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Abstract: In this paper, a Cohen–Grossberg neural network composed of two neurons with
nonisochronous impulsive effects is proposed and investigated. By employing Mawhin’s co-
incidence theorem, we first show that the existence of semi-trivial periodic solutions. Under
this situation, sufficient conditions assuring the asymptotic stability of semi-trivial periodic so-
lutions are derived by using Floquet theory of the impulsive differential equation. Finally, we
extend the method in [17] and then obtain the bifurcation of nontrivial periodic solutions.

Keywords: neural network; non-isochronous impulsive effect; semi-trivial periodic solution;
stability; bifurcation

1 Introduction

Mathematical modelling in neural networks has been based on neurons that are different both from real
biological neurons and from the realistic functioning of simple electronic circuits. In the past three decades,
neural networks architectures have been extensively researched and developed. There have been many nice
works regarding the continuous or piecewise continuous, discrete and impulsive neural networks with and
without delays [1-13] and the references cited therein.
In this paper, we consider the following impulsive differential equations of two neurons network:⎧⎨⎩

𝑥′1(𝑡) = 𝑎1𝑥1(𝑡)
[
𝑏1(𝑥1(𝑡)) + ℎ11𝑓(𝑥1(𝑡)) + ℎ12𝑓(𝑥2(𝑡)) + 𝐼1

]
,

𝑥′2(𝑡) = 𝑎2𝑥2(𝑡)
[
𝑏2(𝑥2(𝑡)) + ℎ21𝑓(𝑥1(𝑡)) + ℎ22𝑓(𝑥2(𝑡)) + 𝐼2

]
,

}
𝑡 ∕= (𝑛+ �̃� − 1)𝑇, 𝑡 ∕= 𝑛𝑇,

△𝑥1(𝑡) = 0,
𝑥2(𝑡

+) = 𝑝2𝑥2(𝑡),

}
𝑡 = (𝑛+ �̃� − 1)𝑇,

𝑥1(𝑡
+) = 𝑝1𝑥1(𝑡),

△𝑥2(𝑡) = 0,

}
𝑡 = 𝑛𝑇.

(1)

Here, 𝑛 ∈ N, 0 < �̃� < 1 indicates the intervals of time between the pulsed use of controls, of length �̃�𝑇
and (1 − �̃�)𝑇 . Also, Δ𝑥𝑖(𝑡) = 𝑥𝑖(𝑡

+) − 𝑥𝑖(𝑡)(𝑖 = 1, 2). The impulsive conditions include the propor-
tional perturbations. The proportional parts may be dependent on external sudden input current to the 𝑖th
neuron(𝑖 = 1, 2). It is also assumed that each neuron is activated in a periodic fashion with same period, but
at different moments. The coefficients 𝑎𝑖(∕= 0) and 𝑝𝑖(> 0), 𝑖 = 1, 2, are real constants. The appropriately
behaved function 𝑏𝑖(𝑖 = 1, 2) : R → R is a 𝑃𝐶1−smooth constant parameter function and satisfies the
following assumption.

(𝐻1) There exist four positive numbers 𝑑𝑖 and 𝑐𝑖(𝑖 = 1, 2) such that

𝑐𝑖 ≤ 𝑏𝑖(𝑢)

𝑢
≤ 𝑑𝑖, ∀𝑢 ∈ R ∖ {0}, 𝑖 = 1, 2.
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The general activation function 𝑓 : R → R is also a 𝑃𝐶1−smooth constant parameter functions. Assume
that 𝑓 possesses the following property

(𝐻2) There exist two real numbers 𝑘 ≥ 0 and 𝑑 ≥ 0 such that

∣𝑓(𝑥)∣ ≤ 𝑘∣𝑥∣+ 𝑑.

Note that the assumption (𝐻2) does not imply that the function 𝑓 is monotonous and globally Lipschitz
continuous. Without loss of generality, we also assume that 𝑓 ′(0) = 1 [9].

This paper is organized as follows. In Section 2, we state some notations and definitions and state some
preliminary results which attest the well-posedness of the model. It is then shown in Section 3 that once a
threshold condition is reached, the semitrivial solution loses its stability and a nontrivial periodic solution
appears via a bifurcation. Finally, a brief discussion is given in Section 4.

2 Preliminaries

2.1 Some preparations

In this subsection, we shall introduce some notations and definitions and state a preliminary lemma which
will be useful for establishing our main results.

Let R+ = [0,∞) and J ⊂ R. We introduce the following spaces of functions:
𝑃𝐶(J,R)

.
=

{
𝑢 : J → R : 𝑢 is continuous for 𝑡 ∈ J, 𝑡 ∕= 𝜏𝑘, continuous from the left for 𝑡 ∈ J, and has

discontinuities of the first kind at the points 𝜏𝑘 ∈ J, 𝑘 ∈ N
}

,
and
𝑃𝐶1(J,R)

.
=

{
𝑢 ∈ 𝑃𝐶(J,R) : 𝑢 is continuously differentiable for 𝑡 ∈ J, 𝑡 ∕= 𝜏𝑘; 𝑢′(𝜏+𝑘 ) and 𝑢′(𝜏−𝑘 )

exist, 𝑘 ∈ N
}

. Denote by 𝐹 = (𝐹1, 𝐹2)
𝑇 the map defined by the right hand side of the first two equations

in the system (1).
Let 𝑉 : R+ ×R2 → R. Then 𝑉 is said to belong to class 𝑉0[14] if

(i) 𝑉 is continuous on ((𝑛− 1)𝑇, (𝑛+ �̃�− 1)𝑇 ]×R2 and
(
(𝑛+ �̃�− 1)𝑇, 𝑛𝑇

]×R2 and for each 𝑋 ∈ R2

and 𝑛 ∈ N, lim
(𝑡,𝑌 )→

(
(𝑛+�̃�−1)𝑇+,𝑋

) 𝑉 (𝑡, 𝑌 ) = 𝑉
(
(𝑛 + �̃� − 1)𝑇+, 𝑋

)
and lim(𝑡,𝑌 )→(𝑛𝑇+,𝑋) 𝑉 (𝑡, 𝑌 ) =

𝑉 (𝑛𝑇+, 𝑋) exist and are finite. Here, 0 < �̃� < 1.
(ii) 𝑉 is locally Lipschitzian in the second variable.

Definition 2.1 Let 𝑉 ∈ 𝑉0. Then for (𝑡,𝑋) ∈ (
(𝑛−1)𝑇, (𝑛+�̃�−1)𝑇

]×R2 and
(
(𝑛+�̃�−1)𝑇, 𝑛𝑇

]×R2(0 <

�̃� < 1), the upper right derivative of 𝑉 (𝑡, 𝑥) with respect to the impulsive differential system (1) is defined
as

𝐷+𝑉 (𝑡,𝑋) = lim
ℎ→0+

sup
1

ℎ

[
𝑉 (𝑡+ ℎ,𝑋 + ℎ𝐹 (𝑡,𝑋))− 𝑉 (𝑡,𝑋)

]
.

Lemma 2.1 [15] Let Ω ⊂ 𝕏 be an open bounded set and let 𝑁 : 𝕏 → 𝕐 be a continuous operator which
is 𝐿-compact on Ω̄ (i.e., 𝑄𝑁 : Ω̄ → 𝕐 and 𝐾𝑃 (𝐼 −𝑄)𝑁 : Ω̄ → 𝕐 are compact). Assume

(i) for each 𝜆 ∈ (0, 1), 𝑥 ∈ ∂Ω
∩

Dom𝐿𝐿𝑥 ∕= 𝜆𝑁𝑥,

(ii) for each 𝑥 ∈ ∂Ω
∩

ker𝐿. 𝑄𝑁𝑥 ∕= 0,

(iii) deg(𝐽𝑁𝑄,Ω
∩

ker𝐿, 0) ∕= 0.

Then 𝐿𝑥 = 𝑁𝑥 has at least one solution in Ω̄
∩

Dom𝐿.
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2.2 The existence of semi-trivial periodic solution of system (1)

In this subsection, we shall consider the following subsystem of system (1){
𝑥′1(𝑡) = 𝑎1𝑥1(𝑡)

[
𝑏1(𝑥1(𝑡)) + ℎ11𝑓(𝑥1(𝑡)) + ℎ12𝑓(0) + 𝐼1

]
,
}
𝑡 ∕= 𝑛𝑇,

𝑥1(𝑡
+) = 𝑝1𝑥1(𝑡),

}
𝑡 = 𝑛𝑇.

(2)

For the system (2), making the change of variable ln𝑥1 = 𝑥, then (2) is transformed as{
𝑥′(𝑡) = 𝑎1

[
𝑏1(𝑒

𝑥(𝑡)) + ℎ11𝑓(𝑒
𝑥(𝑡)) + ℎ12𝑓(0) + 𝐼1

]
,
}
𝑡 ∕= 𝑛𝑇,

𝑥(𝑡+) = ln 𝑝1 + 𝑥(𝑡),
}

𝑡 = 𝑛𝑇.
(3)

Let
𝐷𝑜𝑚𝐿 = 𝑃𝐶 ′

𝑇 = {𝑥 ∈ 𝑃𝐶1([0, 𝑇 ],R)∣𝑥(0) = 𝑥(𝑇 )},
𝑍 = {(𝔣, 𝑎)∣𝑥′ = 𝔣, 𝑥 ∈ 𝑃𝐶 ′

𝑇 , 𝑎 = 𝑥(𝑇+)− 𝑥(𝑇 )}
and

𝐿 : 𝐷𝑜𝑚𝐿 → 𝑍, 𝑥 → (𝑎1
[
𝑏1(𝑒

𝑥(𝑡)) + ℎ11𝑓(𝑒
𝑥(𝑡)) + ℎ12𝑓(0) + 𝐼1

]
, ln 𝑝1).

Obviously,𝐾𝑒𝑟𝐿 = R,

𝐼𝑚𝐿 = {𝑍 = (𝔣, 𝑎) ∈ 𝑍∣
∫ 𝑇

0
𝔣(𝑠)𝑑𝑠+ 𝑎 = 0},

and 𝑑𝑖𝑚𝐾𝑒𝑟𝐿 = 1 = 𝑐𝑜𝑑𝑖𝑚𝐼𝑚𝐿. Then ImL is closed in Z, and L is a Fredholm mapping of index zero.
Define

𝑃𝑥 =
1

𝑇

∫ 𝑇

0
𝔣(𝑠)𝑑𝑠,

𝑄𝑧 = 𝑄(𝔣, 𝑎) = (
1

𝑇
[

∫ 𝑇

0
𝔣(𝑠)𝑑𝑠+ 𝑎], 0).

It is easy to show that P and Q are continuous projectors satisfying

𝐼𝑚𝑃 = 𝐾𝑒𝑟𝐿, 𝐼𝑚𝐿 = 𝐾𝑒𝑟𝑄 = 𝐼𝑚(𝐼 −𝑄).

Furthermore, through an easy computation, we can find that the inverse 𝐾𝑝: ImL→ KerP∪DomL of 𝐿𝑝 has
the form

𝐾𝑝𝑧 =

∫ 𝑡

0
𝔣(𝑠)𝑑𝑠+ [

𝑡

𝑇
]𝑎− 1

𝑇

∫ 𝑇

0

∫ 𝑡

0
𝔣(𝑠)𝑑𝑠𝑑𝑡− 𝑎, 𝑡 ∈ (0, 𝑇 ], (4)

in which [ 𝑡𝑇 ] denotes the integer part of 𝑡
𝑇 . Then

𝑄𝑁𝑥 =

(
1
𝑇

( ∫ 𝑇
0 𝑎1

[
𝑏1(𝑒

𝑥(𝑡)) + ℎ11𝑓(𝑒
𝑥(𝑡)) + ℎ12𝑓(0) + 𝐼1

]
𝑑𝑡 + ln 𝑝1

)
, 0

)
,

𝐾𝑝(𝐼 −𝑄)𝑁𝑥 =

∫ 𝑡

0
𝑎1
[
𝑏1(𝑒

𝑥(𝑠)) + ℎ11𝑓(𝑒
𝑥(𝑠)) + ℎ12𝑓(0) + 𝐼1

]
𝑑𝑠+ [

𝑡

𝑇
] ln 𝑝1

− 1

𝑇

∫ 𝑇

0

∫ 𝑡

0
𝑎1
[
𝑏1(𝑒

𝑥(𝑠)) + ℎ11𝑓(𝑒
𝑥(𝑠)) + ℎ12𝑓(0) + 𝐼1

]
𝑑𝑠𝑑𝑡+ ln 𝑝1

−(
𝑡

𝑇
− 1

2
)
(∫ 𝑇

0
𝑎1
[
𝑏1(𝑒

𝑥(𝑠)) + ℎ11𝑓(𝑒
𝑥(𝑠)) + ℎ12𝑓(0) + 𝐼1

]
𝑑𝑠+ ln 𝑝1

)
.

Clearly, QN and 𝐾𝑝(𝐼−𝑄)𝑁 are continuous, using Arzela-Ascoli theorem. It is easy to show, 𝐾𝑝(𝐼 −𝑄)𝑁(Ω)
is compact for any open bounded subset Ω ⊂ 𝕏. Moreover, 𝑄𝑁(Ω) is bounded. Thus, 𝑁 is L-compact on
Ω for any open bounded set Ω ⊂ 𝑋 .

Now we reach the position to search for an appropriate open, bounded subset Ω for the application of
the continuation theorem. Corresponding to the operator equation 𝐿𝑥 = 𝜆𝑁𝑥, 𝜆 ∈ (0, 1), we have{

𝑥′(𝑡) = 𝜆𝑎1
[
𝑏1(𝑒

𝑥(𝑡)) + ℎ11𝑓(𝑒
𝑥(𝑡)) + ℎ12𝑓(0) + 𝐼1

]
,
}
𝑡 ∕= 𝑛𝑇,

Δ𝑥(𝑡) = 𝜆 ln 𝑝1,
}

𝑡 = 𝑛𝑇.
(5)
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Suppose that 𝑥(𝑡) ∈ 𝕏 is a solution of (5) for some 𝜆 ∈ (0, 1). Integrating (5) over the interval [0, 𝑇 ], we
obtain ∫ 𝑇

0

[
𝑏1(𝑒

𝑥(𝑡)) + ℎ11𝑓(𝑒
𝑥(𝑡))

]
𝑑𝑡 = − ln 𝑝1

𝑎1
− (ℎ12𝑓(0) + 𝐼1)𝑇. (6)

It follows from (5) and (6) that∫ 𝜔

0
∣𝑥′(𝑡)∣𝑑𝑡 ≤ 2

[∣ ln 𝑝1∣+ ∣𝑎1(ℎ12𝑓(0) + 𝐼1)𝑇 ∣
]
, (7)

Since 𝑥 ∈ 𝕏, there exist 𝜉, 𝜏 ∈ (0, 𝑇 ] such that

𝑥(𝜉) = min
𝑡∈(0,𝑇 ]

𝑥(𝑡), 𝑥(𝜏) = min
𝑡∈(0,𝑇 ]

𝑥(𝑡), (8)

Assume that {
𝑐1 − ∣ℎ11∣𝑘 > 0;

∣ ln 𝑝1
𝑎1𝑇

+ ℎ12(𝑓(0) + 𝐼1)∣ − 𝑑∣ℎ11∣ > 0
(9)

hold. Then from (6) and (8) together with (𝐻1) and (𝐻2) we can derive that

𝑥(𝑡) ≤ ln
∣ ln 𝑝1
𝑎1𝑇

∣+ ∣ℎ12(𝑓(0) + 𝐼1)∣+ 𝑑∣ℎ11∣
𝑐1 − ∣ℎ11∣𝑘

+3∣ ln 𝑝1∣+ 2∣𝑎1(ℎ12𝑓(0) + 𝐼1)𝑇 ∣ .
= �̃�1.

(10)

On the other hand, from (6) and (8) together with (𝐻1) and (𝐻2) we can get that

𝑥(𝑡) ≥ ∣ ln 𝑝1
𝑎1𝑇

+ (ℎ12𝑓(0) + 𝐼1)∣ − 𝑑∣ℎ11∣
𝑑1 + ∣ℎ11∣𝑘

−3∣ ln 𝑝1∣ − 2∣𝑎1(ℎ12𝑓(0) + 𝐼1)𝑇 ∣ .
= �̃�2.

(11)

Clearly, �̃�𝑖, 𝑖 = 1, 2 are independent of 𝜆. Take �̃� = ∣�̃�1∣+ ∣�̃�2∣+1, then ∣𝑥∣𝑇 = max𝑡∈(0,𝑇 ]{𝑥(𝑡)} < �̃�
whenever 𝑥 ∈ 𝕏 is a solution to (5) for any 𝜆 ∈ (0, 1).

Define Ω = {𝑥 ∈ 𝕏 : ∣𝑥∣𝑇 < �̃�}. Then there are no 𝜆 ∈ (0, 1) and 𝑥 ∈ ∂Ω such that 𝐿𝑥 = 𝜆𝑁𝑥. Note
that 𝑄𝑁𝑥 = 𝐽𝑄𝑁𝑥 and 𝑥 ∈ 𝐾𝑒𝑟𝐿, it must be

𝑄𝑁𝑥 =

( (
𝑎1
[
𝑏1(𝑒

𝑥) + ℎ11𝑓(𝑒
𝑥) + ℎ12𝑓(0) + 𝐼1

]
+ 1

𝑇 ln 𝑝1

)
, 0

)
.

Then for any 𝑥 ∈ ∂Ω ∩ 𝐾𝑒𝑟𝐿 = ∂Ω ∩ R, 𝑥 = 𝛼 and ∣𝛼∣𝑇 = �̃� . We have 𝑄𝑁𝛼 ∕= 0, since 𝑄𝑁𝛼 = 0
only if ∣ℎ∣ < max{∣�̃�1∣, ∣�̃�2∣}. Then ∣𝛼∣𝑇 < �̃� . It is easily seen that (𝐽𝑄𝑁)−1(0) ∩ (Ω ∩ 𝐾𝑒𝑟𝐿) ∕= ∅.
Consider the homotopy 𝔉 : (Ω ∩𝐾𝑒𝑟𝐿)× [0, 1] → Ω ∩𝐾𝑒𝑟𝐿, defined by

𝔉(𝑥, 𝜇) = 𝑎1(𝑥+ ℎ12𝑓(0) + 𝐼1) +
1

𝑇
ln 𝑝1 + 𝜇𝑎1(𝑏1(𝑒

𝑥) + ℎ11𝑓(𝑒
𝑥)− 𝑥).

Note that 𝔉(𝑥, 1) = 𝐽𝑄𝑁𝑥. If 𝔉(𝑥, 𝜇) = 0, then we get ∣𝑥∣𝑇 < �̃� . Hence, 𝔉(𝑥, 𝜇) ∕= 0 for (𝑥, 𝜇) ∈
(Ω ∩𝐾𝑒𝑟𝐿)× [0, 1]. It follows from the property of invariance under a homotopy that

𝑑𝑒𝑔{𝐽𝑄𝑁,Ω ∩𝐾𝑒𝑟𝐿, 0} = 𝑠𝑔𝑛{𝑎1} ∕= 0.

From the above-mentioned analysis together with Lemma 2.1, one notes the following result.

Theorem 2.1 Suppose that (𝐻1), (𝐻2) and (9) hold. Then system (2) has a 𝑇−periodic solution 𝑥∗1(𝑡).
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Remark 2.1 If considering another subsystem of system (1){
𝑥′2(𝑡) = 𝑎2𝑥2(𝑡)

[
𝑏2(𝑥2(𝑡)) + ℎ21𝑓(0) + ℎ22𝑓(𝑥2(𝑡)) + 𝐼2

]
,
}
𝑡 ∕= (𝑛+ �̃� − 1)𝑇,

𝑥2(𝑡
+) = 𝑝2𝑥2(𝑡),

}
𝑡 = (𝑛+ �̃� − 1)𝑇.

(12)

By using the similar method above, we can also observe that if (𝐻1), (𝐻2) and{
𝑐2 − ∣ℎ22∣𝑘 > 0;

∣ ln 𝑝2
𝑎2𝑇

+ ℎ21(𝑓(0) + 𝐼2)∣ − 𝑑∣ℎ22∣ > 0
(13)

hold, then system (12) has a 𝑇−periodic solution 𝑥∗2(𝑡).

Remark 2.2 Theorem 2.1 still holds if condition (9) is replaced by the condition

(9’) ∣ ln 𝑝1
𝑎1𝑇

+ ℎ12(𝑓(0) + 𝐼1)∣ > 𝑑𝑘
𝑐1
.

Remark 2.3 Theorem 2.1 implies that system (1) has a semi-trivial 𝑇−periodic solution (𝑥∗1(𝑡), 0).

2.3 The stability of the semi-trivial 𝑇−periodic solution

We consider the asymptotic stability of the semi-trivial periodic solution above by using small amplitude
perturbation methods. Let

(
𝑥1(𝑡), 𝑥2(𝑡)

)
be a solution of (1) and let

𝑥1(𝑡) = 𝑣(𝑡) + 𝑥∗1(𝑡), 𝑥2(𝑡) = 𝑢(𝑡)

where 𝑢, 𝑣 are understood to be small perturbations. The right-hand sides of the first two equations in (1)
can be expanded using Taylor series. After neglecting higher-order terms, the linearized equations together
with the corresponding impulsive perturbation conditions read as⎧⎨⎩

𝑣′(𝑡) = 𝜃1(𝑥
∗
1(𝑡))𝑣 + 𝜃2(𝑥

∗
1(𝑡))𝑢,

𝑢′(𝑡) = 𝜃3(𝑥
∗
1(𝑡))𝑢,

}
𝑡 ∕= (𝑛+ �̃� − 1)𝑇, 𝑡 ∕= 𝑛𝑇,

△𝑣(𝑡) = 0,
𝑢(𝑡+) = 𝑝2𝑢(𝑡),

}
𝑡 = (𝑛+ �̃� − 1)𝑇,

𝑣(𝑡+) = 𝑝1𝑣(𝑡),
△𝑢(𝑡) = 0,

}
𝑡 = 𝑛𝑇,

(14)

where ⎧⎨⎩
𝜃1(𝑥

∗
1) = 𝑎1

(
𝑏1(𝑥

∗
1) + 𝑥∗1𝑏′1(𝑥∗1) + ℎ11𝑓(𝑥

∗
1) + ℎ11𝑥

∗
1𝑓

′(𝑥∗1) + ℎ12𝑓(0) + 𝐼1
)
;

𝜃2(𝑥
∗
1) = 𝑎1ℎ12𝑓

′(0)𝑥∗1 = 𝑎1ℎ12𝑥
∗
1;

𝜃3(𝑥
∗
1) = 𝑎2

(
𝑏2(0) + ℎ21𝑓(𝑥

∗
1) + ℎ22𝑓(0) + 𝐼2

)
.

(15)

Let 𝑀(𝑡) be the fundamental matrix of the subsystem formed with the first two equations in (14) . Then
𝑀(𝑡) must satisfies

𝑑𝑀(𝑡)

𝑑𝑡
=

(
𝜃1(𝑥

∗
1(𝑡)) 𝜃2(𝑥

∗
1(𝑡))

0 𝜃3(𝑥
∗
1(𝑡))

)
𝑀(𝑡)

and 𝑀(0) = 𝐸2 (unit 2× 2 matrix). Hence,

𝑀∗ =
(

𝑝1 0
0 2

)(
1 0
0 𝑝2

)
𝑀(𝑇 ).

According to the Floquet theory of impulsive differential equation [14], the semi-trivial periodic solution
(𝑥∗1(𝑡), 0) is then asymptotic stable if and only if ∣𝜆𝑖∣ < 1(𝑖 = 1, 2), that is,

𝑝1 < 𝑒−
∫ 𝑇
0

[
𝜃1(𝑥∗

1(𝑠))
]
𝑑𝑠 𝑎𝑛𝑑 𝑝2 < 𝑒−

∫ 𝑇
0

[
𝜃3(𝑥∗

1(𝑠))
]
𝑑𝑠. (16)

Theorem 2.2 Assume that conditions (𝐻1), (𝐻2), (9) and (16) hold. Then the semi-trivial 𝑇−periodic
solution (𝑥∗1(𝑡), 0) is asymptotic stable.
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Corollary 2.1 Assume that conditions (𝐻1), (𝐻2), (9) and

𝑝1 > 𝑒−
∫ 𝑇
0

[
𝜃1(𝑥∗

1(𝑠))
]
𝑑𝑠 𝑜𝑟 𝑝2 > 𝑒−

∫ 𝑇
0

[
𝜃3(𝑥∗

1(𝑠))
]
𝑑𝑠 (17)

holds. Then the semi-trivial 𝑇−periodic solution (𝑥∗1(𝑡), 0) is unstable.

Remark 2.4 Under the circumstance of the existence of the semi-trivial periodic solution, it is interesting
to note that, as far as the effect of the proportional perturbations 𝑝𝑖(𝑖 = 1, 2) are concerned, a large
𝑝𝑖(𝑖 = 1, 2) may always distabilize the the semi-trivial 𝑇−periodic solution (𝑥∗1(𝑡), 0) by bring 𝑝1(𝑜𝑟 𝑝2)

above 𝑒−
∫ 𝑇
0

[
𝜃1(𝑥∗

1(𝑠))
]
𝑑𝑠(𝑜𝑟 𝑒−

∫ 𝑇
0

[
𝜃3(𝑥∗

1(𝑠))
]
𝑑𝑠).

Remark 2.5 The inequalities 𝑝1 < 𝑒−
∫ 𝑇
0

[
𝜃1(𝑥∗

1(𝑠))
]
𝑑𝑠 and 𝑝2 < 𝑒−

∫ 𝑇
0

[
𝜃3(𝑥∗

1(𝑠))
]
𝑑𝑠 mean that the rate of

destruction of the 2𝑡ℎ neuron is sufficiently large.

In the case when the product 𝑝1𝑒
− ∫ 𝑇

0

[
𝜃1(𝑥∗

1(𝑠))
]
𝑑𝑠( or 𝑝2𝑒

− ∫ 𝑇
0

[
𝜃3(𝑥∗

1(𝑠))
]
𝑑𝑠) is close to 1, the impulsive

perturbation 𝑝1(or 𝑝2) has a significant effect on the 2𝑡ℎ neuron. In the following we want to investigate the
following three cases.

Case 1 𝑝1𝑒
− ∫ 𝑇

0

[
𝜃1(𝑥∗

1(𝑠))
]
𝑑𝑠 ∕= 1, 𝑝2𝑒

− ∫ 𝑇
0

[
𝜃3(𝑥∗

1(𝑠))
]
𝑑𝑠 = 1;

Case 2 𝑝1𝑒
− ∫ 𝑇

0

[
𝜃1(𝑥∗

1(𝑠))
]
𝑑𝑠 = 1, 𝑝2𝑒

− ∫ 𝑇
0

[
𝜃3(𝑥∗

1(𝑠))
]
𝑑𝑠 ∕= 1;

Case 3 𝑝1𝑒
− ∫ 𝑇

0

[
𝜃1(𝑥∗

1(𝑠))
]
𝑑𝑠 = 1, 𝑝2𝑒

− ∫ 𝑇
0

[
𝜃3(𝑥∗

1(𝑠))
]
𝑑𝑠 = 1.

3 The bifurcation of a nontrivial periodic solution

First, we shall denote by Φ(𝑡;𝑈0) the solution of the pulses-free system corresponding to system (1) with
the initial data 𝑈0 = (𝑢10, 𝑢

2
0); also Φ = (Φ1,Φ2). We also define two maps 𝐼1, 𝐼2 : 𝑅2 → 𝑅2 by

𝐼1(𝑥1, 𝑥2) = (𝑥1, 𝑝2𝑥2), 𝐼2(𝑥1, 𝑥2) = (𝑝1𝑥1, 𝑥2).

and the map 𝐹 : 𝑅2 → 𝑅2 by

𝐹 (𝑥1, 𝑥2) =
(
𝑎1𝑥1(𝑡)

[
𝑏1(𝑥1(𝑡)) + ℎ11𝑓(𝑥1(𝑡)) + ℎ12𝑓(𝑥2(𝑡)) + 𝐼1

]
,

𝑎2𝑥2(𝑡)
[
𝑏2(𝑥2(𝑡)) + ℎ21𝑓(𝑥1(𝑡)) + ℎ22𝑓(𝑥2(𝑡)) + 𝐼2

])
.

Next, we shall reduce the problem of finding a periodic solution of (1) to a certain fixed point problem. To
this purpose, define Ψ : [0,∞)×𝑅2 → 𝑅2 by

Ψ(𝑡, 𝑈0) = 𝐼2(Φ((1− �̃�)𝑇 ; 𝐼1(Φ(�̃�𝑇, 𝑈0))));

also
Ψ(𝑡, 𝑈0) = (Ψ1(𝑡, 𝑈0),Ψ2(𝑡, 𝑈0)).

Then 𝑈 is a 𝑇 -periodic solution of system (1) if and only if its initial data 𝑈(0) = 𝑈0 is a fixed point for the
operator Ψ. One easily obtains that

𝐷𝑋Ψ(𝑇,𝑋0) =
( 𝑑11 𝑑12

0 𝑑22

)
,
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in which

𝑑11 = 𝑝1𝑒
∫ 𝑡
0

[
𝜃1(𝑥∗

1(𝑠))
]
𝑑𝑠;

𝑑12 = 𝑝1

(
𝑝2

∫ 𝑇

�̃�𝑇
𝜃2(𝑥

∗
1(𝑠))𝑒

∫ 𝑠
0 𝜃3(𝑥∗

1(𝜉))𝑑𝜉+
∫ 𝑇
𝑠 𝜃1(𝑥∗

1(𝜉))𝑑𝜉𝑑𝑠+∫ �̃�𝑇

0
𝜃2(𝑥

∗
1(𝑠))𝑒

∫ 𝑠
0 𝜃3(𝑥∗

1(𝜉))𝑑𝜉+
∫ 𝑇
𝑠 𝜃1(𝑥∗

1(𝜉))𝑑𝜉𝑑𝑠

)
;

𝑑22 = 𝑝2𝑒
∫ 𝑡
0

[
𝜃3(𝑥∗

1(𝑠))
]
𝑑𝑠.

To find a nontrivial periodic solution of period 𝜏 with initial data 𝑋 , we need to solve the fixed point problem
𝑋 = Ψ(𝜏,𝑋), denoting 𝜏 = 𝑇 + 𝜏 and 𝑋 = 𝑋0 +𝑋 , that is,

𝑋0 +𝑋 = Ψ(𝑇 + 𝜏 ,𝑋0 +𝑋).

Let
𝑁(𝜏 ,𝑋) = 𝑋0 +𝑋 −Ψ(𝑇 + 𝜏 ,𝑋0 +𝑋) (18)

and
𝑁(𝜏 ,𝑋) = (𝑁1(𝜏 ,𝑋), 𝑁2(𝜏 ,𝑋)).

We are then led to solve the equation 𝑁(𝜏 ,𝑋) = 0. One notes that

𝐷𝑋𝑁(0, (0, 0)) = 𝐸2 −𝐷𝑋Ψ(𝑇,𝑋0) =
( 1− 𝑑11 −𝑑12

0 1− 𝑑22

)
=

( 𝑎′0 𝑏′0
0 𝑑′0

)
. (19)

A necessary condition for the bifurcation of the nontrivial periodic solutions near the trivial periodic solution
(𝑥∗1(𝑡), 0) is

det
[
𝐷𝑋𝑁(0, (0, 0))

]
= 0.

We first consider Case 1. It is easily seen that

dim(𝐾𝑒𝑟[𝐷𝑋(0, (0, 0))]) = 1,

and a basis in 𝐾𝑒𝑟[𝐷𝑋(0, (0, 0))] is (−𝑏′0/𝑎′0, 1). Then the equation 𝑁(𝜏 ,𝑋) = 0 is equivalent to{
𝑁1(𝜏 , 𝛼𝑌0 + 𝑧𝐸0) = 0,
𝑁2(𝜏 , 𝛼𝑌0 + 𝑧𝐸0) = 0,

where
𝐸0 = (1, 0), 𝑌0 = (−𝑏′0/𝑎

′
0, 1), (20)

and 𝑋 = 𝛼𝑌0 + 𝑧𝐸0 = (𝛼(−𝑏′0/𝑎′0) + 𝑧, 𝛼) represents the the direct sum decomposition of 𝑋 using the
projections onto 𝐾𝑒𝑟[𝐷𝑋𝑁(0, (0, 0))] and 𝐼𝑚[𝐷𝑋𝑁(0, (0, 0))] ([16]).

Let
𝑓1(𝜏 , 𝛼, 𝑧) = 𝑁1(𝜏 , 𝛼𝑌0 + 𝑧𝐸0), (21)

𝑓2(𝜏 , 𝛼, 𝑧) = 𝑁2(𝜏 , 𝛼𝑌0 + 𝑧𝐸0). (22)

We need now solve the following system {
𝑓1(𝜏 , 𝛼, 𝑧) = 0,
𝑓2(𝜏 , 𝛼, 𝑧) = 0.

Since
∂𝑓1
∂𝑧

(0, 0, 0) =
∂𝑁1

∂𝑥1
(0, (0, 0)) = 𝑎′0 ∕= 0,
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by applying the implicit function theorem, one may locally solve the equation 𝑓1(𝜏 , 𝛼, 𝑧) = 0 near (0, 0, 0)
with respect to 𝑧 as a function of 𝜏 and 𝛼 and find 𝑧 = 𝑧(𝜏 , 𝛼) such that 𝑧(0, 0) = 0 and

𝑓1(𝜏 , 𝛼, 𝑧(𝜏 , 𝛼)) = 𝑁1(𝜏 , 𝛼𝑌0 + 𝑧(𝜏 , 𝛼)𝐸0) = 0.

Derivating the implicit function above with respect to 𝛼 at (0, 0), we may then deduce that

∂𝑁1

∂𝑥1
(0, (0, 0))(

∂𝑥1
∂𝛼

(0, 0) +
∂𝑥1
∂𝑧

∂𝑧

∂𝛼
(0, 0)) +

∂𝑁1

∂𝑥2
(0, (0, 0))

∂𝑥2
∂𝛼

(0, 0) = 0.

It follows from (19) that
∂𝑧

∂𝛼
(0, 0) = 0. (23)

In view of (18), we get that

∂𝑧

∂𝜏
(0, 0) =

𝑝1
𝑎′0

[
(1− �̃�)𝑥∗

′
1 (𝑇 ) + �̃�𝑒

∫ 𝑇
�̃�𝑇

[
𝜃1(𝑥∗

1(𝑠))
]
𝑑𝑠𝑥∗

′
1 (�̃�𝑇 )

]
.

It now remains to study the solvability of the equation

𝑓2(𝜏 , 𝛼, 𝑧(𝜏 , 𝛼)) = 𝑁2(𝜏 , 𝛼𝑌0 + 𝑧(𝜏 , 𝛼)𝐸0) = 0. (24)

The equation (24) is called the determining equation and the number of its solutions equals the number
of periodic solutions of (24) ([16]). In the following we shall proceed to solving (24) by using Taylor
expansions. We denote

𝑓(𝜏 , 𝛼) = 𝑓2(𝜏 , 𝛼, 𝑧(𝜏 , 𝛼)). (25)

First, we observe that
𝑓(0, 0) = 𝑁2(0, (0, 0)) = 0.

Second, we focus on the first order partial derivatives of 𝑓 at (0, 0). By (18) and (24), together with [19], it
is easily seen that

∂𝑓

∂𝛼
(0, 0) = 1− 𝑝2

∂Φ2

∂𝑥2

(
(1− �̃�)𝑇 ; 𝐼1(Φ(�̃�𝑇 ;𝑋0))

)∂Φ2

∂𝑥2
(�̃�𝑇 ;𝑋0)

= 𝑑′0 = 0. (26)

Since (23) holds and

∂Φ2

∂𝑥1
((1− �̃�)𝑇 ; 𝐼1(Φ(�̃�𝑇 ;𝑋0))) = 0, (27)

∂Φ2

∂𝜏
((1− �̃�)𝑇 ; 𝐼1(Φ(�̃�𝑇 ;𝑋0))) = 0, (28)

It easily follows that
∂𝑓

∂𝜏
(0, 0) = 0. (29)

Third, we compute the second order partial derivatives ∂2𝑓
∂𝛼2 , ∂2𝑓

∂𝜏2
and ∂2𝑓

∂𝛼∂𝜏 .
After a few computations, we only determine that

∂2𝑓

∂𝜏2
= 0, (30)

while the sign of ∂2𝑓
∂𝛼2 and ∂2𝑓

∂𝛼∂𝜏 can not be determined. By constructing the second order Taylor expansion
of f near (0, 0), one obtains from (26)-(30) that

𝑓(𝜏 , 𝛼) =
∂2𝑓

∂𝛼∂𝜏
(0, 0)︸ ︷︷ ︸

.
=𝐴

𝛼𝜏 +
1

2

∂2𝑓

∂𝛼2
(0, 0)︸ ︷︷ ︸
.
=𝐵

𝛼2 + 𝑜(𝜏 , 𝛼)(𝜏2 + 𝛼2).
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Let 𝛼 = 𝑘𝜏 ; 𝑘 = 𝑘(𝜏). It follows from the equation above that

𝑓(𝜏) = 𝜏2
[
𝐴𝑘 +

1

2
𝐵𝑘2 + 𝑜(𝜏 , 𝑘𝜏)(1 + 𝑘2)

]
.

In conclusion, the above analysis may be summarized in the following result.

Theorem 3.1 Assume that conditions (𝐻1), (𝐻2), (9) and Case 1 (𝑝1𝑒
− ∫ 𝑇

0

[
𝜃1(𝑥∗

1(𝑠))
]
𝑑𝑠 ∕= 1) hold. Then

system (1) has a supercritical bifurcation of nontrivial solutions if 𝐴𝐵 < 0, and if 𝐴𝐵 > 0 it has a
subcritical case. If 𝐴𝐵 = 0, it has an undetermined case.

Remark 3.1 The final part of the existence argument can also be obtained by using the substitution 𝜏 =
𝑘𝛼(𝑜𝑟 − 𝑘𝛼); 𝑘 = 𝑘(𝛼).

Remark 3.2 Assume that conditions (𝐻1), (𝐻2), (9) and Case 2 (or Case 3) hold. We only replace (20) by
𝐸0 = (0, 1) and 𝑌0 = (1, 0). The remaining details of analysis are similar to those of the previous theorem
and hence are omitted to avoid repetition.

4 Conclusion

In this paper we proposed and analysed a Cohen–Grossberg neural network composed of two neurons with
nonisochronous impulsive effects. By using Mawhin’s continuation theorem, we first obtained the sufficient
conditions for the existence of semi-trivial periodic solutions. Subsequently, the asymptotic stability of
semi-trivial periodic solutions was investigated. Finally, we extended the method in [17] and then studied
the bifurcation of nontrivial periodic solutions.
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