classic single-
parameter setting, where for any given agent j, his intrinsic valuations for all items in
Ij are same; this roughly corresponds to scenarios where the competing products are
of same quality. For each agent, this valuation is drawn independently from an agent-
specific prior distribution. The goal is to design a truthful mechanism to maximize
expected revenue, where the expectation is over the prior distributions. We combine
techniques developed in this paper with techniques developed in [Hartline and Lucier
2010; Haghpanah et al. 2011] to show that, when the distributions are regular, all our
approximation results for welfare maximization extend to revenue maximization as
well, with the loss of a small constant factor in the approximation ratio. This provides



additional justification for focusing on welfare maximization as the core optimization
problem.

We note that [Hartline and Lucier 2010] give a black-box reduction from an
α-approximate welfare maximizing algorithm to a BIC mechanism that is an α-
approximation to the optimal welfare; their approach depends upon making the alloca-
tion curve monotone in (real) valuations using the ironing technique. To design a BIC
mechanism with an α-approximation to revenue, we use the α-approximate welfare
maximizing algorithm on virtual valuations. If the allocation curve is not monotone in
(real) valuations, then we make it monotone using ironing. With regular distributions,
the virtual valuation is monotone in (real) valuation, and this step only increases the
revenue of the mechanism.

Our result also extends to a setting where an agent’s valuations for different items
are scaled by some publicly known nonnegative quantity relative to each other. To be
precise, agent j is associated with a set of publicly known constants {cij |1 ≤ i ≤ m},
such that when the parameter drawn from his distribution is vj , then his intrinsic
valuation for item i is cij×vj. This corresponds to a setting where an agent’s valuations
of different items are completely correlated.

Multi-Parameter Setting: The key hurdle to extending the above results to the multi-
parameter setting (where each agent’s intrinsic valuations for different items are dif-
ferent) is that there is no good characterization for even approximately optimal mecha-
nisms in this setting, and furthermore, our results in Section 4 show that even without
pricing, the agents’ behavior may often not admit a Nash equilibria. To overcome these
challenges, we consider a simpler setting, where there are infinitely many non-atomic
agents located on a complete graph, there is commonly known distribution Gi for item
i, and agent j’s intrinsic valuation for item i is drawn from Gi independent of other
agents and items. The latter prior model is similar to that first studied in [Chawla
et al. 2007], and subsequently in several papers [Chawla et al. 2010; Bhattacharya
et al. 2010; Alaei 2011; Cai and Daskalakis 2011]. The reason for non-atomic agents is
that the action of a single agent does not affect the externality enjoyed by the remain-
ing agents - this in some sense, decouples the actions of the agents, and ensures that
the Nash equilibrium is not affected by the action of a single agent. In this setting,
under mild assumptions on agents’ behavior, we show a constant factor approximation
to optimal revenue via a sequential posted pricing mechanism (Section 5.2). Our key
technique involves formulating a quadratic program for the revenue of the optimal
mechanism, showing that this quadratic program admits to a poly-time solution via
dynamic programming, and using this relaxation to develop a posted pricing scheme.

1.3. Organization

The rest of the paper is organized as follows. In Section 2, we provide some definitions
and relevant background material. In Section 3, we present our results for the welfare
maximization problem. In Section 4, we present our results on the Nash equilibrium
of the allocation game, and our results on Bayesian mechanism design are given in
Section 5. Missing proofs can be found in the full version of the paper.

2. PRELIMINARIES

We have already presented the graph-based externality model in Section 1.1. This
directly defines the allocation and welfare maximization problem as follows: Compute
an allocation of items to the vertices so that the total welfare enjoyed by all vertices
is maximized. We now proceed to define Nash equilibria and revenue maximization in
this setting.



Allocation Game and the Nash Equilibrium. We study a game G, where we have an
infinite supply of each item, each buyer is a player, the strategy space for a buyer is to
choose an item and his valuation of item i is Fij(Si)vij , where Si is the set of buyers
currently using item i. In a Nash equilibrium, player j uses the item argmaxiFij(Si)vij .

The price of anarchy (PoA) of a game is defined as the ratio of the optimal welfare
to the minimum welfare in any Nash equilibrium, and the price of Stability (PoS) is
defined as the ratio of the optimal welfare to the maximum welfare in a Nash equilib-
rium.

Mechanism Design and Incentive Compatibility. In a mechanism, buyers report their
bids or valuations for each item to the seller, and the seller chooses to allocate ser-
vice/items to the buyers based on the bids. Each buyer wishes to maximize his value of
service/item received minus the price paid. Let v = [v1,v2, ...,vn] be the reported bid
vector, and vj = [v1j , v2j , ..., vmj ] is buyer j’s bid, where vij is buyer j’s intrinsic valua-
tion for item i. Given mechanism M and bid vector v, we use wj(M(v)) and pj(M(v))
to indicate buyer j’s welfare and payment in the mechanism. Mechanism M is said to
be incentive compatible if for each j,v,v′

j , we have

wj(M(v)) − pj(M(v)) ≥ wj(M(v−j ,v
′
j))− pj(M(v−j ,v

′
j))

it is said to be truthful in expectation if for each j,v,v′
j , we have

EM [wj(M(v)) − pj(M(v))] ≥ EM

[

wj(M(v−j ,v
′
j))− pj(M(v−j ,v

′
j))

]

and it is said to be Bayesian incentive compatible if for each vj ,v
′
j , we have

Ev−j,M [wj(M(v)) − pj(M(v))] ≥ Ev−j,M

[

wj(M(v−j ,v
′
j))− pj(M(v−j ,v

′
j))

]

In a single dimensional mechanism, each buyer’s total value for a set of goods is
specified by a single parameter. Suppose buyer j’s parameter is drawn independently
from a distribution with CDF Gi and PDF gi. Then the virtual valuation ϕj(v) for

value v is given by v − 1−Gj(v)
gj(v)

. We say that distribution Gj is regular if ϕ(v) is a non-

decreasing function of v.

3. ALLOCATION PROBLEM

In this section, we address the problem of welfare maximization under positive net-
work externalities. Recall the externality model from Section 1.1; our goal is to allo-
cate items to the users in order to maximize total welfare enjoyed by all the users.
We present approximation algorithms for this problem under various models of exter-
nality: In Section 3.2, we address the case where the externality function is concave
for each vertex. Our result for convex externality is addressed in Section 3.3, and fi-
nally, we consider the case of step-function externality in Section 3.4. Our result on
submodular externality is deferred to the full version of the paper.

In each case, our techniques build on carefully formulating a linear programming
relaxation. The key hurdle to using a simple relaxation is the non-linear nature of the
externalities - this causes such relaxations to have arbitrarily bad integrality gaps.
To get around this problem, we write the linear program over possible values of the
externality. This in itself is a key technical contribution of this paper.

Our welfare maximization LP for step-function externalities in Section 3.4 also
directly implies a O(1) approximate truthful-in-expectation mechanism (where the
agents are vertices in the social network, with private valuation for each item). Fur-
ther, we show that this result implies a O(log2 n) approximation to the optimal revenue
of a truthful-in-expectation mechanism.



3.1. Hardness of Approximation

Before presenting our approximation algorithms, we show that the welfare maximiza-
tion problem is MAX-SNP hard even for linear externality and the complete graph
model. We note that the minimization version of the problem (metric labeling for uni-
form metric) is known to be APX-hard [Kleinberg and Tardos 1999; Chekuri et al.
2001].

THEOREM 3.1. The welfare maximization problem for linear externality and com-
plete graphs is MAX-SNP hard.

PROOF. The welfare maximization problem can be formulated as a variant of set
cover. There are m sets (corresponding to the items), and n elements corresponding to
the agents. The valuations vij are either 0 or 1. Denote the sets by Si; we say j ∈ Si if
vij = 1. Allocating the items to the agents corresponds to assigning each element to one
of the sets it belongs to. Since the externality is linear and the graph is complete, the
welfare is simply computed as follows: Let ni denote the number of elements assigned
to Si (or the number of agents assigned item i). Then, the welfare is

∑m
i=1 n

2
i . The goal

is to find an assignment of elements to sets to maximize this quantity.
We will reduce the hardness from the Exact 3 Cover (X3C) problem. In this problem,

we are given k elements X and a collection of sets, T with three elements each. The
goal is to find a cover of the elements so that each element is covered by exactly one set.
In the maximization version of this problem, the goal is to find the largest collection
of sets so that each element is in exactly one set. This problem is known to be MAX-
SNP-hard [Kann 1991]. Suppose it is NP-Hard to distinguish between instances of
X3C where the maximum value is k and where it is at most q = k(1− ǫ). In the former

case, the welfare maximization problem has optimal value
∑k

i=1 3
2 = 9k. In the latter

case, there are q sets that cover 3 elements each, and the remaining 3(k − q) elements
can only be covered by sets in a fashion so that each new set covers at most 2 elements.
It is now easy to check that the optimal welfare is at most 9q + 6(k − q) = k(9 − 3ǫ).
For constant ǫ > 0, the gap between the optimal welfare in the two cases is a constant,
showing MAX-SNP hardness.

3.2. Concave Externality

Our result for concave externality is given in Theorem 3.2, and we consider the special
case of a complete graph in Theorem 3.7.

THEOREM 3.2. Given any undirected graph G, if Fij(S) = Fij(|S ∩ Nj|) where Fij

is a non-decreasing concave function, then there exists a polynomial time algorithm to

compute an allocation with welfare Ω
(

OPT
logn(logn+logm)

)

.

PROOF. In order to formulate a linear program, we perform a sequence of transfor-
mations to the input graph. We randomly partition the graph into two parts V1 and
V2, so that each vertex is independently allocated to either part with probability 1/2.
For a given partition of vertices into (V1, V2), we will compute restricted welfare, which
is derived only from the externality imposed by vertices in V2 on vertices in V1. It is
easy to check that since Fij is concave, the expected value of the restricted welfare is

at least OPT/4, where the expectation is over the random partitioning d.
Assume n = |V | is a power of 2 for simplicity. For each vertex j ∈ V1 and each item

i, we create logn copies (i, j, a), for a = 0, 1, 2, 4, . . . , n. Copy (i, j, a) is only used if j is

dInfluence-and-Exploit approach has been used in the past for handling network externalities, see [Hartline
et al. 2008; Haghpanah et al. 2011]. However it does not make our problem “easy” by any means and our
contributions begin only after this step.



assigned item i, and there are at least a neighbors of j in V2 which are also assigned
this item. The value of (i, j, a) is u(i, j, a) = vijFij(a). Similarly, for each k ∈ V2 and
each item i, we create a copy (i, k), which is used if k is assigned item i. We can map
the optimal assignment to a selection of vertices of this form, so that for each j ∈ V1 or
k ∈ V2, at most one copy is chosen. It is easy to check that the value of this allocation is
within a factor of 2 of the optimal restricted welfare for this partition, where the loss
of a factor 2 is because we scaled the a’s in powers of 2.

Linear Program: Randomly choose one value for a in the powers of 2 between 1 and
n, say a∗, and only consider the welfare derived from vertices in V1 with a∗ neighbors
in V2. Let y(i, j) = 1 if copy (i, j, a∗) is chosen for j ∈ V1. Similarly, let z(i, k) = 1
if copy (i, k) is chosen for k ∈ V2. Then the expected welfare of the following integer
program (IP1) is a O(log n) approximation to OPT, where the expectation is over the
random choice of a. The rounding scheme for the linear relaxation of IP1 is given in
Algorithm 1, and we bound its welfare in Lemma 3.3.

Maximize
∑

i,j

u(i, j, a∗)y(i, j)

∑

k∈Nj∩V2
min(z(i, k), y(i, j)) ≥ a∗y(i, j) ∀i, j ∈ V1

∑

i z(i, k) ≤ 1 ∀k ∈ V2
∑

i y(i, j) ≤ 1 ∀j ∈ V1

y(i, j), z(i, k) ∈ {0, 1} ∀i, j ∈ V1, k ∈ V2

ALGORITHM 1: Rounding Scheme for Linear Relaxation of IP1

Select an integer ℓ uniformly at random between 0 and 2 (log n+ logm), set γ ← 2−ℓ;
Round down values of y(i, j) to the nearest power of 2;
For each i, j ∈ V1, set all y(i, j) 6= γ to 0;
For each i, k ∈ V2, set z(i, k)← min{z(i, k), γ};
for each item i do

Choose δi u.a.r. in [0, 1];
if δi ≤ γ then

For each j ∈ V1 with y(i, j) = γ that is unassigned so far, assign item i to it w.p. 1/3;

For each k ∈ V2 that is unassigned so far, assign item i to it w.p. min
{

1/3, z(i,k)
3γ

}

;

end

end

LEMMA 3.3. The expected welfare of the solution computed by Algorithm 1 is a
O(log(n) + log(m)) approximation to IP1.

PROOF. Rounding down values of y(i, j) for j ∈ V1 to the nearest power of 2 leads
to a factor 2 loss in the approximation, as Fij is concave for each i, j. Values of y(i, j)s
smaller than 1

n2m2 can be neglected with a loss of 1
nm factor: if their contribution is

more 1
mn factor of the LP objective, then scale their values up by a factor of nm, and

assign a value of 0 to other y(i, j)s. If such transformation is possible, then it is a
contradiction since the welfare is now more than the LP objective. Clearly packing
constraint for each vertex j ∈ V1 is not violated. Assigning the value of 1/m to each
z(i, k) makes the LP feasible.

Thus we get 2 (logn+ logm) groups of vertices in V1. If we randomly choose one
of these groups, and neglect all other groups in V1, then the welfare is affected by a



factor of 2(logn+logm). Thus we get that the expected welfare of the following integer

program (IP2) is Ω
(

OPT
logn(log(n)+log(m))

)

, where the expectation is over the choice of γ.

Maximize
∑

i,j

u(i, j, a∗)y(i, j)

∑

k∈Nj∩V2
z(i, k) ≥ a∗y(i, j) ∀i, j ∈ V1

∑

i z(i, k) ≤ 1 ∀k ∈ V2
∑

i y(i, j) ≤ 1 ∀j ∈ V1

y(i, j) ∈ {0, γ} ∀i, j ∈ V1

z(i, k) ∈ [0, γ] ∀i, k ∈ V2

To analyze the rounding algorithm, consider any (i, j ∈ V1) pair with y(i, j) = γ (after
scaling). Its contribution to the objective of IP2 is u(i, j, a∗)y(i, j). We will calculate its
expected contribution to the integer solution. We first note an important observation.

LEMMA 3.4. For any item i and vertex j ∈ V1 ∪ V2, the probability that j is not
assigned to any item before i is at least 2/3.

PROOF. For a vertex j ∈ V2, the probability that he is assigned item i′ (conditioned
on no previous allocation) is

min

{

1

3
,
z(i′, j)

3γ

}

× Pr[δi ≤ γ] ≤ z(i′, j)

3

Thus the probability that he is assigned an item before i is at most
∑

i′<i
z(i′,j)

3 ≤ 1
3 .

For a vertex j ∈ V1, for any i′ with y(i′, j) = γ, the probability that he is assigned

item i′ (conditioned on no previous allocation) is γ
3 = y(i′,j)

3 , and it is 0 otherwise. Thus

the probability that he is assigned an item before i is at most
∑

i′<i
y(i′,j)

3 ≤ 1
3 .

From now on, fix an (i, j ∈ V1) pair with y(i, j) = γ, and condition on the event that
j has not been assigned to any item before i. In this event, for any k ∈ V2 ∩Nj, define
z(i, k) = z(i, k) if k has not yet been assigned an item yet, and z(i, k) = 0 otherwise.

LEMMA 3.5. E[
∑

k∈V2∩Nj
z(i, k)] ≥ 1

3

∑

k∈V2∩Nj
z(i, k) ≥ a∗γ

3

PROOF. The probability that j is not allocated before i is at least 2/3, and the same
holds for k as well. Using union bound, the probability that both j and k are available at
round i is 1/3. The lemma follows by summing over k, and by noting that y(i, j) = γ.

LEMMA 3.6. Pr
[

∑

k∈Nj∩V2
z(i, k) ≥ a∗γ

6

]

≥ 1
5

PROOF. Follows from the previous lemma, since

∑
k∈Nj∩V2

z(i,k)
∑

k∈Nj∩V2
z(i,k) ≤ 1 always.

We note Pr[δi ≤ γ] = γ. Conditioned on the event in which (a) j ∈ V1 is unassigned

before item i, (b)
∑

k∈Nj∩V2
z(i, k) ≥ a∗γ

6 , and (c) δi ≤ γ, we analyze the contribution of

pair (i, j) to the welfare. The probability of this event is Ω(γ). In this event, the prob-
ability that item i is assigned to vertex j is 1/3. As each z(i, k) ≤ γ, using Chernoff ’s
bound, the probability that item i is assigned to Ω(a∗) vertices in Nj ∩ V2 is at least
Ω(1), and this event is independent of assignment of item i to vertex j ∈ V1. Thus using
concavity of Fij , the contribution of (i, j) to the integral solution is Ω(γu(i, j, a∗)), where
as its contribution to IP2 is u(i, j, a∗)y(i, j) = γu(i, j, a∗). This completes the proof.



Complete Graph. In the following theorem, we consider the special case when G is a
complete graph, and show a constant approximation.

THEOREM 3.7. Given any clique G on n vertices, if Fij(S) = Fij(|S|) where Fij is
a non-decreasing concave function, then there exists a polynomial time algorithm to
compute an allocation with welfare Ω(OPT).

PROOF. We create n copies of item i, namely (i, 1), (i, 2), ..., (i, n), where the copy
(i, a) corresponds to item i being given to a vertices. We treat each copy as a different
item. Let u(i, j, a) = vijFij(a) denote the valuation if agent j is assigned to item i. Let
x(i, j, a) = 1 if vertex j is assigned to item (i, a) and let y(i, a) = 1 if item (i, a) is opened.
We have the following integer program that upper bounds the optimal welfare, and the
rounding scheme is given in Algorithm 2.

Maximize
∑

i,j,a

u(i, j, a)x(i, j, a)

∑

j x(i, j, a) ≥ ay(i, a) ∀i, a
∑

i,a x(i, j, a) ≤ 1 ∀j
x(i, j, a) ∈ [0, y(i, a)] ∀i, j, a
y(i, a) ∈ {0, 1} ∀i, a

To analyze the above algorithm, we note that the contribution of an (i, j, a) pair to

ALGORITHM 2: Rounding Scheme for the Complete Graph

Solve the linear relaxation of the integer program;
Scale down all variables by a factor of 3;
for each item (i, a) do

Choose δia uniformly at random in [0, 1];
if y(i, a) ≥ δia then

Item (i, a) is marked active;

For each vertex j that is unassigned so far, independently assign it to (i, a) w.p. x(i,j,a)
3y(i,a)

;

end

end

the LP objective is u(i, j, a)x(i, j, a). The following lemma bounds its contribution to
the integral solution; its proof is deferred to the full version of the paper. The theorem
then follows by summing over all (i, j, a) pairs.

LEMMA 3.8. The expected contribution of vertex j and item (i, a) to the integral
solution is Ω(x(i, j, a)u(i, j, a)).

3.3. Convex Externality

In this section, we consider the case when the externality function is a non-decreasing
convex function, the following theorem states our result.

THEOREM 3.9. When the externality function is convex, and bounded above by a
polynomial of degree d, there exists a polynomial time algorithm to compute a 2O(d)

approximation.



This gives a O(1) approximation when d is a constant. In the rest of the section, we
prove Theorem 3.9. As in the case of concave externality, we partition the graph into
two halves, V1 and V2, by assigning each vertex independently to one of the halves. It
is easy to check that the expected value of the restricted welfare is at least OPT

4d
, where

the expectation is over random partitioning.
The following LP upper bounds the optimal restricted welfare (Lemma 3.10). In the

LP, x(i, j, a) is the probability that vertex j ∈ V1 is assigned item i and a of its neighbors
in V2 are also assigned item i, and z(i, k) is the probability that vertex k ∈ V2 is assigned
item i. Furthermore, y(i, j, a) is roughly the probability that a vertices in Nj ∩ V2 are
assigned item i. We define u(i, j, a) to be vijFij(a). The rounding scheme is given in
Algorithm 3.

Maximize
∑

i,j∈V1,a

x(i, j, a)u(i, j, a)

x(i, j, a) ≤ y(i, j, a) ∀i, j ∈ V1, a
∑

ℓ≤a≤|Nj∩V2|
a× y(i, j, a) ≤ ∑

k∈Nj∩V2
min{z(i, k),∑ℓ≤a≤|Nj∩V2|

y(i, j, a)}
∀i, j ∈ V1, 0 ≤ ℓ ≤ |Nj ∩ V2|

∑

i,a x(i, j, a) ≤ 1 ∀j ∈ V1
∑

a y(i, j, a) = 1 ∀i, j ∈ V1
∑

i z(i, k) ≤ 1 ∀k ∈ V2

x(i, j, a), y(i, j, a), z(i, k) ∈ [0, 1] ∀i, j ∈ V1, k ∈ V2, 0 ≤ a ≤ |Nj ∩ V2|
LEMMA 3.10. The above LP is a relaxation to the optimal integral solution for the

restricted welfare problem.

PROOF. Given an instance of the problem, and an optimal solution to the instance,
we construct a feasible solution for the LP as follows. We set x(i, j, a) = 1 if vertex
j ∈ V1 is assigned item i and a of his neighbors in V2 also possess item i. Similarly, we
set z(i, k) = 1 if vertex k ∈ V2 is assigned item i. Furthermore, we assign y(i, j, a) = 1 if
exactly a neighbors of vertex j ∈ V1 have item i. Other variables are zero. Clearly the
welfare remains unaffected. Now we check the feasibility of the solution. Constraints
1, 3, 4, 5 are trivially satisfied, and it remains to check the feasibility of the 2nd con-
straint. Fix vertex j ∈ V1, let i be the item assigned to him and a be the number of his
neighbors possessing the item. Then for ℓ > a, both LHS and RHS are zero. For ℓ ≤ a,
both LHS and RHS are exactly a. This proves the lemma.

ALGORITHM 3: Rounding Scheme for Convex Externality

for each item i do
Choose δi u.a.r. in [0, 1];
for each vertex k ∈ V2 do

if z(i, k) ≥ δi and no item has been assigned to k so far then
Assign item i to k w.p. 1/2;

end

end

end
For each vertex j ∈ V1, pick the best item based on its externality to V2;

To prove the theorem, it suffices to establish that, for any given vertex j ∈
V1, his expected welfare is 1/2O(d) fraction of his contribution to the LP objec-
tive. Consider the round in which item i is assigned to vertices in V2, and let S



be the (random) set of vertices in Nj ∩ V2 that are not assigned any item previ-
ously. For each value of a = 0, 1, 2..., Nj ∩ V2, we define event E(i, j, a) that is true
when the threshold used for assigning item i to vertices in V2 lies in the range
(
∑

a+1≤l≤|Nj∩V2|
y(i, j, l),

∑

a≤l≤|Nj∩V2|
y(i, j, l)]. We define C(i, j, a) as follows:

C(i, j, a) = 1

y(i, j, a)





∑

k∈Nj∩V2

min







max







z(i, k)−
∑

a+1≤ℓ≤|Nj∩V2|

y(i, j, ℓ), 0







, y(i, j, a)











In other words, C(i, j, a) measures the LP mass for item i in Nj ∩ V2 in event E(i, j, a),
it roughly corresponds to the expected number of neighbors of j in event E(i, j, a). We
would want this quantity to be a.

We note important properties of these events: (a) E(i, j, a) is disjoint from E(i, j, a′ 6=
a), (b) Pr[E(i, j, a)] = y(i, j, a) (by definition of rounding for vertices in V2 ), and (c) for
each 0 ≤ ℓ ≤ |Nj ∩ V2|,

∑

ℓ≤a≤|Nj∩V2|

[C(i, j, a)× y(i, j, a)|y(i, j, a) 6= 0] ≥
∑

ℓ≤a≤|Nj∩V2|

a× y(i, j, a) (1)

This property follows by the second constraint in the LP, and the definition of C(i, j, a).
It implies the following: given vertex j ∈ V1 and item i, even if the expected number
of his neighbors that are assigned item i in event E(i, j, a) is less than a, the expected
number of neighbors that are assigned item i in events E(i, j,≥ a) is at least the re-
quired value.

For simplicity in analysis, we consider a modified algorithm for assigning an item to
vertex j ∈ V1, selecting the best item can only improve the welfare of the allocation.
Consider items in order 1, 2, ...,m. Let i be the item in consideration. If j has not been
assigned any item until now, let E(i, j, a) be the event that was true during assign-

ment of item i to vertices in V2; then assign item i to j w.p. x(i,j,a)
(2×y(i,j,a)) , conditioned on

y(i, j, a) 6= 0. We note that

∑

i,a

x(i, j, a) Pr[E(i, j, a)]
2× y(i, j, a)

=
∑

i,a

x(i, j, a)× y(i, j, a)

2× y(i, j, a)
= 1/2

Thus the probability that he is not assigned any item is at least 1/2.
Recall that S is the (random) set of vertices in Nj ∩V2 that are not assigned any item

before i. We define a random variable X(i, j, a) as follows:

X(i, j, a) =
1

y(i, j, a)





∑

k∈S

min







max







z(i, k)−
∑

a+1≤ℓ≤|Nj∩V2|

y(i, j, ℓ), 0







, y(i, j, a)











X(i, j, a) is defined in a similar way as C(i, j, a), however X(i, j, a) only considers ver-
tices in Nj ∩ V2 which are unallocated so far, whereas C(i, j, a) considers all vertices in
Nj ∩ V2. As the probability that k ∈ Nj ∩ V2 is not assigned an item prior to i is at least
1/2, then for any a (with y(i, j, a) 6= 0), we have

ES [X(i, j, a)] ≥ C(i, j, a)
2

Thus the expected number of vertices in Nj ∩ V2 that are assigned item i in case of

event E(i, j, a) is at least C(i,j,a)
4 . The second 1/2 comes by the fact that vertex k ∈ V2 is

assigned an item i w.p. 1/2 when z(i, k) is greater than the threshold for item i.



Using convexity of Fij , the expected value of externality when j ∈ V1 is assigned
item i is
∑

a

Fij (C(i, j, a)/4)× Pr[E(i, j, a)]× x(i, j, a)

2× y(i, j, a)
× 1

2
=

1

2O(d)

∑

a

Fij(C(i, j, a))× x(i, j, a)

We note an important property of the optimal LP solution: as Fij is non-decreasing,
there exists an ℓ such that for a > ℓ we have x(i, j, a) = y(i, j, a) and x(i, j, a) = 0 for
a < ℓ; furthermore 0 ≤ x(i, j, ℓ) ≤ y(i, j, ℓ). Thus the externality can be rewritten as
(neglecting the constant term)

x(i, j, ℓ)×Fij(C(i, j, ℓ)) +
∑

ℓ+1≤a≤Nj∩V2

y(i, j, a)×Fij(C(i, j, a))

Using monotonicity of Fij and Equation 1, we get

≥ x(i, j, ℓ)×Fij(ℓ) +
∑

ℓ+1≤a≤Nj∩V2

y(i, j, a)×Fij(a) =
∑

0≤a≤Nj∩V2

Fij(a)× x(i, j, a)

This completes the proof.

3.4. Step Function Externality

In this section, we consider the setting when the externality is a step function. The
following theorem states our result.

THEOREM 3.11. There exists a truthful in expectation mechanism that achieves a
O(1)-approximation to the optimal welfare.

PROOF. We partition the graph into two halves V1 and V2, by randomly assigning
each vertex to either side w.p. 1/2. It can be easily seen that the expected value of the
optimal restricted welfare is at least OPT

4 . The following LP upper bounds the optimal
restricted welfare. In the LP, y(i, j, k) is the probability that vertex j ∈ V1 derives
externality for item i from vertex k ∈ V2, and x(i, j) is the probability that item i is
assigned to vertex j ∈ V1 ∪ V2.

Maximize
∑

i,j∈V1

x(i, j)vij

x(i, j) =
∑

k∈Nj∩V2
y(i, j, k) ∀i, j ∈ V1

y(i, j, k) ≤ x(i, k) ∀i, j ∈ V1, k ∈ Nj ∩ V2
∑

i x(i, ℓ) ≤ 1 ∀ℓ ∈ V1 ∪ V2

x(i, ℓ), y(i, j, k) ∈ [0, 1] ∀i, j ∈ V1, k ∈ V2, ℓ ∈ V1 ∪ V2

We give a rounding scheme such that the expected welfare of each vertex j ∈ V1 is

exactly (e−1)
4e fraction of his welfare in LP. We then compute the VCG price of the

fractional allocation for each vertex in V1, and the price asked to vertex j ∈ V1 is (e−1)
4e

fraction of his VCG price. Clearly this mechanism is truthful-in-expectation. Now we
illustrate the rounding scheme: assign item i to vertex k ∈ V2 w.p. x(i, k) independent
of other vertices in V2, and if k is assigned item i, consider every vertex j ∈ V1 such

that k ∈ Nj ∩ V2, and assign item i to j w.p. y(i,j,k)
2x(i,k) , irrespective of past allocation to

j. In this process, a vertex j ∈ V1 can be assigned multiple items, as well as multiple
copies of the same item. However, the probability that he is allocated at least one copy

of item i is (1−1/e)x(i,j)
2 . Fix item i, conditioned on j ∈ V1 receiving item i, the expected

number of additional items he receives is 1/2. Thus item i is the only item allocated



to j ∈ V1 w.p. at least (e−1)
4e · x(i, j), let this value be x′(i, j). In this event, we drop the

allocation to j w.p. x′(i, j)− (e−1)
4e · x(i, j). This completes the proof of the theorem.

We get the following corollary for the revenue maximization; its proof is deferred to
the full version of the paper.

COROLLARY 3.12. There exists a truthful-in-expectation mechanism with expected

revenue Ω
(

OPT
log2 n

)

.

The mechanism is based on declaring a random reserve price of OPT
2i for 1 ≤ i ≤ 2 logn,

and the price asked to a vertex is the max of his VCG price and the reserve price. The
assumption about the knowledge of OPT can be removed by another loss of O(log n) in
the approximation factor, using techniques in [Chakraborty et al. 2009].

4. NASH EQUILIBRIUM

In this section, we consider a game G, where we have an infinite supply of each item,
each vertex is a player, the strategy space for a player is to choose an item and his
valuation of item i is Fij(Si)vij , where Si is the set of players currently using item i. In
a Nash equilibrium, player j uses the item argmaxi{Fij(Si)vij}.

Complete Graphs. We consider the case when the underlying graph is a complete
graph, and the externality for an item solely depends upon the number of other players
possessing the item, i.e. for every item i and player j, there exists a function Fij : N →
R

+ such that Fij(S) = Fij(|S|) for all S. We let Fij to be an arbitrary non-decreasing
concave function.

In Lemma 4.1, we show existence of a Nash equilibrium, when the externality func-
tion of all players is same for any given item. Lemma 4.2 establishes that this assump-
tion is tight, and a Nash equilibrium may not exists if this assumption is removed.
Lemma 4.3 analyzes the PoA and PoS of this game when a Nash equilibrium exists e.

LEMMA 4.1. There exists a pure Nash equilibrium in game G if for every j, j′ ∈
V, S ⊆ V , Fij(|S|) = Fij′ (|S|). Furthermore, every sequence of improving moves leads to
a Nash equilibrium.

PROOF. For each item i, define Φi =
∑

1≤k≤|Si|
log(Fij(k)) +

∑

j∈Si
log(vij), and con-

sider a potential function Φ =
∑

1≤i≤m Φi. We analyze a move by player j changing

his strategy from item i to item i′. His welfare for item i is Fij(|Si|)vij , and his welfare
after his move to item i′ is Fij(|Si′ + 1|)vi′j . If the move is an improving move, then

Fi′j(|Si′ + 1|)vi′j ≥ Fij(|Si|)vij i.e.,
log(Fi′j(|Si′ + 1|)) + log(vi′j) ≥ log(Fij(|Si|)) + log(vij)

The change in the potential is

∆(Φi′) + ∆(Φi) = log(Fi′j(|Si′ + 1|)) + log(vi′j)− log(Fij(|Si|))− log(vij)

e[Gairing et al. 2006] study convergence properties of congestion games with player specific latency func-
tions. The game considered in Lemma 4.1 (for any given item, players have an identical externality function,
and the externality graph is complete) can be seen as an un-weighted congestion game with player specific
delay functions with a resource in the latter game corresponding to an item in the former, and the poten-
tial function used in Lemma 4.1 is similar to the potential function used in Section 3.1 by [Gairing et al.
2006]. However, once we relax our game to allow player specific externality functions (the cases considered
in Lemmas 4.2 and 4.3) or when the graph is not complete, the two classes of games are fundamentally
different.



which is greater than 0 for an improving move by a player. As there are only finitely
many distinct states in the game, it implies the existence of a pure Nash equilib-
rium.

We note that the result in Lemma 4.1 holds for arbitrary Fij ’s as well.

LEMMA 4.2. There exists an instance of game G with no Nash equilibrium.

PROOF. Consider an instance with 3 players and 3 types of items, vij = 1 for all i, j.
Players’ externality functions satisfy following inequalities.

F11(2) > F21(2) > F21(1) > F31(2) > F11(1) > F31(1)

F22(2) > F32(2) > F32(1) > F12(2) > F22(1) > F12(1)

F33(2) > F13(2) > F13(1) > F23(2) > F33(1) > F23(1)

Furthermore, we have Fij(3) = Fij(2) for each i, j. It can be noted that such externality
functions can be implemented using concave functions. Now we prove that this game
does not have any Nash equilibrium. (a) Player 1 can not be allocated item 3 in a
Nash equilibrium, as he can switch to item 2 even if no other player is using item 2.
Similarly players 2 and 3 cannot be allocated items 1 and 2 respectively in a Nash
equilibrium. (b) If all players are allocated distinct items, then players 1, 2 and 3 have
to be allocated items 2, 3 and 1 respectively, and in this case player 3 will switch to
item 3. (c) If players 1 and 2 are allocated the same item, then it has to be item 2, and
in this case player 3 needs to be allocated item 1. In this case, player 1 will switch to
item 1. Similar contradiction can be shown when players 2 and 3 or players 1 and 3 are
allocated the same item. This completes the proof.

LEMMA 4.3. In the above mentioned game, if Fij is concave for each i, j, and

— each vij is either 1 or 0, then the price of stability is 1 and the price of anarchy is
between 2n/3 and n.

— vijs are arbitrary, then price of stability is at least 2 and the price of anarchy is be-
tween 2n/3 and n.

The proof of Lemma 4.3 is deferred to the full version of the paper.

5. REVENUE OPTIMAL MECHANISMS

In this section, we consider the problem of designing Bayesian incentive compatible
mechanisms for optimizing revenue, where the buyers’ intrinsic valuations are private
knowledge, and we are specified a prior over these valuations. We consider the single
dimensional setting in Section 5.1, and our result for the multidimensional setting is
given in Section 5.2.

5.1. Single Dimensional Valuation

In this section, we consider the setting where the intrinsic valuation of buyer j for each
item in Ij is same and it is drawn from a publicly known distribution with CDF Gj (and
PDF gj). We further assume that these distributions are regular. We note Myerson’s
characterization for single dimensional mechanism in Theorem 5.1, and Theorem 5.2
states our result for this setting.

THEOREM 5.1. Given any truthful mechanism M, let vxj(v) be the expected value of
the goods allocated to buyer j when his reported parameter is v, then by Myerson’s char-
acterization, his expected payment for valuation v is vxj(v)−

∫ v

0 xj(v
′)dv′. Furthermore,

the expected revenue of M from buyer j is Ev[ϕj(v)xj(v)].



THEOREM 5.2. Given any positive network externality setting, let β be the expected
ratio of the restricted welfare to the optimal welfare for random partitioning, and α be
the approximation factor of the allocation problem for the restricted welfare. Then there
exists a BIC mechanism with an αβ-approximation to the revenue.

PROOF. (Sketch) For a given set of buyers’ bids, partition the vertices into V1 and V2,
by assigning each vertex to either side w.p. 1/2. Let V3 ⊆ V1 be the set of vertices with
non-negative virtual valuations. Neglect vertices in V1 − V3 and solve the allocation
problem on (V3, V1) on virtual valuations. The expected virtual welfare for the instance
(V3, V2) is at least β factor of the optimal virtual welfare. We use the α-approximation
algorithm for the restricted virtual welfare maximization. In this process, the alloca-
tion to buyers in V2 is independent of their valuations, and they are assigned some
item among the set of items they are interested in, while their payment is 0. Allocation
for buyers in V1 depends upon their valuations.

Let vxj(v) be buyer j’s expected welfare when his intrinsic valuation is v and he is
assigned to side V1. If xj(v) is not monotone in v, then we make it monotone using the
ironing technique from [Hartline and Lucier 2010]. As the distributions are regular,
the virtual valuation for buyer j is monotone in his real valuation, the ironed allocation
curve is monotone in his virtual valuations as well, and this step only increases the
revenue of the mechanism. Let xj(v) be the allocation curve after applying the ironing
procedure.

Payments are computed as follows: buyer j’s payment is 0 when he is assigned to
V2; when he is assigned to V1, his payment for valuation v is vxj(v) −

∫ v

0
xj(v

′)dv′.
Using Myerson’s characterization, the mechanism is incentive compatible in Bayesian
sense, and it remains to bound the revenue. As the expected virtual welfare of the
allocation is at least αβ fraction of the expected optimal virtual welfare, we get an αβ
approximation for the revenue.

5.2. Multidimensional Valuation: Complete Graph, IID and Non-Atomic Buyers

In this section, we consider the setting, when there are n → ∞ unit demand buyers.
Each buyer’s valuation for item i is drawn independently from a known distribution
with CDF Gi (and PDF gi), furthermore each distribution is regular. The underlying
graph is complete, so that the externality seen by a buyer is simply a fixed function
of the fraction of all buyers who own the same item. We assume the linear model of
externality in the rest of the section: if ni is the number of buyers who own item i, and
vij is the intrinsic valuation of buyer j for item i, his overall valuation is simply vijni,
where the valuation vij is drawn from Gi.

The eventual mechanism is a posted pricing. When jth buyer in the sequence makes
a decision about the purchase, he is aware about the allocation of items to previous
buyers, and not to the buyers later in the sequence. This necessities a need to define
buyers’ behavior. We assume that buyers are completely risk averse, and each buyer
buys an item that maximizes his utility only considering the past allocation. Our tech-
niques can be extended to a setting when buyers are risk neutral and buyers make
purchase decisions based on the expected allocation in the future. Our result is stated
in the following theorem.

THEOREM 5.3. There exists an 16-approximation algorithm to the revenue of the
optimal mechanism when buyers are IID, and the externality network is a complete
graph.

In the rest of the section, we prove Theorem 5.3. We first note an important property
in the following lemma that lets us reduce the problem to a single dimensional setting,
similar to Chawla et al [Chawla et al. 2010].



LEMMA 5.4. Given an instance I of the given problem, reduce it to a single dimen-
sional problem Icopies as follows: split each buyer into m copies, where the ith copy is
interested only in item i, with a restriction that only one copy of a buyer can be allo-
cated an item. Then the revenue of the optimal mechanism on Icopies is no less than the
revenue of the optimal mechanism on I.

We shall denote the copies of buyer j by j1, j2, ..., jm. Let MOPT be the optimal mech-
anism for Icopies. Given a buyer j in I, let yi(v) be the probability that ji is allocated an
item when his valuation is v and let pi(v) be his expected payment when his valuation
is v. Let ni =

∑

v yi(v)gi(v), i.e. the expected number of buyers that buy item i. By My-
erson’s characterization and taking expectation over all possible realizations, we have
∑

v pi(v)gi(v) = ni (
∑

v ϕi(v)yi(v)gi(v)). The following quadratic program upper bounds
the revenue of the optimal mechanism.

Maximize n×





∑

i,v

pi(v)gi(v)





∑

i ni ≤ n
∑

v pi(v)gi(v) = ni × (
∑

v ϕi(v)yi(v)gi(v)) ∀i
ni = n× (

∑

v yi(v)gi(v)) ∀i
yi(v) ∈ [0, 1] ∀i, v

As the distributions are regular, ϕi(v) is non-decreasing in v for each item i. Thus the
optimal solution to the convex program has the following property: for every i, yi is
either a step function such that yi(v) = 0 for v ≤ vi and yi(v) = 1 for v > vi, or it is a
convex combination of two step functions with two thresholds vi1 < vi2 such that vi1 is
the largest valuation less than vi2. The value of vi (or vi1, vi2) can be considered as the
price for the item i.

Solving the quadratic program: Using the characterization of the optimal solution,
given a value of ni, the values of yi(v) and pi(v) are uniquely determined. Hence it
suffices to guess the values of nis. We use a DP with the following state space: A[i, n′]
is a solution to the convex program with n′ buyers and first i items. We solve the DP

considering the number of buyers in increments of ǫ3n
m2 . We now establish that this DP

gives a (1 + O(ǫ))-approximate solution: in the optimal solution, for each item i with

ni ≥ ǫ2n
m2 , we round down ni to the nearest multiple of ǫ3n

m2 . We then arbitrarily pick

an item with more than ǫn
m buyers allocated to it (if such item exists), and remove ǫ2n

m
buyers from it. These steps reduce the revenue of the optimal allocation by a factor of

O(ǫ). For each item i with ni < ǫ2n
m2 buyers, we compute the best allocation up to ǫ2n

m2

buyers. In this step, the revenue can only increase, and the number of extra buyers

required in this process is ǫ2n
m , which is compensated by the previous step.

The pricing mechanism is given below, and the approximation bound follows from
Lemma 5.5.

— We offer free items to first
∑

ni/2 buyers: first n1/2 buyers are given item 1 for free
and other items are withheld. Next n2/2 buyers are offered item 2 for free and other
items are not shown to them, and so on. We note that

∑

i ni/2 ≤ n/2. We skip all
buyers between

∑

i ni/2 + 1 to n/2.
— For buyer j between n/2 + 1 and n, we offer items as follows: let n′

i be the number
of buyers that already have item i. Then for each item i, show item i to buyer j
independently w.p. 1/2 and ask a price of (n′

i + 1)vi.



LEMMA 5.5. For any j between n/2 + 1 and n, the expected revenue generated from

the jth buyer is at least OPT
8n .

PROOF. The expected number of items for which buyer j has valuation more than

the price is exactly
∑

i ni

2n ≤ 1
2 . Hence w.p.

∑
i ni

2n , he has valuation for at least one item
more than its price. The probability that he is eligible for at least two items is at most∑

i
ni

4n . Thus w.p. at least
∑

i
ni

4n , he is eligible for exactly one item. Furthermore, when
he buys the item, his price is at least 1/2 of the quadratic program price for the item.
This completes the proof.

We note that, our technique can be modified to get a 16-approximation for concave
externality and O(2d)- approximation for convex externality.
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