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Modeling Parametric Evolution in a Random Utility Framework

Abstract

Random Utility models have become standard econometric tools, allowing parameter inference

for individual-level categorical choice data. Such models typically presume that changes in observed

choices over time can be attributed to changes in either covariates or unobservables. We study

how choice dynamics can be captured more faithfully by additionally modeling temporal changes in

parameters directly, using a vector autoregressive process and Bayesian estimation. This approach

offers a number of advantages for theorists and practitioners, including improved forecasts, prediction

of long-run parameter levels, and correction for potential aggregation biases. We illustrate the

method using choices for a common supermarket good, where we find strong support for parameter

dynamics.
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1 Introduction

The modeling of sequential, individual-level choice has emerged as a research area of great breadth,

with applications throughout economics, statistics, psychology and elsewhere. A fundamental goal

is determining how choices evolve over time, and which variables drive them to. A rich literature has

emerged to aid researchers in linking exogenous covariates to temporal changes in choices. Because

data are available on observed choices, and not on unobserved measures of relative ‘attractiveness’

of available options, the dominant method of achieving such a linkage has been that of Random

Utility models (McFadden 1973; Manski 1977).

Within the random utility framework, one need specify both a utility and an error structure, as

well as some link function to convert to observables. Consequently, the lion’s share of research has

been dedicated to those tasks. For example, prior approaches to modeling choice dynamics capture

temporal changes in individual-level utilities by introducing lagged terms for previous choices (cf.,

Heckman 1981), or by invoking a generalized stochastic error structure (e.g., Allenby and Lenk 1994,

1995). Although these models do capture some types of changes in utility over time in a systematic

way, they do not consider changes in variable weights, and so amount to modeling shifts in the

intercept of the deterministic component of utility.

We aim to demonstrate that an essential element of choice or utility dynamics can be captured

by modeling changes in parameters directly. To that end, we propose a Bayesian dynamic logit

model designed to capture choice dynamics by estimating a vector autoregressive process for the

parameters of individuals’ linear utility functions. Such an approach allows rigorous investigation

of a number of issues of interest in forecasting. First, can parameters be distinguished by whether

they are time-varying? If they do evolve, can they be further distinguished by the nature of their

evolution? And, most important for prediction, to what extent can understanding the nature of

parametric evolution be used to gain superior understanding of future choices?

The model we develop will indeed distinguish parameters along these lines, and use that knowl-

edge for improved forecasting. The paper is organized as follows. We review prior literature concern-

ing parameter dynamics, specify a Bayesian model to account for them, and develop methods for its

estimation. We then estimate the model on individual-level sequential choices, and demonstrate its

in-sample and forecast performance. Finally, we suggest possible sources for such dynamics, as well

as potential extensions to the general method.
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2 Dynamic Model Specification

2.1 Previous Approaches to Changes in Utilities over Time

Although we are concerned with statistical issues, we note that numerous behavioral studies have

suggested that parameters — as embodied by individual-level sensitivities — do indeed change over

time. Research on preference reversals, for example, has demonstrated that the so-called weight

function of attributes depends on such contextual features as scale compatibility (Slovic et al. 1990),

strategy compatibility (Tversky et al. 1988), and framing (Kahneman and Tversky 1981; Thaler

1985). Decision weights are also known to be sensitive to the scale change of attribute values in an

experimental setting (von Nitzsch and Weber 1993).

Previous statistical approaches to capture utility change over time can be separated into two

broad classes, depending on whether intercept shifts are taken to be deterministic or stochastic.

Most previous models that introduce lagged choice variables make use of a deterministic intercept

shift: the lagged choice shifts the constant term of the deterministic component of the utility for

any particular option so that the intercept is α
0
= α + γDt−1, where Dt−1 is a dummy variable

for the particular option, equaling 1 only if that option was chosen at time t − 1. Typically, the
effects of the lagged choice variables γ are assumed to be homogeneous across units and options. It

is important to note that this approach can only capture intercept shifts (in utilities over time) in a

deterministic way. By contrast, Allenby and Lenk (1994, 1995) developed a logistic regression model

that updates utilities over time by introducing an autoregressive error structure. In their model, the

new intercept α
0
is given by α + ρεt−1, where 0 < |ρ| < 1 and εt−1 is the stochastic component of

utility at time t− 1. Clearly, neither of these approaches can account for utility changes generated
by a change in variable weights over time.

2.2 Observation and Evolution Densities

We describe the dynamic logit model and will use three generic subscripts: h denotes an individual

unit of observation (h = 1, ...,H), j denotes an option (j = 1, ..., J), and t denotes time (t = 1, ..., T ).

Let yht = j denote the event that unit h chooses option j at time t, xhjt denote unit h’s k-dimensional

covariate vector for unit j at time t, and uhjt denote unit h’s utility for option j at time t. Thus

uhjt = β
0
htxhjt + εhjt, (1)

where where βht is the k-dimensional coefficient vector for unit h at time t and εhjt the associated

error. If εhjt are iid Gumbel, then a dynamic logit model arises for choice probability phjt (cf.
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McFadden 1973):

phjt = p(yht = j|βht) = exp(βht
0
xhjt)

JP
i=1
exp(βht

0xhit)

. (2)

To model parametric temporal variation, we assume βht can be decomposed into two parts,

βht = βt + bh, (3)

where βt is a time-varying coefficient vector common across units, and bh is a vector of random

effects to incorporate heterogeneity across units. (2) now simplifies to

phjt = p(yht = j|βt, bh). (4)

To capture dynamics for βt, we introduce a vector autoregressive process of order p, VAR(p) (Li

and Tsay 1998; Lütkepohl 1991; Polasek and Kozumi 1996),

βt = d+

pX
n=1

Anβt−n + wt, wt ∼ N(0,Σw), t = 1, . . . , T (5)

= d+AZt−1 + wt,

where d is a k-dimensional vector, An is a (k × k) coefficient matrix, A = (A1, ..., Ap) is a k × kp

matrix, Zt = (β
0
t, ..., β

0
t−p+1)

0
is a kp-dimensional vector, and wt is a k-dimensional white noise term.

Note that a number of common univariate and multivariate stochastic process models, such as

random walk, random walk with drift, and AR(p), are special cases of (5). Since An is not assumed

diagonal, an advantage of the VAR(p) process over the popular dynamic simultaneous equations

approach is that it allows one to monitor the relationship between a particular element of βt and a

different element of βt−n. Further, (5) can capture stationary as well as non-stationary dynamics;

it is well-known that the VAR(p) process is stable and thus stationary if

det(Ik −A1l − ...−Apl
p) 6= 0 for | l |≤ 1, (6)

that is, if there is no root within or on the unit disk of the reverse characteristic polynomial of the

VAR(p) process. If the VAR process is stable, the expected value of βt does not depend on t, that

is,

µβ = E(βt) = (I −A1 −A2 − ...−Ap)
−1d,

where the expectation is with respect to wt, t = 1, 2, . . . (Lütkepohl 1991).

Finally, we model the heterogeneity of bh in (3) as a multivariate normal random effect,
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p(bh|Σb) = Nk(0,Σb), ∀ h, (7)

where Σb is an unknown covariance matrix.

2.3 Prior Distributions

Priors are required for {βt}0t=1−p, d, A, Σw and Σb. Following standard assumptions of dynamic

state-space models (Cargnoni et al. 1997; Carlin et al. 1992; Harrison and Stevens 1976; West and

Harrison 1997), we assume that {βt}0t=1−p, d,A, Σw, and Σb are mutually independent, and use the
following prior distributions,

p(βi) = Nk(m0, S0), where i = 1− p, ..., 0, (8)

p(d) = Nk(md, Sd), (9)

p(vec(A)) = Nk2p(mα, Sα), (10)

p(Σw) = IWk(vw, Sw), and (11)

p(Σb) = IWk(vb, Sb). (12)

Here vec(·) is the usual column stacking operator so that vec(A) is a k2p-dimensional vector. The
expression p(Σ) = IWk(v, S) denotes that Σ has a k-dimensional inverted Wishart distribution

with parameters v and S, where v > 0 and S is non-singular, that is, p(Σ) = IWk(v, S) ∝
|Σ|−( 12v+k) exp(−12tr Σ−1S). Furthermore, the parameters of the prior distributions (m0, S0, md,

Sd, mα, Sα, vw, Sw, vb, Sb) are known values, which we choose to obtain non-informative proper

priors. In particular, for the prior of vec(A), we use the Minnesota priors (Doan et al. 1984; Litter-

man 1986), which are specialized for the VAR(p) process. Specifically, we choose mα = 0 and Sα to

be a diagonal matrix with elements:

src,n =


¡
λ
n

¢2
if r = c³

θλσr
nσc

´2
otherwise,

(13)

where src,n is the prior variance of the (r, c) element of An (n = 1, . . . , p), σr/σc is the ratio of

square roots of corresponding diagonal elements of Σw, λ is the prior belief on the tightness around

zero for the diagonal elements of A1, and 0 < θ < 1 reflects prior belief that most of the variation

of βt is explained by its own lags. Thus, the Minnesota priors are locally non-informative proper

priors around zero, an attractive property because, under the stability condition, An tends to shrink
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to 0 rapidly in n (cf. Lütkepohl 1991, p. 208). The Minnesota priors can also be characterized as

smoothly decreasing priors over lags in a harmonic manner, which is also useful for order selection

of p.

3 Estimation and Model Choice

We first discuss parameter estimation of the proposed dynamic logit model and then describe the

model selection procedure.

3.1 Full Posterior Distribution

Using the likelihood and prior specifications, we obtain the posterior distribution for all parameters:

Let

• H = {1, 2, ...,H} be the set of all individuals,

• Ht be a subset of H that consists of individuals that make choices at time t,

• yt = {yht}h∈Ht
denote the observed choice data at time t,

• y = (y
0
1,..., y

0
T )

0
denote all choice data from time 1 to time T ,

• β = (β
0
1, ..., β

0
T )

0
, bt = {bh}h∈Ht , and b = {bh}h∈H.

Then, the posterior distribution is

p(β, b, d,A,Σw,Σb|y) ∝
Ã

TY
t=1

p(yt|βt, bt)
!
×
Ã

0Y
n=1−p

p(βn)

!
× (14)

Ã
TY
t=1

p(βt|d,A, βt−1, ..., βt−p,Σw)
!
×ÃY

H
p(bh|Σb)

!
× p(d)× p(A)× p(Σw)× p(Σb),

where,

p(yt|βt, bt) =
Y
h∈Ht

JY
j=1

p
qhjt
hjt ,

with qhjt = 1 if yht = j and qhjt = 0 otherwise.

This posterior distribution has several sets of parameters, with numerous elements. Specifically,

for βt (t = 1 − p, ..., T ) there are k(p + T ); for bh (h = 1, ...,H), kH; for d, k; for A, k
2p; and for
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both Σw and Σb,
1
2k(k + 1). In the forthcoming illustration, we will have H = 492, T = 90 and

k = 6, yielding 3540 + 42p elements overall.

Because analytic methods are not available to evaluate the posterior distribution in (14), we

employ Markov chain Monte Carlo (MCMC) methods, as described in Sec. 3.2. For model selection

and Bayesian hypothesis testing, we use Bayes factors (Bernardo and Smith 1994) to compare two

models (or hypotheses) H1 and H2:

B12 =
p(y|H1)

p(y|H2)
=

R
p(y|Φ,H1)p(Φ|H1)dΦR
p(y|Ψ,H2)p(Ψ|H2)dΨ

, (15)

where p(•|Hi) is the prior on parameters under model i (i = 1, 2) and p(y|•,Hi) is the likelihood

under model i. To estimate the Bayes factor, we must evaluate the integrated likelihoods, using

the results from the MCMC simulation. Let Φ(g), g = 1, ..., G, denote the G values of Φ generated

from the posterior distribution of Φ, p(Φ|H1). The integrated likelihood for Model 1, p(y|H1) =R
p(y|Φ,H1)p(Φ|H1)dΦ in (15), can be estimated by the harmonic mean estimator (Newton and

Raftery 1994),

bp(y|H1) =

Ã
1

G

GX
g=1

1

p(y|Φ(g),H1)

!−1
.

This estimator converges almost surely to the correct value, but it does not generally satisfy a

Gaussian central limit theorem. Nevertheless, it has been found to work reasonably well with large

samples (cf. Kass and Raftery 1995).

3.2 MCMC Sampler

To evaluate the posterior distribution, p(β, b, d,A,Σw,Σb|y), given in (14), we implement a MCMC
sampler, using the following conditional posterior distributions,

p(β|b, d,A,Σw,Σb, y)↔ p(b|β, d,A,Σw,Σb, y)↔ p(d|β,A,Σw,Σb, y)↔
p(A|β, b, d,Σw,Σb, y)↔ p(Σw|β, b, d,A,Σb, y)↔ p(Σb|β, b, d,A,Σw, y).
We next describe the sampling procedure for each.

3.2.1 Sampling from p(β|b, d,A,Σw,Σb, y)

To sample from p(β|b, d,A,Σw,Σb, y), we need the conditional posterior density for βt,
p(βt|βm6=t, b, d, A,Σw,Σb, y). When 1 ≤ t ≤ T ,

p(βt|βm6=t, b, d, A,Σw,Σb, y) ∝
pY

m=0

p(βt+m|d,A, βt+m−1, ..., βt+m−p,Σw)
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×p(yt|βt, bt) (16)

= N(Ftft, Ft)p(yt|βt, bt), (17)

where

F−1t =


S−10 +

Pp
m=1−tA

0
mΣ
−1
w Am, t = 1− p, ...,−1, 0,

Σ−1w +
Pp

m=1A
0
mΣ
−1
w Am, t = 1, ..., T − p,

Σ−1w +
PT−t

m=1A
0
mΣ
−1
w Am, t = T − p+ 1, ..., T − 1,

Σ−1w , t = T,

and

f
0
t =


m

0
0S
−1
0 +

Pp
m=1−t(βt+m − d−Pp

n=1,n6=mAnβt+m−n)
0
Σ−1w A

0
m, t = 1− p, ...,−1, 0,

(d+
Pp

m=1Amβt−m)
0
Σ−1w +

Pp
m=1(βt+m − d−Pp

n=1,n6=mAnβt+m−n)
0
Σ−1w A

0
m, t = 1, ..., T − p,

(d+
Pp

m=1Amβt−m)
0
Σ−1w +

PT−t
m=1(βt+m − d−Pp

n=1,n6=mAnβt+m−n)
0
Σ−1w A

0
m, t = T − p+ 1, ..., T − 1,

(d+
Pp

m=1AmβT−m)
0
Σ−1w , t = T.

Given (17), a Metropolis-Hastings algorithm step can be conducted as follows (Chib and Green-

berg 1995; Metropolis et al. 1953):

1. Sample β∗t from a proposal density, N(βpret , φβI), where βpret is the most recently updated

value and φβ is a fixed tuning constant.

2. Substitute β∗t for β
pre
t with acceptance probability

π(β∗t , β
pre
t ) = min

µ
p(yt|β∗t , bt)n(β∗t |Ftft, Ft)

p(yt|βpret , bt)n(β
pre
t |Ftft, Ft) , 1

¶
,

where N(βt|Ftft, Ft) denotes the multivariate normal density with mean Ftft and covariance

matrix Ft, evaluated at βt.

3.2.2 Sampling from p(b|β, d,A,Σw,Σb, y) and p(d|β,A,Σw,Σb, y)

The conditional posterior density for bh is

p(bh|βt, d, A,Σw,Σb, yht) ∝ p(bh|Σb)
Y
th

p(yht|βt, bh),

where th = {t : h ∈ Ht}. A Metropolis-Hastings step can be used:

1. Sample b∗h from a proposal density, N(bpreh , φbIk), where bpreh is the most recently updated

value and φb is a fixed tuning constant.

2. Substitute b∗h for b
pre
h with acceptance probability

π(b∗h, b
pre
h ) = min

Ã
p(b∗h|Σb)

Q
th
p(yht|βt, b∗h)

p(bpreh |Σb)
Q

th
p(yht|βt, bpreh )

, 1

!
.
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The conditional posterior density for d is

p(d|β,A,Σw,Σb, y) ∝
TY
t=1

p(βt|d,A,Zt−1,Σw)p(d)

= N(µ∗d,Σ
∗
d), (18)

a multivariate normal density with mean vector µ∗d = Σ
∗
d{S−1d md +

PT
t=1Σ

−1
w (βt − AZt−1)} and

covariance matrix Σ∗d = (S
−1
d + TΣ−1w )−1.

3.2.3 Sampling from p(A|β, b, d,Σw,Σb, y)

Let the (k2p)-vector α = vec(A), let Z = (Z0, Z1, ..., ZT−1), β̃t = βt − d, β̃ = (β̃1, ..., β̃T ), and let

the kT -vector β̃ = vec(β̃). Then, the conditional posterior of α is

p(α|β̃,Σw) = p(α|β, b, d,Σw,Σb, y) ∝ p(β̃|α,Σw)p(α)
∝ exp[−1

2
{(β̃ − (Z0 ⊗ Ik)α)

0
(IT ⊗ Σ−1w )(β̃ − (Z0 ⊗ Ik)α)

+(α−mα)
0
S−1α (α−mα)}].

By completing the square in α,

p(α|β̃,Σw) = N(α∗,Σ∗α), (19)

a
¡
k2p
¢
-dimension normal density with mean vector α∗ = Σ∗α{S−1α mα+(Z⊗Σ−1w )β̃} and covariance

matrix Σ∗α = [S−1α + (ZZ
0 ⊗ Σ−1w )]−1.

If we do not impose the stability restriction on the VAR(p) process, (19) can be directly used

to sample α. In this case, the probability of the VAR(p) process being stable can be estimated

by counting the number of iterations when the sampled α satisfies (6). However, with a stability

restriction on the VAR(p) process, there is a difficulty in sampling α. Under the stability condition

(6), α should be sampled from N(α∗,Σ∗α)I(α ∈ B), where B is the region in which the stability

condition is satisfied. The simplest way to sample α under the stability restriction is to use rejec-

tion sampling, by accepting α sampled from N(α∗,Σ∗α) only if it satisfies (6). However, rejection

sampling will be inefficient because the rejection rate increases exponentially with the dimension of

α. Even for a univariate AR(p) process, the acceptance rate of rejection sampling approaches 50%

(e.g., Barnett et al. 1996).

We therefore sample α directly from N(α∗,Σ∗α)I(α ∈ B) under the stability restriction by using

single variable slice-sampling, as proposed by Neal (1997). Recall that α = (α1, . . . , αk2p)
0
, and

consider the conditional distribution of αi, f(αi) = p(αi| remaining components of αi), which is
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proportional to N(α∗,Σ∗α)I(α ∈ B). Generating values of αi proceeds by replacing the previous

value, αprei , with a new value, αnewi , as follows:

(a) Define a horizontal slice, Sh = {αi : z < f(αi)}, where z is an auxiliary variable sampled
uniformly from (0, f(αprei )).

(b) Find an interval, I = (L,R), around αprei on Sh such that f(L) < z and f(R) < z.

(c) Accept αnewi , sampled uniformly from I, if f(αnewi ) > z.

Roberts and Rosenthal (1999) show that the slice sampler is irreducible, aperiodic and satisfies

the detailed-balance condition. The advantages of the slice sampler are that it can be used for any

log-concave probability density function. Furthermore, it can avoid slow random walk convergence,

since αprei is always replaced by αnewi in each iteration and it is possible to obtain a large jump

from αprei to αnewi . The computation of f(αi) involves the evaluation of I(α ∈ B). Note that the

evaluation of I(α ∈ B) does not require the computation of lower and upper bounds of the region

B. One need simply check whether or not αi falls inside the region B, by using (6).1

3.2.4 Sampling from p(Σw|β, b, d,A,Σb, y) and p(Σb|β, b, d,A,Σw, y)

The conditional posterior density for Σw is

p(Σw|β, b, d,A,Σb, y) = p(Σw|β, {β}0m=1−p, d, A, y)
∝ IW (v∗w, S

∗
w),

an inverted Wishart density with v∗w = vw+T and S∗w = Sw+
PT

t=1 ltl
0
t, where lt = βt− d−AZt−1.

The conditional posterior density for Σb is

p(Σb|b) = p(Σb|y, β, b, d,A,Σw, y)
∝ IW (v∗b , S

∗
b ), (20)

an inverted Wishart density with v∗b = vb +H and S∗b = Sb +
P

h∈H bhb
0
h.

3.3 Comparative Model Specifications

The model (2) has parameters {βt}Tt=1, {bh}Hh=1, d, {An}pn=1, Σw and Σb. We consider several

alternative models that differ by the structural assumptions imposed on d, {An}pn=1, and Σw:
1In some cases, a researcher may have prior beliefs on α (or equivalently A) and so wishes to place restrictions on

a subset of α. In such a case, α, under arbitrary restrictions, can be easily sampled as follows: Suppose that ᾱ =

(α
0
1;α

0
2)
0
, with α2 = a, where a is a vector of restricted values. Define a partition matrix P such that ᾱ = Pα. Then,

the conditional posterior density of α1 given α2 = a, N(α1|α2 = a), can be easily obtained from N(Pα∗, PΣ∗αP
0
). If

the partitioned sub-matrix for α2 in PΣ∗αP
0
is singular, the Moore-Penrose inverse can be used to deriveN(α1|α2 = a).

11



Model d {An}pn=1 Σw
No Parameter Dynamics

M0 : Static random effects logit model NR∗ 0 0

Parameter Dynamics

M1 : Dynamic Linear model; random-walk 0 p = 1;A1 = I NR
M2 : Random-walk with a drift NR p = 1;A1 = I NR
M3 : VAR(p) NR NR NR
M4 : Restricted VAR(p); RVAR(p) NR An =diagonal NR
* NR = No Restriction

All models listed in the above table incorporate heterogeneity as a random effects specification;

see (7). ModelM0 is the traditional random effects logit, which assumes that there are no parameter

dynamics; M1 to M4 allow for parameter dynamics in different ways. Model M1, the popular

Dynamic Linear model (Harrison and Stevens 1976; West and Harrison 1997), assumes a random-

walk process for βt with mean vector βt−1 and covariance matrix Σw. ModelM2 assumes a random-

walk process with a drift term for βt. Model M3 is the proposed VAR(p) process model. Model

M4 is a restricted VAR(p) (RVAR(p)) process model under the restriction that {An} are diagonal
matrices. Thus, in terms of parametric restriction, M1 ⊂M2 ⊂M4 ⊂M3.

M0 can be easily estimated by skipping the MCMC steps for βt,Σw, and vec(A). M1 can be

estimated by skipping the MCMC steps of d and vec(A). Similarly,M2 can be estimated by skipping

the MCMC step for vec(A). We estimate M3 and M4 under the stability condition given in (6).

To test the accuracy of parameter recovery, we performed two extensive simulation studies,

differing in the relative complexity of βt’s dynamics. All model parameters were recovered well in

each (see Appendix A; full results are available from the authors).

4 Empirical Illustration

4.1 Data and Independent Variables

The proposed model was estimated on A. C. Nielsen liquid detergent scanner data over 96 weeks. The

data consist of 492 individual units (households) that made choices among four options {A,B,C,D}
at least seven times during the 96 week period. The first 90 weeks of data were used as training

sample to estimate the model and the remaining 6 weeks’ data were used for the prediction of

the future model parameters. The numbers of observations for the training and future parameter

forecasting samples were 6364 and 318, respectively. To ensure identifiability, the time-varying

common effect of the fourth option as well as its random effect were fixed to be zero. This requires
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that the values xhjt for option j be the differences of the corresponding predictor variable values for

options j and the base option, J . The vector xhjt thus consists of three option dummies and three

covariates, the differences in Feature, Display and Price; note that the first two are binary, while the

last is continuous.

All mean vectors of the normal priors, that is, m0, md, and mα in (8) to (10), were set to zero.

The chosen values for S0 and Sd were 100I. For the inverse Wishart priors of Σw and Σb, the degree

of freedom parameters were set to be 2 and the scale parameters were chosen so as to make the

expected values 100I . For the value of Sα in (10) and (13), Litterman (1986) suggested choosing

λ, θ, and {σi} by examining the data and by trying several different values. However, this approach
entails double-usage of data. We thus set λ = 1.0, θ to 0.5 and all ratios σr/σc to 1. For VAR(p)

when p > 1, Sα are set by using (13) with λ = 1.0, θ =0.5, and σr
σc
= 1.

4.2 MCMC Estimation

The tuning constants for the proposal distributions in the Metropolis-Hastings algorithms (e.g., φβ

in Sec. 3.2.1) were chosen to produce similar acceptance rates across models. There exists a trade-

off between convergence speed and acceptance rate in the Metropolis-Hastings algorithm (Chib and

Greenberg 1995). As tuning constants are smaller, the acceptance rate increases, but we will need a

longer chain because the distance between the previous value and a newly accepted value becomes

smaller. The chosen tuning constants for βt and bh were approximately φβ = 0.07 and φb = 0.3,

respectively. For all models, the acceptance rates for βt and b, given these tuning constants, ranged

from 53.2% to 55.7% and from 53.8% to 57.5%, respectively.

The number of quantities of interest for the VAR(p) model is quite large. For example, excluding

b, there are 630 quantities for the full VAR(1) model. Thus, we must be careful in determining

convergence of the MCMC sampler. Specifically, we determine convergence after examining all

quantities except b. To monitor convergence, we use Geweke’s (1992) convergence diagnostic, which

is based on the smooth spectral density of a MCMC posterior sample. The periodogram for spectral

density estimation involves two important choices: window and truncation point. We use the Tukey

window and choose the truncation point after looking at the autocovariance function as Jenkins and

Watts (1968) suggested.

After 20,000 iterations, all models seem to reach convergence. Figure 1 is a typical example: for

the VAR(1) model, it shows the trace plot for the six elements of β1 for the first 40,000 iterations,

where G represents Geweke’s convergence diagnostic with 20,000 burn-in periods. Across all models,
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Figure 1: Running mean plot of β1 of the full VAR(1) model

the proportion of quantities that pass the Geweke diagnostic ranges from 91.3% to 98.1%. For the

rejected quantities, we used Heidelberger and Welch’s (1983) half-width test, which the majority

pass. All inferences made here are based on the next 20,000 iterations.

4.3 Tests for Parameter Dynamics

After estimating models M0 to M4, we can test whether there is evidence that parameters are

time-varying. Specifically, we have the following hypotheses:

H1 : Parameters are static (M0)

H2 : Parameters display some form of dynamics (M1,M2,M3, or M4)

The computed integrated likelihoods and the Bayes factors for a comparison of models M0 and

Mi (BFM0,Mi) are given in Table 1. Because VAR(2) has a smaller integrated likelihood than

VAR(1) and its estimated A2 is close to a null matrix, we do not estimate VAR(p) models of higher

orders. We also do not estimate RVAR(p) with order greater than 2, since RVAR(2) shows smaller

integrated likelihood than RVAR(1) and its estimated A2 is close to null.

As shown in Table 1, we find exceptionally strong evidence supporting parameter dynamics.

All models incorporating parameter dynamics, M1 to M4, are decisively preferred to the traditional
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Log of Integrated Bayes Factor

Mi Likelihood (BFM0,Mi)
No Parameter Dynamics Case

M0 : Static random effects logit model −3436.33 1.0

Parameter Dynamics Case

M1 : Dynamic Linear model −3068.50 1.79e− 160
M2 : Random-walk with a drift −3072.44 9.22e− 159

M3 : VAR(p)
VAR(1) −3061.90 2.44e− 163
VAR(2) −3075.66 2.31e− 157

M4 :RVAR(p)
RVAR(1) −3038.89 2.48e− 173
RVAR(2) −3063.15 8.51e− 163

Table 1: Model Comparison for Training Sample

static random effects model (M0). Therefore, the model parameters, taken as a set, are evidently

time-varying.

Selection Among Dynamic Models. The most preferred among parameter dynamics models

(M1 to M4) is RVAR(1), as shown in Table 1. The Bayes factors for RVAR(1) against the other

dynamic models range from 9.8e+9 to 9.3e+15. Most interestingly, the RVAR(1) model is decisively

preferred to the full VAR(1) model (Bayes factor = 0.98e + 10), suggesting that A1 is diagonal or

very nearly so. Further, the VAR(1) and RVAR(1) models are preferred over M1 and M2, implying

that the matrix A1 is not an identity matrix; furthermore, the value of A1, reported below, suggests

stable parameter dynamics.

4.4 Cross-Validation

One can appeal to cross-validation to compare M0, the static random effects model, with the

RVAR(1) model. To do this, we divide the 96 weeks of data into two sets: the “calibration data

set” consists of the first w weeks of data and is used for parameter estimation, while the “prediction

data set” consists of the remaining 96-w weeks and is used, unsurprisingly, for prediction. We inves-

tigated values for w = {50, 55, 60, 65, 70} to assess how additional calibration data affects predictive
accuracy. For the calibration data set, we computed the Bayes factor of M0 vs. RVAR(1). Results

appear in Table 2. Regardless of the value for w, model RVAR(1) is decisively preferred to M0.

The results for the prediction data set were based on the following approach. For both Models
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M0 and RVAR(1), we estimated the likelihood for the prediction data set as follows. For Model

M0, we estimated this likelihood by first computing choice probabilities, (2), for the prediction

data set (given bh and β simulated at each MCMC iteration) and taking an average of these choice

probabilities for the prediction data set across MCMC iterations. For Model RVAR(1), we did the

same given each value of bh and βt, t = w, ..., 96.

The resulting estimated log-likelihoods are also given in Table 2. The RVAR(1) model is moder-

ately preferred to model M0, which we next investigate in more detail.

Log-Likelihood

Calibration Sample for Prediction Sample

Data log(Integrated Likelihood) Bayes Factor

used M0 RVAR(1) (H1: M0) M0 RVAR(1)

Weeks 1− 50 −2048.60 −1782.73 3.42e− 116 −2256.17 −2236.09
Weeks 1− 55 −2247.86 −1946.93 1.33e− 123 −1942.92 −1916.08
Weeks 1− 60 −2449.33 −2166.87 2.13e− 123 −1623.90 −1613.33
Weeks 1− 65 −2571.30 −2315.47 7.84e− 112 −1396.55 −1388.50
Weeks 1− 70 −2812.06 −2516.53 4.50e− 129 −1080.21 −1071.03

Table 2: Cross-validation Comparisons

4.5 Estimation for the Training Sample

Because the RVAR(1) model performs better than other VAR(p) models (see Table 1), we report

further estimation results for this model alone. The RVAR(1) model implies the following structure

for the regression parameter vector βht :

βht = βt + bh,

βt = d+A1βt−1 + wt,

bh ∼ N(0,Σb), wt ∼ N(0,Σw),

where A1 is a diagonal matrix. The parameters, apart from βt and bh, are thus d, diag(A1), Σw,

and Σb.

An important derived parameter is the long-run mean of βt, µβ = (I − A1)
−1d. Furthermore,

the long-run variance for the i-th element of βt, is

σ2β,i =
Σw,i,i

1−A21,i,i
, (21)
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where Σw,i,i and A1,i,i are the i-th diagonal elements of Σw and A1, respectively (see Hamilton 1994

for derivation of the moments of the full VAR(p) process). An indication of the overall variability

for element i of βht is thus given by

Var(βht,i) =
Σw,i,i

1−A21,i,i
+Σb,i,i , (22)

which can be used to give an idea of the relative contributions of parameter dynamics and hetero-

geneity; it can also be compared with the elements of E(βht) = µβ = (I −A1)
−1d to get an idea of

the relative variability of the elements of βht.

Estimation of βt : Figure 2 plots posterior means, fifth and ninety-fifth percentiles for all time-

varying parameters βt. It suggests fairly large temporal fluctuations — all intercepts show strong

stochastic patterns, and all variable coefficients display stochastic dynamics. There are several

periods which show substantial shifts from βt−1 to βt.

Estimation of d and A1 : If we define “significant difference” to mean that a (5 percentile,

95 percentile) interval does not contain zero, Table 3 suggests that all elements of d, except the

coefficients of the dummy for option C (dumC) and of Feature, are significantly different from zero.

Likewise, the elements of A1 corresponding to dumA, dumB and Price are significantly different

from 0, which suggests systematic dynamics over time for the corresponding elements of βt.

Estimate (std. dev; MC error) (5 percentile, 95 percentile) interval

d
dumA -0.5410 (0.2265;0.0094) (-0.9182,-0.1744)

dumB 1.1811 (0.3020;0.0157) ( 0.6867, 1.6780)

dumC 0.1172 (0.2900;0.0168) (-0.3634, 0.5982)

Feature 0.1887 (0.2213;0.0107) (-0.1722, 0.5536)

Display 0.6387 (0.3528;0.0182) ( 0.1115, 1.2451)

Price -2.0741 (0.4470;0.0243) (-2.7682,-1.3043)

diag(A1)
dumA 0.2322 (0.1339;0.0051) ( 0.0282, 0.4632)

dumB 0.2640 (0.1397;0.0058) ( 0.0467, 0.4989)

dumC -0.0087 (0.1525;0.0067) (-0.2328, 0.2655)

Feature 0.1659 (0.1691;0.0134) (-0.1411, 0.4213)

Display -0.0765 (0.1890;0.0089) (-0.3999, 0.2241)

Price 0.2958 (0.1423;0.0068) ( 0.0747, 0.5420)

Table 3: Estimates of d and A
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Figure 2: Dynamics of βt
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Estimation of Σw Table 4 gives estimates for Σw. Posterior means are given on and below the

main diagonal, with posterior standard deviations given in parentheses; the posterior means of the

correlation coefficients are given above the main diagonal. For the diagonal elements of Σw, the

ratios of posterior means to posterior standard deviations are between 4.8 and 6.1. Thus, these

elements of Σw differ from zero, implying that all elements of βt are changing over time. Among

the off-diagonal elements, the coefficient of dumB has meaningful correlation with the coefficient

of dumA and the coefficient of price. Overall, we conclude that, in our data set, βt is apparently

time-varying, with a fairly pronounced degree of white noise.

dumA dumB dumC Feature Display Price

dumA 2.2014 0.1842 0.1582 -0.0107 -0.0581 0.0797

(0.3718)

dumB 0.4612 2.8483 0.3099 -0.0106 -0.1046 -0.2411

(0.3033) (0.5006)

dumC 0.3771 0.8401 2.5797 0.0145 -0.0876 -0.2210

(0.2864) (0.3567) (0.4453)

Feature -0.0249 -0.0280 0.0364 2.4485 0.0129 0.0094

(0.2816) (0.3243) (0.3059) (0.4502)

Display -0.1580 -0.3238 -0.2581 0.0371 3.3642 0.0715

(0.3433) (0.3942) (0.3784) (0.3661) (0.6998)

Price 0.1756 -0.6038 -0.5267 0.0218 0.2000 2.2031

(0.2596) (0.3089) (0.2931) (0.2783) (0.3354) (0.3630)

Table 4: Estimate of Σw

Estimation of Σb Table 5 gives estimates for Σb. Posterior means are again given on and below

the main diagonal, with posterior standard deviations given in parentheses; the posterior means of

the correlation coefficients are given above the main diagonal. This table suggests that Σb is neither

a null matrix nor a diagonal matrix; furthermore, all diagonal elements are significantly different

from zero.

Let us briefly examine the effect of parameter dynamics on the heterogeneity distribution by

comparing posterior means for the covariance Σb for both the RVAR(1) model and model M0. For

model M0, the posterior mean for the diagonal of Σb is·
5.4701 8.4474 11.1818 1.8029 1.9395 5.3011
(0.6615) (0.9838) (1.4515) (0.2342) (0.2695) (0.6255)

¸
,

where the respective posterior standard deviations are given in parentheses. These diagonal elements

are 18.2% to 32.0% smaller than the corresponding elements of Σb for the RVAR(1) model, which
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were given in Table 5. Therefore, the traditional random effects logit model ‘underestimated’ the

extent of heterogeneity.

dumA dumB dumC Feature Display Price

dumA 7.2242 0.1683 0.2161 -0.1588 -0.0699 -0.0151

(0.8232)

dumB 1.5397 11.5826 0.2263 -0.0486 -0.1414 -0.4943

(0.7671) (1.3067)

dumC 2.3549 3.1222 16.4344 -0.0314 -0.1346 -0.2889

(0.9208) (1.1404) (2.0409)

Feature -0.6407 -0.2483 -0.1913 2.2548 -0.0736 0.0311

(0.4182) (0.5370) (0.6885) (0.3371)

Display -0.2898 -0.7423 -0.8419 -0.1706 2.3795 0.1282

(0.4220) (0.5843) (0.7388) (0.2292) (0.3906)

Price -0.1034 -4.2839 -2.9822 0.1189 0.5036 6.4841

(0.5319) (0.7081) (0.7751) (0.3935) (0.4069) (0.7261)

Table 5: Estimate of Σb

Discussion The elements of d and A1 for the option C dummy are essentially 0, but the corre-

sponding variance in Σw is positive, thus the dynamics for the dummy variable of option C consist

of a white noise term only. The dynamics for the dummies for options A and B, on the other

hand, constitute AR(1) processes. Allenby and Lenk (1994) also reported an autocorrelated error

structure for utilities. Since they introduced a scalar for the error autocorrelation of utilities across

choice occasions, they implicitly assumed that choice dummy effects would follow the same type of

stochastic process with the sample autocorrelation coefficient. However, our results suggest different

stochastic processes for each. Specifically, the Feature coefficient seems to follow a pure white noise

process, the Display coefficient is found to follow a white noise process with a non-zero mean, while

the Price coefficient appears to follow a AR(1) process, over the observation period.

Table 6 gives the posterior means for the following quantities:

• µβ , the long-run mean of βht (and the posterior standard deviation of µβ),

• pVar(βht,i) =q Σw,i,i
1−A2

1,i,i
+Σb,i,i, an overall standard deviation for βht,

• pΣb,i,i, the standard deviation of the heterogeneity component, bh, of βht,
• σβ,i =

q
Σw,i,i
1−A2

1,i,i
, the long-run standard deviation of the dynamic component, βt, of βht, and

• pΣw,i,i, the standard deviation of the “white noise” component of βt.
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The posterior mean of µβ displays the anticipated signs. The posterior standard deviations for

some of the elements are relatively large, notably for the option C dummy, Feature, and Display,

suggesting a fair amount of uncertainty about the actual value of µβ . A comparison of the results

for µβ with those for d in Table 3 shows a moderate difference for Price.

The overall variability in βht, as measured by the posterior mean for the standard deviationp
Var(βht,i), is quite large. In fact, all these standard deviations are larger than the corresponding

elements of µβ , so the corresponding regression coefficients are negative for some households and time

periods, and positive for others. Thus, though the posterior means for the elements of the long-run

mean µβ display the anticipated signs, this is not necessarily true for individual households.

Let us next examine the contribution to the overall variability in βht that can be attributed

to household heterogeneity and to parameter dynamics. Household heterogeneity can be mea-

sured by the square root of the diagonal elements of Σb,
p
Σb,i,i, and parameter dynamics by

σβ,i =
q
Σw,i,i/(1−A21,i,i); see (21). Except for Feature and Display, Table 6 suggests that the

posterior means for the standard deviation of the heterogeneity component are quite a bit larger

than the posterior means for the corresponding values of σβ,i. Household heterogeneity is thus a

very important component in the overall variability in βht.

Finally, let us contrast σβ,i, the long-run standard deviation of the dynamic component, βt =

d + A1βt−1 + w, with
p
Σw,i,i, the standard deviation of the “white noise” component, wt. The

value of the posterior mean for
p
Σw,i,i is only slightly smaller than that for σβ,i. This suggests that

the “white noise” component is the dominant force in the parameter dynamics of each component

of βt.

i µβ
p
Var(βht,i)

p
Σb,i,i σβ,i

p
Σw,i,i

dumA -0.7037 3.0965 2.6834 1.5385 1.4786

(0.2739) (0.1523) (0.1528) (0.1433) (0.1235)

dumB 1.6095 3.8334 3.3979 1.7667 1.6813

(0.3129) (0.1910) (0.1920) (0.1664) (0.1462)

dumC 0.1147 4.3613 4.0462 1.6201 1.6003

(0.2882) (0.2407) (0.2499) (0.1415) (0.1365)

Feature 0.2270 2.2001 1.4975 1.6067 1.5583

(0.2710) (0.1423) (0.1115) (0.1551) (0.1416)

Display 0.5849 2.4236 1.5375 1.8671 1.8246

(0.2909) (0.1809) (0.1247) (0.2023) (0.1873)

Price -2.9491 2.9930 2.5424 1.5728 1.4794

(0.2833) (0.1504) (0.1423) (0.1518) (0.1206)

Table 6: Elements of variation in βht
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4.6 Tests for Structural Change

It is important to check whether or not parameter dynamics truly exist in the training sample. After

dividing the 90 weeks data into nine data, sets such that ȳz = {yt}10zt=10(z−1)+1, where z = 1, . . . , 9,

we estimate all nine regression coefficients {β̄z}9z=1 for these nine data sets simultaneously, where
β̄z contains logit coefficients belonging to ȳz. As before, to estimate {β̄z}9z=1, we use the MCMC
sampler; specifically, distributions involving β in (14) are changed to estimate {β̄z}9z=1 as follows:Ã

9Y
z=1

p(ȳz|β̄z, b)
!
p(β̄z) (23)

It is readily apparent that the above model is a counterpart to the tests on structural intercept

and slope changes in the classical econometrics literature. Hence, we will call (23) a structural change

model. By estimating the above model, we can test:

H1 : β̄1 = ... = β̄9 (M0)

H2 : β̄1 6= ... 6= β̄9 (Structural change model)

The log of the integrated likelihood of the structural change model is −3351.46. Clearly, the
null hypothesis H1 is rejected (Bayes Factor favoring H1 over H2 =1.38e− 37). This in turn further
verifies that there do exist parameter dynamics for these data. Note that the RVAR(1) model is

still decisively preferred to the structural change model (Bayes Factor favoring RVAR(1) over the

structural change model = 5.59e+135), which implies that βt varies within each set of observations.

4.7 Aggregation Bias

The estimation results of the structural change model raise an issue. Typically, a researcher uses

a subset of the entire available data for model estimation purposes. However, the assumption

that information obtained from currently available data will also be valid in the future may be

problematic; furthermore, obtained estimates can depend on the time periods for which a choice

model is fitted. Thus, if parameter dynamics exist, estimates deriving from M0 can suffer from

aggregation bias.

To illustrate the potential for aggregation bias, we compare the estimates of the structural change

model with both those of M0 and RVAR(1). As shown in Figure 3, there are several cases in which

the estimates ofM0 deviate noticeably from the estimates of the structural change model. However,

the estimates of RVAR(1) strongly overlap with those of the structural change model. This suggests
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that it may be possible to substantially reduce the degree of aggregation bias if parameter dynamics

are appropriately accounted for.
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denote the corresponding 5th and 95th percentiles, respectively.

Figure 3: Comparison of price coefficient estimates for the structural change and RVAR(1) models
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4.8 Effects of Parameter Dynamics on Choice Behavior

By incorporating temporal variation in parameters directly, we have shown that choice dynamics

can be better captured through a form of vector autoregressive process than by either the traditional

static model or previous dynamic models. To examine potential sources of superior prediction of

choice dynamics, we investigate the effects of exogenous covariates and parameter dynamics on choice

behavior.

From (2), define the following derivatives:

ρhxt,k(j, i) =
∂phjt
∂xhit,k

,

ρhβt,k(j) =
∂phjt
∂βt,k

,

ρhxt,kβt,k(j, i) =
∂2phjt

∂xhit,k∂βt,k
.

Next, we computed ρxt,k(j, i) =
1
nt

P
h∈Ht

ρhxt,k(j, i) as the sample average of ρ
h
xt,k(j, i) in period

t, where nt is the sample size of Ht. Similarly, we computed the following sample averages of the

above quantities: ρxt,k(j, j), ρβt,k(j), ρxt,kβt,k(j, j), and ρxt,kβt,k(j, i). For M0, βt,k is replaced by

the k-th element of the regression coefficients. We compute these sample average estimates for both

M0 and RVAR(1) for each time period. For option j = A and variable = Price (k = 6), Table 7

shows the MCMC estimates of these household-averaged derivatives further averaged over the 90

week observation period, e.g., ρ̄xt,k(j, i) =
1
90

P90
t=1 ρxt,k(j, i). The pattern of results indicates that

M0 tends to overestimate all quantities of interest..

M0 RVAR(1)

ρ̄xt,k(A,A) -0.1515 (0.0047) -0.1408 (0.0052)

ρ̄xt,k(A,B) 0.0616 (0.0028) 0.0556 (0.0030)

ρ̄xt,k(A,C) 0.0333 (0.0021) 0.0324 (0.0023)

ρ̄xt,k(A,D) 0.0565 (0.0027) 0.0528 (0.0028)

ρ̄βt,k(A) -0.0461 (0.0015) -0.0383 (0.0013)

ρ̄βt,k(B) 0.0404 (0.0015) 0.0327 (0.0013)

ρ̄βt,k(C) 0.0227 (0.0012) 0.0191 (0.0011)

ρ̄βt,k(D) -0.0170 (0.0013) -0.0135 (0.0011)

ρ̄xt,kβt,k(A,A) 0.0559 (0.0023) 0.0447 (0.0022)

ρ̄xt,kβt,k(A,B) -0.0151 (0.0014) -0.0119 (0.0013)

ρ̄xt,kβt,k(A,C) -0.0110 (0.0012) -0.0087 (0.0011)

ρ̄xt,kβt,k(A,D) -0.0298 (0.0011) -0.0241 (0.0011)

Note: Standard deviations appear in parentheses

Table 7: The averaged effects of covariate and parameters on choice behavior
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4.9 m-Step Ahead Parameter Forecasting

Let us now consider forecasting. Given that we have data through period T , m-step ahead forecasts

can be readily obtained with another MCMC run. For example, such a simulation yields posterior

distributions for βT+m.

We conducted 6-step ahead forecasting, obtaining posterior distributions for βT+m, where T = 90

andm = 1, . . . , 6. At each MCMC iteration, it is straightforward to simulate these future parameters,

βT+m, given β, d, A1, and Σw by using (5). The posterior means and standard deviations of βT+m

are, therefore, readily available from MCMC runs of βT+m. Their means and standard deviations

for weeks 91 to 96 are given in Table 8, suggesting considerable forecasting uncertainty.

dumA dumB dumC Feature Display Price

Week 91 -0.6915 1.4296 0.1153 0.1756 0.6704 -3.1938

(0.2841) (0.3402) (0.3081) (0.3335) (0.4910) (0.3367)

Week 92 -0.7000 1.5482 0.1206 0.2119 0.5336 -3.0395

(0.2620) (0.3015) (0.2883) (0.2686) (0.3057) (0.2871)

Week 93 -0.7024 1.5858 0.1151 0.2223 0.5946 -2.9868

(0.2671) (0.3037) (0.2880) (0.2672) (0.3020) (0.2797)

Week 94 -0.7032 1.5993 0.1151 0.2252 0.5790 -2.9664

(0.2705) (0.3074) (0.2881) (0.2686) (0.2895) (0.2798)

Week 95 -0.7035 1.6048 0.1147 0.2263 0.5868 -2.9576

(0.2721) (0.3097) (0.2881) (0.2698) (0.2930) (0.2808)

Week 96 -0.7036 1.6072 0.1147 0.2267 0.5837 -2.9535

(0.2729) (0.3110) (0.2881) (0.2703) (0.2901) (0.2817)

Long-term mean -0.7037 1.6095 0.1147 0.2270 0.5849 -2.9491

Note: Standard deviations appear in parentheses

Table 8: 6-step ahead forecasting of βt

We compared the performance of the six forecasted βT+m values based on the RVAR(1) model

with that of the traditional static logit model M0. For both models, we computed log-likelihood

values for the prediction data set. These likelihood values were obtained by first computing predicted

choice probabilities, (2), for the forecasting data set given all parameters simulated at each MCMC

iteration and taking the average of these predicted choice probabilities across MCMC iterations. The

computed log-likelihoods for the forecasting sample, the summation of log of (2) given the average

of choice probabilities, are -202.21 and -208.89 for RVAR(1) and M0, respectively. For the future

parameter forecasting sample, RVAR(1) shows slightly better performance than M0.
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5 Conclusion and Future Research

Although choice models have achieved a great deal of sophistication over the past decade, researchers

have only recently begun to address the interplay of choice dynamics and parameter dynamics. To

this end, we have proposed a general vector autoregressive framework to account for the phenomenon,

one which can be grafted onto any specifications for utility or error structure. In this framework,

one can rigorously test a number of hypotheses about the nature of parametric evolution — among

them, its order, which parameters are involved, and which affect others — as well as demonstrate

improved predictive performance.

A number of clear conclusions emerge from our empirical analysis. First and foremost, some,

though not all, of the parameters showed strong evidence of temporal variation. This was clear even

under the parsimonious specification which emerged as the strongest candidate, RVAR(1). Incor-

porating such a stochastic parametric structure into existing models would entail a comparatively

modest increase in the number of estimated quantities, and should emerge as an attractive alter-

native to models presuming parametric constancy. Second, forecast performance was improved

substantially over the standard random effects logit model. In fact, the random effects model ap-

pears prone to aggregation biases when its parameter estimates deviate from the implied long-term

levels suggested by the VAR(p) specification. To our knowledge, this result is new, and we believe

it merits study in and of itself, given the popularity of the random effects logit modeling framework.

Finally, our data suggested that choice dynamics may be mis-attributed to exogenous covariates

when parameters are presumed not to have dynamics of their own. For example, the random ef-

fects model appears to under-adjust for brand-switching behavior, perhaps because such behavior is

assumed to be governed by external stimuli, given fixed parameters.

With respect to possible explanations for parameter dynamics, a number of potential explana-

tions can be ruled out, specifically systematic changes in the characteristics of pooled samples over

time, and changes in the distribution of stimuli across options. Further, analytic examination and

simulation showed that, if all or some of the population update their parameters over time, sys-

tematic parameter dynamics may exist even at the population level, as captured by the VAR(p)

process.

Suggesting explanations for parametric evolution post hoc, other than those already tested,

amounts to speculation. Some authors, however, have provided bases for further investigations along

these lines. Yang, Allenby and Fennell (2002) note that scanner panel data do not accommodate
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the proper unit of analysis in modeling preference changes: a person-activity occasion. They discuss

how, for many activities (e.g., snacking, serving wine), the consumer environment isn’t constant from

one usage occasion to another, so that preferences are rightly situationally or motivationally depen-

dent. Although they explicitly point out that occasions for use of laundry detergent, the product

class used in our study, are less likely to be subject to this sort of temporal preference variation, we

believe their approach merits formal study on data like our own, which would provide the proverbial

strong test. One would need recourse to purchase occasion data transcending the panel record alone,

and approaches to this practical problem are presented at length in their paper.

In a similar vein, Wakefield and Inman (2003) also note that little research has focused on effects

of consumption occasion or context on consumer price sensitivity. They found price sensitivity to

be attenuated by hedonic and social consumption situations: since intended consumption occasion

varies across consumers and time, that this variation is unobserved could well lead to a moderate

degree of parametric evolution in some categories. There is also the related issue of seasonality,

although product usage cycles for most frequently-purchased goods are considerably shorter than a

purely seasonal explanation could support. We believe that such issues could be directly addressed

by access to auxiliary data — surveys, logs or self-reports — on individual panelist’s usage occasions,

perhaps supplemented by brand-by-brand household-level stocks. Such data allow for a modeling

framework that accounts for parametric evolution at a less aggregated, perhaps individual, level.

Implementing such a model presents substantial challenges, both in terms of data requirements and

estimation technology, though we suspect each of these impediments will wane with time.

The model is not without its limitations. One such limitation is the requirement for data over a

relatively long period. In many applications, particularly so in field data, long strings of choices are

not often available. Another limitation involves variable selection. To be sure, this problem bedevils

all empirical choice research, but we know little about the dependence of the present model, in terms

of order selection for p, on choice of covariates. Finally, the model itself can entail a very large

number of parameters, making model comparison and interpretation considerably more challenging.

Limitations aside, the model can be applied widely in choice research, due both to its generality

and its silence on utility and error structure. We believe it can be extended readily to include

parameter dynamics on an individual level, or in a mixture modeling framework. Such an extension

would allow different groups of decision makers to update their sensitivities in different ways and

would, in our view, offer another compelling dimension through which to examine varied choice

behavior.
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A Appendix: Estimation Based on Synthetic Data

The model outlined in the previous sections contains many parameters and the estimation procedure

is complex. This appendix provides some results about the ability of our model to recover its

parameters. To this end, we conduct a simulation study using synthetically generated data based

on known parameters.

A.1 Simulation

We generated a synthetic data set with relatively complex dynamics of βt. We take J = 3, T = 50,

and k = 5. The first two elements in the predictor variables were dummy variables for option A and

B, xhjt,1 and xhjt,2 The other three predictor variables, xhjt,3, xhjt,4, and xhjt,5 were randomly

generated from Ber(0.6), Ber(0.4), and n(xhjt,5|2,3)I1<xhjt,5<3, respectively.
We used a VAR(1) process for generating the data on βt, where the known parameter values

were

d =


0.5
−0.5
1.0
1.5
−3.0

 , A1 =


.5 0 .3 0 0
0 .5 0 0 .3
0 0 .5 0 0
0 0 0 0 0
0 0 0 0 .5

 , and β0 =


2.1
−3.6
2.7
1.8
−4.9

 .

In addition, we chose Σw and Σb such that their diagonal elements were 2 and 3, respectively;

the off-diagonal elements of both matrices were set to be 0.1. The long-term mean of βt was thus

µβ = (I −A1)
−1d =


2.2
−4.6
2.0
1.5
−6.0


To obtain the synthetic data set, as before we first generated data for 200 individuals. Each week,

100 of these individuals were randomly chosen to make choices. We removed individuals for which

either xhjt,3 or xhjt,4 has the same value for all chosen options across their choice occasions. Our

final artificial data set contained H = 165 individuals. The total number of choice observations for

the simulated data was 4115 and the weekly sample size ranged from 78 to 87. The total number of

choice occasions across individuals ranged from 19 to 31.

The values of the prior distribution for the parameters, β0, d,A,Σw, and Σb, given in (8) to (12),

were m0 = md = mα = 0, vw = vb = 2, S0 = Sd = Sw = Sb = 30I. In addition, for Sα in (10) and

(13), we set λ = 1.0 to ensure unity variances for all diagonal elements of A1 because all diagonal

elements of A1 under the stability condition must have values between -1 and 1. The chosen value

of θ is 0.5 and we set all ratios σr/σc to be 1.

First, we fitted M0 and VAR(p) models to the synthetic data set and computed Bayes factors,

(15). To ensure identifiability, the time-varying common effect of the fourth option as well as its

random effect were fixed to be zero. The MCMC was run for 40,000 iterations, and it appears to have

converged after 20,000 iterations for all models. Note that the assumed true parameter dynamics

is the VAR(1) process. The computed Bayes factors are given in Table 9. As shown in Table 9,

VAR(1) was preferred to M0 and other VAR(p) models. This result confirms that the proposed

model can recover the underlying true parameter dynamics pretty well.
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log(BFM0,i) log(BFV AR(1),i)
M0 0 1752.44
VAR(1) −1752.44 0
VAR(2) −1737.73 14.71
Restricted VAR(1) −944.16 808.28
Restricted VAR(2) −924.45 827.97

Table 9: Model comparison on synthetic data set II

Since the most preferred model is VAR(1), we present estimation results for that model. We kept

the 20,000 last iterations to estimate the parameters. The MCMC sampler recovers the parameters

for the VAR(1) model fairly well (See Tables 11, 10 and Figure 4). Since all off-diagonal elements of

estimated Σw and Σb had 0 in a 95% posterior interval, we do not report estimates of the off-diagonal

elements of Σw and Σb. Two off-diagonal non-zero elements in A1, A1,13 and A1,25, were recovered

well as well. The estimates of these two quantities were 0.0619 (0.1439) and 0.2516 (0.1191) for A1,13
and A1,25, respectively, where the posterior standard deviations are given in parenthesis. All other

off-diagonal elements in A1 have 0 within the 95% posterior interval. Last, the long-term mean of βt
was also well recovered. The posterior mean of the long-term mean of βt was [1.6906 -4.5278 1.4430

1.7430 -5.8324] with posterior standard deviation [9.3770 2.6952 11.0165 4.2708 11.7869].

k 1 2 3 4 5

β0 2.2387 -5.2161 1.8536 4.0060 -2.0104

(3.5475)∗[2.1]∗∗ (4.2338)[-3.6] (3.0860)[2.7] (3.6684)[1.8] (2.8223)[-4.9]

d 1.2386 -2.6185 0.7199 1.1014 -3.3214

(1.1607)[0.5] (1.1893)[-0.5] (1.1404)[1.0] (1.1616)[1.5] (1.3533)[-3.0]

diag(A1) 0.5672 0.1890 0.5226 -0.1172 0.5312

(0.1568)[0.5] (0.1745)[0.5] (0.1499)[0.5] (0.1735)[0.0] (0.1550)[0.5]

diag(Σw) 2.6411 2.5189 2.7204 2.9867 3.1370

(0.6808)[2] (0.6855)[2] (0.7229)[2] (0.8050)[2] (0.8996)[2]

diag(Σb) 3.0204 2.5276 3.7144 3.2268 4.3155

(0.6305)[3] (0.5979)[3] (0.8577)[3] (0.7021)[3] (1.0744)[3]

Note: *: posterior standard deviations; **: true values

Table 10: Estimates for the synthetic data set II


0.57(0.16) −0.05(0.17) 0.06(0.14) −0.17(0.16) 0.08(0.12)
0.02(0.14) 0.11(0.17) −0.05(0.14) 0.06(0.15) 0.25(0.12)
0.08(0.15) −0.08(0.16) 0.52(0.15) −0.01(0.17) 0.08(0.12)
0.18(0.15) −0.05(0.16) −0.04(0.15) −0.12(0.17) −0.04(0.12)
0.18(0.17) −0.10(0.19) −0.04(0.17) −0.04(0.19) 0.53(0.16)


Table 11: Estimated A1 for synthetic data set II
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Figure 4: Estimated βt in the VAR(1) synthetic data set II
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