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Abstract Combinatorial aspects of multivariate diagonal invariants of the symmet-
ric group are studied. As a consequence we deduce the existence of a multivariate
extension of the classical Robinson-Schensted correspondence. Further byproducts
are a purely combinatorial algorithm to describe the irreducible decomposition of the
tensor product of two irreducible representations of the symmetric group, and new
symmetry results on permutation enumeration with respect to descent sets.

Keywords Diagonal invariants · Symmetric groups · Descent sets · Hilbert series ·
Kronecker coefficients.

1 Introduction

The invariant theory of finite groups generated by reflections has attracted many
mathematicians since their classification in the works of Chevalley [10] and Shep-
ard and Todd [28] with a particular attention on the combinatorial aspects of it. This
is mainly due to the fact that the study of invariant and coinvariant algebras by means
of generating functions leads naturally to nontrivial combinatorial properties of finite
reflection groups. A crucial example in this context which is a link between the invari-
ant theory and the combinatorics of the symmetric group is the Robinson-Schensted
correspondence. This correspondence (see [11, 26]) is a bijection between the sym-
metric group on n elements and the set of ordered pairs of standard tableaux with
n boxes with the same shape. This is based on the row bumping algorithm and was
originally introduced by Robinson to study the Littlewood-Richardson rule and by
Schensted to study the lengths of increasing subsequences of a word. This algorithm
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has found applications in the representation theory of the symmetric group, in the
theory of symmetric functions and the theory of the plactic monoid. Moreover, it is
certainly fascinating from a combinatorial point of view and has inspired a consider-
able number of papers in the last decades. This correspondence has been generalized
to other Weyl groups, by defining ad hoc tableaux, or to semistandard tableaux in the
so-called RSK-correspondence, by considering permutations as special matrices with
nonnegative integer entries.

The main goal of this work is to exploit further the relationship between the
Robinson-Schensted correspondence and the theory of invariants of the symmet-
ric group. By interpreting the Hilbert series with respect to a multipartition degree
of certain (diagonal) invariant and coinvariant algebras in terms of (descents of)
tableaux and permutations we deduce the existence of a multivariate extension of
the Robinson-Schensted correspondence, which is based on the decomposition of
tensor products of irreducible representations of the symmetric group. The idea of
a relation between diagonal invariants and tensor product multiplicities for a finite
subgroup of GL(V ) goes back to Solomon (see [29, Remark 5.14]) and pervades the
results of Gessel [19] on multipartite P -partitions. Although we can not define this
correspondence explicitly, we can deduce from it an explicit combinatorial algorithm
to describe the irreducible decomposition of the tensor product of two irreducible
representations of the symmetric group. Finally, we show some further consequences
in the theory of permutation enumeration.

2 Background

Let V be a finite dimensional C-vector space and W be a finite subgroup of the
general linear group GL(V ) generated by reflections, i.e. elements of finite order that
fix a hyperplane pointwise. We refer to such a group simply as a reflection group. The
most significant example of such a group is the symmetric group acting by permuting
a fixed linear basis of V . Other important examples are Weyl groups acting on the
corresponding root space. In this paper we concentrate on the case of the symmetric
groups (and some other related groups). Nevertheless, we preserve the symbol W to

denote the symmetric group Sn on the n-element set [n] def= {1,2, . . . , n}.
Given a permutation σ ∈ W we denote by

Des(σ )
def= {i ∈ [n − 1] : σ(i) > σ(i + 1)}

the (right) descent set of σ and its major index by

maj(σ )
def=

∑

i∈Des(σ )

i.

For example if σ = 35241 we have Des(σ ) = {2,4} and maj(σ ) = 6. We recall the
following equidistribution result due to MacMahon (see [22]).
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Theorem 2.1 We have

W(q)
def=

∑

σ∈W

qmaj(σ ) =
∑

σ∈W

q inv(σ )

=
n∏

i=1

(1 + q + q2 + · · · + qi),

where inv(σ ) = |{(i, j) : i < j and σ(i) > σ(j)}| is the number of inversions of σ .

The dual action of a reflection group on V ∗ can be extended to the symmetric
algebra S(V ∗) of polynomial functions on V . If we fix a basis of V , the symmetric
algebra is naturally identified with the algebra of polynomials C[X]. Here and in what
follows we use the symbol X to denote an n-tuple of variables X = (x1, . . . , xn). The
symmetric group W acts on C[X] by permuting the variables. As customary, we
denote by C[X]W the ring of invariant polynomials (fixed points of the action of W ).
We also denote by IW+ the ideal of C[X] generated by homogeneous polynomials in
C[X]W of strictly positive degree. The coinvariant algebra associated to W is defined
as the corresponding quotient algebra

RW def= C[X]/IW+ .

The coinvariant algebra has important applications in the representation theory
since it is isomorphic to the group algebra of W (as W -modules) and in the topology
of the flag variety since it is isomorphic to its cohomology ring.

If R is a multigraded C-vector space we can record the dimensions of its homoge-
neous components via its Hilbert series

Hilb(R)(q1, . . . , qk)
def=

∑

a1,...,ak∈N

dim(Ra1,...,ak
)q

a1
1 · · ·qak

k ,

where Ra1,...,ak
is the homogeneous subspace of R of multidegree (a1, . . . , ak).

We note that, since the ideal IW+ is generated by homogeneous polynomials (by
total degree) the coinvariant algebra is graded in N. It turns out that the polynomial
W(q) appearing in Theorem 2.1 is the Hilbert series of the coinvariant algebra RW :

W(q) = Hilb(RW )(q). (1)

This is a crucial example of interplay between the invariant theory of W and the
combinatorics of W (by Theorem 2.1). All the other cases considered in this paper
are algebraic and combinatorial variations and generalizations of this fundamental
fact.

The coinvariant algebra affords also the structure of a multigraded vector space
which refines the structure of graded algebra. This further decomposition can be de-
scribed in terms of descents of permutations and descents of tableaux and was origi-
nally obtained in a work of Adin, Brenti and Roichman [2] for Weyl groups of type
A and B (see also [9] for Weyl groups of type D and [4] for other complex reflection
groups).
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If M is a monomial in C[X] we denote by λ(M) its exponent partition, i.e. the
partition obtained by rearranging the exponents of M . We say that a polynomial is
homogeneous of partition degree λ if it is a linear combination of monomials whose
exponent partition is λ. We note that the exponent partition is not well-defined in
the coinvariant algebra. For example, for n = 3 the monomials x2

1 and x2x3 are in
the same class in the coinvariant algebra (since x2

1 − x2x3 = x1(x1 + x2 + x3) −
(x1x2 + x1x3 + x2x3)), though they have distinct exponent partitions. Nevertheless
the exponent partition will be fundamental in defining a “partition degree” also in the
coinvariant algebra.

We recall the definition of the dominance order in the set of partitions of n. We
write μ � λ, and we say that μ is smaller than or equal to λ in the dominance order,
if μ1 + · · · + μi ≤ λ1 + · · · + λi for all i. We write μ � λ if μ � λ and μ �= λ.
We let R

(1)
λ be the subspace of RW consisting of elements that can be represented

as a linear combination of monomials with exponent partition smaller than or equal
to λ in dominance order. We also denote by R

(2)
λ the subspace of RW consisting of

elements that can be represented as a linear combination of monomials with exponent
partition strictly smaller than λ in dominance order. The subspaces R

(1)
λ and R

(2)
λ are

also W -submodules of RW and we denote their quotient by

Rλ
def= R

(1)
λ /R

(2)
λ .

The W -modules Rλ provide a further decomposition of the homogeneous compo-
nents of the coinvariant algebra RW (see [2, Theorem 3.12]).

Theorem 2.2 There exists an isomorphism of W -modules

ϕ : RW
k

∼=� ⊕

|λ|=k

Rλ,

such that ϕ−1(Rλ) can be represented by homogeneous polynomials of partition de-
gree λ.

We can use this result to define a partition degree on the coinvariant algebra: we
simply say that an element in RW

k is homogeneous of partition degree λ if its image
under the isomorphism ϕ is in Rλ. We can therefore define the Hilbert polynomial of
RW with respect to the partition degree by

Hilb(RW )(q1, . . . , qn) =
∑

λ

(dimRλ)q
λ1
1 · · ·qλn

n .

The dimensions of the W -modules Rλ can be easily described in terms of descents
of permutations. Given σ ∈ W we define a partition λ(σ ) be letting

λ(σ )i = |Des(σ ) ∩ {i, . . . , n}|.
Note that the knowledge of λ(σ ) is equivalent to the knowledge of Des(σ ) and that
maj(σ ) = |λ(σ )|. Then we have the following result which can be viewed as a refine-
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ment of Equation (1) (see [2, Corollary 3.11]):

dimRλ = |{σ ∈ W : λ(σ ) = λ}|

Once we know the dimensions of the W -modules Rλ we may wonder about their
irreducible decomposition. For this reason we introduce the refined fake degree poly-
nomial f μ(q1, . . . , qn) as the polynomial whose coefficient of q

λ1
1 · · ·qλn

n is the mul-
tiplicity of the representation μ in Rλ if λ is a partition, and zero otherwise, i.e.

f μ(Q) =
∑

λ

〈χμ,χRλ〉Qλ,

where Qλ def= q
λ1
1 · · ·qλn

n . In this formula we denote by χρ the character of a repre-
sentation ρ and by 〈·, ·〉 the scalar product on the space of class functions on W with
respect to which the characters of the irreducible representations form an orthonor-
mal basis. The polynomials f μ(Q) have a very simple combinatorial interpretation
based on standard tableaux that we are going to describe.

Given a partition μ of n, the Ferrers diagram of shape μ is a collection of boxes,
arranged in left-justified rows, with μi boxes in row i. A standard tableau of shape
μ is a filling of the Ferrers diagram of shape μ using the numbers from 1 to n, each
occurring once, in such way that rows are increasing from left to right and columns
are increasing from top to bottom. We denote by S T the set of standard tableaux with
n boxes. For example the following picture

represents a standard tableau of shape (3,2,1,1). We say that i is a descent of a
standard tableau T if i appears strictly above i + 1 in T . We denote by Des(T ) the
set of descents of T and we let maj(T ) be the sum of its descents. Finally, we denote
by μ(T ) the shape of T . In the previous example we have Des(T ) = {1,3,5,6} and
so maj(T ) = 15. As we did for permutations, given a tableau T we define a partition
λ(T ) by putting

(λ(T ))i = |Des(T ) ∩ {i, . . . , n}|.
It is known that irreducible representations of the symmetric group W are indexed

by partitions of n. We therefore use the same symbol μ to denote a partition or the
corresponding Specht module. The following result appearing in [2, Theorem 4.1]
describes explicitly the decomposition into irreducibles of the W -modules Rλ and
refines a well-known result on the irreducible decomposition of the homogeneous
components of RW attributed to Lusztig (unpublished) and to Kraśkiewicz and Wey-
man ([21]).
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Theorem 2.3 The multiplicity of the representation μ in Rλ is

|{T tableau : μ(T ) = μ and λ(T ) = λ}|
and so

f μ(q1, . . . , qn) =
∑

{T :μ(T )=μ}
Qλ(T ).

3 Refined multimahonian distributions

We let C[X1, . . . ,Xk] be the algebra of polynomials in the nk variables xi,j , with
i ∈ [k] and j ∈ [n], i.e. we use the capital variable Xi for the n-tuple of variables
xi,1, . . . , xi,n. We consider the natural action of Wk and of its diagonal subgroup �W

on C[X1, . . . ,Xk]. By means of the above decomposition of the coinvariant algebra
we can also decompose the algebra

C[X1, . . . ,Xk]
IWk

+
∼= RW ⊗ · · · ⊗ RW

︸ ︷︷ ︸
k

in homogeneous components whose degrees are k-tuples of partitions with at most n

parts. In particular we say that an element in C[X1, . . . ,Xk]/IWk

+ is homogeneous of
multipartition degree (λ(1), . . . , λ(k)) if it belongs to RW

λ(1) ⊗ · · · ⊗ RW
λ(k) by means of

the above mentioned canonical isomorphism. We are mainly interested in the subal-
gebra

(
C[X1, . . . ,Xk]

IWk

+

)�W

∼= C[X1, . . . ,Xk]�W

JWk

+
.

Here JWk

+ denotes the ideal generated by totally invariant polynomials with no con-
stant term inside C[X1, . . . ,Xk]�W and the isomorphism is due to the fact that the
operator

F �→ F # def= 1

|W |
∑

σ∈�W

σ(F )

is an inverse of the natural projection C[X1, . . . ,Xk]�W/JWk

+ → (C[X1, . . . ,Xk]/
IWk

+ )�W .
We can therefore consider the Hilbert polynomial

Hilb
(

C[X1, . . . ,Xk]�W

JWk

+

)

def=
∑

λ(1),...,λ(k)

dim
(

C[X1, . . . ,Xk]�W

JWk

+

)

λ(1),...,λ(k)
Qλ(1)

1 · · ·Qλ(k)

k .
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In this formula the symbol Qi stands for the n-tuple of variables qi,1, . . . , qi,n and
the sum is over all partitions λ(1), . . . , λ(k) with at most n parts.

Our next target is to describe the previous Hilbert series. For this we need to in-
troduce one further ingredient. We define the Kronecker coefficients of W by

gμ(1),...,μ(k)
def= 1

|W |
∑

σ∈W

χμ(1)

(σ ) · · ·χμ(k)

(σ )

= 〈χμ(1) · · ·χμ(k−1)

, χμ(k)〉W,

(recalling that χ(σ) = χ(σ−1)) where μ(1), . . . ,μ(k) are irreducible representations
of W . In other words gμ(1),...,μ(k) is the multiplicity of μ(k) in the (reducible) represen-
tation μ(1) ⊗ · · · ⊗ μ(k−1). These numbers have been deeply studied in the literature
(see, e.g., [7, 13, 23, 25]) though they do not have an explicit description such as
a combinatorial interpretation. A consequence of our main result is also a recursive
combinatorial definition of the numbers gμ(1),...,μ(k) which is independent of the char-
acter theory of W .

Now we can state the following result which relates the Hilbert series above with
Kronecker coefficients and the refined fake degree polynomials.

Theorem 3.1 We have

Hilb
(
C[X1, . . . ,Xk]�W/JWk

+
)
(Q1, . . . ,Qk)

=
∑

μ(1),...,μ(k)

gμ(1),...,μ(k)f
μ(1)

(Q1) · · ·f μ(k)

(Qk)

=
∑

T1,...,Tk

gμ(T1),...,μ(Tk)Q
λ(T1)
1 · · ·Qλ(Tk)

k

Proof The first equality is essentially an application of a result of Solomon (see [29,
Theorem 5.11]). If G is a finite group and V is a graded G-module, then Solomon’s
result expresses the Hilbert series of the diagonal invariants in the k-th tensor power
of V in terms of the irreducible decomposition of (the homogeneous components of)
V . One can easily verify that this result holds also if V is a multigraded G-module
and so we can apply it to the coinvariant algebra of W considered as a multigraded
W -module and obtain the first equality.

The second equality follows directly from Theorem 2.3. �

We recall that the algebra C[X1, . . . ,Xk]�W , being Cohen-Macaulay (see [30,
Proposition 3.1]), is a free module over its subalgebra C[X1, . . . ,Xk]Wk

. This implies
directly that if we consider C[X1, . . . ,Xk] as an algebra graded in N

k in the natural
way, then,

Hilb
(
C[X1, . . . ,Xk]�W/JWk

+
)
(q1, . . . , qk) = Hilb(C[X1, . . . ,Xk]�W)(q1, . . . , qk)

Hilb(C[X1, . . . ,Xk]Wk
)(q1, . . . , qk)

.

(2)
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Now, the algebra C[X1, . . . ,Xk] is also multigraded by k-tuples of partitions with
at most n parts: we just say that a monomial M is homogeneous of multiparti-
tion degree (λ(1), . . . , λ(k)) if its exponent partition with respect to the variables

xi,1, . . . xi,n is λ(i) for all i. We write in this case λ(i)(M)
def= λ(i) for all i and

�(M)
def= (λ(1), . . . , λ(k)). The refinement of Equation (2) using the Hilbert series

with respect to multipartition degree is no longer implied by the Cohen-Macaulayness
of C[X1, . . . ,Xk]�W . For this we need to use the existence of the representations Rλ

in a more subtle way. Given σ ∈ W we define a monomial

aσ =
∏

x
λ(σ)i
σ (i) .

By definition we clearly have λ(aσ ) = λ(σ ). In [18] and [2] it is proved that the set of
monomials {aσ : σ ∈ W } is a basis for the coinvariant algebra RW . The proof in [2]
is based on a straightening law. For its description we need to introduce an ordering
on the set of monomials of the same degree: for m and m′ monomials of the same
total degree in C[X] we let m ≺ m′ if

1. λ(m) � λ(m′); or
2. λ(m) = λ(m′) and inv(π(m)) > inv(π(m′)),

where π(m) is the permutation π having a minimal number of inversions such that
the exponent in m of xπ(i) is greater than or equal to the exponent in m of xπ(i+1)

for all i. The straightening law is the following: let m be a monomial in C[X]. Then
μ := λ(m) − λ(π(m)) is still a partition and

m = mμ · aπ(m) +
∑

m′≺m

cm,m′m′, (3)

where cm,m′ ∈ C and mμ is the monomial symmetric function. The straightening
algorithm stated in [2] uses elementary symmetric functions instead of monomial
symmetric functions, but one can easily check that the two statements are equivalent.
The fact that the set {aσ : σ ∈ W } is a basis of RW implies directly that the set of
monomials

aσ1,...,σk

def= aσ1(X1) · · ·aσk
(Xk)

is a basis for the coinvariant algebra of Wk , i.e. the algebra C[X1, . . . ,Xk]/IWk

+ . Now,
the monomials aσ1,...,σk

form a basis for the algebra C[X1, . . .Xk] as a free module

over the subring C[X1, . . . ,Xk]Wk
of Wk-invariants (being a basis of the coinvariant

algebra C[X1, . . . ,Xk]/IWk

+ ), i.e.

C[X1, . . . ,Xk] =
⊕

σ1,...,σk∈W

C[X1, . . . ,Xk]Wk

aσ1,...,σk
.

The following result states a triangularity property of this basis. If (μ(1), . . . ,μ(k))

and (λ(1), . . . , λ(k)) are two k-tuples of partitions we write (μ(1), . . . ,μ(k)) �
(λ(1), . . . , λ(k)) if μ(i) �λ(i) for all i and we denote by C[X1, . . . ,Xk]�(λ(1),...,λ(k)) the
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space of polynomials spanned by monomials with multipartition degree �(λ(1), . . . ,

λ(k)). We similarly define C[X1, . . . ,Xk]�(λ(1),...,λ(k)).

Lemma 3.2 Let M ∈ C[X1, . . . ,Xk] be a monomial and let

M =
∑

σ1,...,σk∈W

fσ1,...,σk
aσ1,...,σk

,

where fσ1,...,σk
∈ C[X1, . . . ,Xk]Wk

. Then this sum is restricted to those σ1, . . . , σk

such that �(M) − �(aσ1,...,σk
) is a k-tuple of partitions and

fσ1,...,σk
∈ C[X1, . . . ,Xk]��(M)−�(aσ1,...,σk

).

Proof Given two monomials M = m1(X1) · · ·mk(Xk) and M ′ = m′
1(X1) · · ·m′

k(Xk)

we let M ≺ M ′ if mi ≺ m′
i for all i. We proceed by a double induction on the total

degree and on ≺ within the set of monomials of the same multidegree. If M has total
degree zero the result is trivial. Otherwise let �(M) = (λ(1), . . . , λ(k)). If M is mini-
mal with respect to the ordering ≺ then λ(i) is minimal with respect to the dominance
order for all i. If there exists i such that |λ(i)| ≥ n then M = (xi,1 · · ·xi,n)M

′ and
the result follows by induction since the total degree of M ′ is strictly smaller than
the degree of M . If |λ(i)| < n for all i then λ(i) = (1ki ) by the minimality condition.
Then mi = aπ(mi) for all i and the result follows. In the general case we can apply
the straightening law (3) to all the mi ’s getting

M = fM · aπ(m1),...,π(mk) +
∑

M ′≺M

cM,M ′M ′,

where fM is a homogeneous Wk-invariant polynomial of multipartition degree
�(M) − �(aπ(m1),...,π(mk)). Then the result follows by induction. �

Now recall the already mentioned sequence of isomorphisms of W -modules

C[X1, . . . ,Xk]�W

JWk

+
∼=

(
C[X1, . . . ,Xk]

IWk

+

)�W

∼= (RW ⊗ · · · ⊗ RW

︸ ︷︷ ︸
k times

)�W

∼=
⊕

λ(1),...,λ(k)

(Rλ(1) ⊗ · · · ⊗ Rλ(k) )
�W .

Consider a basis of (Rλ(1) ⊗ · · · ⊗ Rλ(k) )�W . Every element of such a basis can
be represented by a homogeneous element in C[X1, . . . ,Xk] of multipartition de-
gree (λ(1), . . . , λ(k)) (by definition) which is invariant for the action of �W . In
fact, if a representative F of a basis element is not �W -invariant we can con-
sider its symmetrization F # since, clearly, F and F # represents the same class in
(Rλ(1) ⊗ · · · ⊗ Rλ(k) )�W . We denote by B(λ(1), . . . , λ(k)) this set of representatives,
i.e. B(λ(1), . . . , λ(k)) is a set of polynomials in C[X1, . . . ,Xk]�W of multipartition
degree (λ(1), . . . , λ(k)) whose corresponding classes form a basis of (Rλ(1) ⊗ · · · ⊗
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Rλ(k) )�W . We denote by B the (disjoint) union of all B(λ(1), . . . , λ(k)). By the Cohen-
Macaulayness of C[X1, . . . ,Xk]�W we can deduce that the set B is a basis for
C[X1, . . . ,Xk]�W as a free C[X1, . . . ,Xk]Wk

-module (see [30, Proposition 3.1]),
i.e.

C[X1, . . . ,Xk]�W =
⊕

b∈B
C[X1, . . . ,Xk]Wk · b.

The following result implies a crucial triangularity property of the basis B.

Lemma 3.3 Let F ∈ C[X1, . . . ,Xk]�W be homogeneous of multipartition degree
�(F). Then the unique expression

F =
∑

b∈B
fbb,

with fb ∈ C[X1, . . . ,Xk]Wk
for all b ∈ B, is such that the sum is restricted to those

b ∈ B for which �(F) − �(b) is a k-tuple of partitions and

fb ∈ C[X1, . . . ,Xk]Wk

��(F)−�(b).

Proof Let ≺ be a total order on the set of k-tuples of partitions of length at most n

satysfying the following two conditions

• If |μ(1)|+· · ·+|μ(k)| < |λ(1)|+· · ·+|λ(k)| then (μ(1), . . . ,μ(k)) ≺ (λ(1), . . . , λ(k));
• If μ(i) � λ(i) for all i, then (μ(1), . . . ,μ(k)) ≺ (λ(1), . . . , λ(k)).

We proceed by induction on the multipartition degree of F with respect to the to-
tal order ≺. If F has degree zero then the result is trivial. Otherwise let �(F) =
(λ(1), . . . , λ(k)) be the multipartition degree of F . Then F represents an element in
(Rλ(1) ⊗ · · · ⊗ Rλ(k) )�W . Therefore,

F =
∑

b∈B(λ(1),...,λ(k))

cbb

in (Rλ(1) ⊗ · · · ⊗ Rλ(k) )�W . This means that

F =
∑

b∈B(λ(1),...,λ(k))

cbb + G

in (RW ⊗ · · · ⊗ RW

︸ ︷︷ ︸
k times

)�W , where G is a �W -invariant polynomial such that

G ∈ C[X1, . . . ,Xk]�W
��(F).

Finally we deduce from this that

F =
∑

b∈B(μ(1),...,μ(k))

cbb + G + H
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in C[X1, . . . ,Xk]�W , where H belongs to IWk

+ . We can clearly assume that G

and H are homogeneous with the same total multidegree of F . The induction hy-
pothesis applies directly to G. Regarding H , by Lemma 3.2, we can express H =∑

σ1,...,σk
fσ1,...,σk

aσ1,...,σk
with fσ1,...,σk

∈ C[X1, . . . ,Xk]Wk

��(F)−�(aσ1,...,σk
)

since H

is a sum of monomials of multipartition degree smaller than or equal to �(F) in
dominance order. Moreover, all the polynomials fσ1,...,σk

have positive degree since

H ∈ IWk

+ . Now we can apply the operator # to this identity and we get

H =
∑

σ1,...,σk

fσ1,...,σk
a#
σ1,...,σk

.

Finally we can apply our induction hypothesis to the polynomials a#
σ1,...,σk

since they
have degree smaller than F and the proof is completed by observing that, clearly,

C[X1, . . . ,Xk]�� · C[X1, . . . ,Xk]��′ ⊆ C[X1, . . . ,Xk]��+�′ . �

We observe that Lemma 3.3 fails to be true for a generic homogeneous basis
B of C[X1, . . . ,Xk]�W as a free C[X1, . . . ,Xk]Wk

-module. We refer the reader
to [24, Section 4.2], [3] and [6] for the explicit description of some bases of
C[X1, . . . ,Xk]�W over C[X1, . . . ,Xk]Wk

, with particular attention to the case k = 2.
For notational convenience, if � = (λ(1), . . . , λ(k)) is a multipartition, we denote

by

Q� def= Qλ(1)

1 · · ·Qλ(k)

k =
k∏

i=1

n∏

j=1

q
λ

(i)
j

i,j .

Corollary 3.4 We have

Hilb
(

C[X1, . . . ,Xk]�W

JWk

+

)
(Q1, . . . ,Qk) = Hilb(C[X1, . . . ,Xk]�W)(Q1, . . . ,Qk)

Hilb(C[X1, . . . ,Xk]Wk
)(Q1, . . . ,Qk)

=
∑

b∈B
Q�(b)

Proof The fact that Hilb
(
C[X1, . . . ,Xk]�W/JWk

+
)
(Q1, . . . ,Qk) = ∑

b∈B Q�(b) is

clear from the definition of the multipartition degree on C[X1, . . . ,Xk]�W/JWk

+ and
the definition of the set B. Lemma 3.3 implies that

dim C[X1, . . . ,Xk]�W
�� =

∑

b∈B

∑

{�′:�′+�(b)��}
dim C[X1, . . . ,Xk]Wk

�′ ,
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and similarly with � instead of �. Therefore

dim C[X1, . . . ,Xk]�W
� = dim C[X1, . . . ,Xk]�W

�� − dim C[X1, . . . ,Xk]�W
��

=
∑

b∈B

∑

{�′:�′+�(b)=�}
dim C[X1, . . . ,Xk]Wk

�′ .

Note that in the last sum there is only one summand corresponding to �′ = �−�(b)

if this is a multipartition, and there are no summands otherwise. So we have

Hilb(C[X1, . . . ,Xk]�W) =
∑

�

dim C[X1, . . . ,Xk]�W
� Q�

=
∑

�

∑

b∈B

∑

{�′:�′+�(b)=�}
dim C[X1, . . . ,Xk]Wk

�′ Q�

=
∑

b∈B

∑

�′
dim C[X1, . . . ,Xk]Wk

�′ Q�′+�(b)

=
∑

b∈B
Q�(b)

∑

�′
dim C[X1, . . . ,Xk]Wk

�′ Q�′

=
∑

b∈B
Q�(b)Hilb(C[X1, . . . ,Xk]Wk

).
�

Now we need to study the two Hilbert series of the invariant algebras
C[X1, . . . ,Xk]�W and C[X1, . . . ,Xk]Wk

with respect to the multipartition degree.
Before stating our next result we need to recall a classical theorem that can be at-
tributed to Gordon [20] and Garsia and Gessel [16] on multipartite partitions. We
say that a collection (f (1), . . . , f (k)) of k elements of N

n is a k-partite partition if
f

(i)
j ≥ f

(i)
j+1 whenever f

(h)
j = f

(h)
j+1 for all h < i. For notational convenience we de-

note by W(k) def= {(σ1, . . . , σk) ∈ Wk : σ1 · · ·σk = 1)}. The main property of k-partite
partitions that we need is the following.

Theorem 3.5 There exists a bijection between the set of k-partite partitions and the
set of 2k-tuples (σ1, . . . , σk,μ

(1), . . . ,μ(k)) such that

• (σ1, . . . , σk) ∈ W(k);
• μ(i) is a partition with at most n parts;
• μ

(i)
j > μ

(i)
j+1 whenever j ∈ Des(σi).

The bijection is such that μ(i) is obtained by reordering the coefficients of f (i).

We can now prove the following formula for the quotient of the Hilbert polyno-
mials with respect to the multipartition degree associated to the invariant algebras of
�W and Wk .
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Theorem 3.6 We have

Hilb(C[X1, . . . ,Xk]�W)(Q1, . . . ,Qk)

Hilb(C[X1, . . . ,Xk]Wk
)(Q1, . . . ,Qk)

=
∑

(σ1,...,σk)∈W(k)

Q
λ(σ1)
1 · · ·Qλ(σk)

k

Proof We observe that the set of monomials X
f (1)

1 · · ·Xf (k)

k as (f (1), . . . , f (k)) varies
among all possible k-partite partitions is a set of representatives for the orbits of the
action of �W in the set of monomials in C[X1, . . . ,Xk]. By means of Theorem 3.5
we can deduce that

Hilb(C[X1, . . . ,Xk]�W)(Q1, . . . ,Qk) =
∑

σ1,...,σk,

μ(1),...,μ(k)

Q
μ(1)

1 · · ·Qμ(k)

k ,

where the indices in the previous sum are such that they satisfy the conditions stated
in Theorem 3.5. We now observe that we have an equivalence of conditions

μ
(i)
j > μ

(i)
j+1 whenever j ∈ Des(σi) ⇐⇒ μ(i) − λ(σi) is a partition.

Therefore we can simplify the previous sum in the following way

∑

σ1,...,σk,

μ(1),...,μ(k)

Q
μ(1)

1 · · ·Qμ(k)

k =
∑

(σ1,...,σk)∈W(k)

∑

ν(1),...,ν(k)

Q
ν(1)+λ(σ1)
1 · · ·Qν(k)+λ(σk)

k ,

where the last sum is on all possible k-tuples of partitions ν(1), . . . , ν(k) of length at
most n. The result follows since, clearly,

Hilb(C[X1, . . . ,Xk]Wk =
∑

ν(1),...,ν(k)

Qν(1)

1 · · ·Qν(k)

k .

�

Putting all these results together we obtain the following sequence of equivalent
interpretations for what we may call the refined multimahonian distribution.

Theorem 3.7 We have

W(Q1, . . . ,Qk)
def=

∑

T1,...,Tk

gμ(T1),...,μ(Tk)Q
λ(T1)
1 , . . . ,Q

λ(Tk)
k

=
∑

μ(1),...,μ(k)

gμ(1),...,μ(k)f
μ(1)

(Q1) · · ·f μ(k)

(Qk)

= Hilb
(
C[X1, . . . ,Xk]�W/JW+ )

)
(Q1, . . . ,Qk)
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= Hilb(C[X1, . . . ,Xk]�W)(Q1, . . . ,Qk)

Hilb(C[X1, . . . ,Xk]Wk
)(Q1, . . . ,Qk)

=
∑

σ1···σk=1

Q
λ(σ1)
1 · · ·Qλ(σk)

k

Proof The four identities are the contents of Theorem 3.1, Corollary 3.4 and Theorem
3.6. �

The cardinality of the set of k-tuples of permutations in W(k) having fixed descent
sets was already studied by Gessel in [19] and the idea to use Kronecker products is
already present in his work. As pointed out by Reiner one can obtain an alternative
proof of the equality between the first and the last line in Theorem 3.7 starting from
Gessel’s result [19, Theorem 17]. The crucial point in this alternative proof is the ob-
servation that the symmetric functions appearing in Gessel’s theorem are the images
under the characteristic map of the characters of the ribbon representations (whose
characters can be expressed in terms of standard tableaux by means of the Young’s
rule). He also remarked that all the equalities appearing in Theorem 3.7 can also be
proved and reformulated in terms of the Stanley-Reisner ring C[�n] of the simplicial
complex �n, which is the barycentric subdivision of an (n− 1)-dimensional simplex
(see, e.g., [24, Corollary 4.2.4] for the equivalent reformulation of the equality be-
tween the last two lines in Theorem 3.7 in this context). This is essentially due to the
fact that C[�n] is isomorphic to C[X] as a multigraded W -module. Nevertheless, this
isomorphism is no longer true for Weyl groups of other types and the Stanley-Reisner
ring is not defined at all for general complex reflection groups. This is the reason why
we think that the approach through diagonal invariants in polynomial algebras can be
better in view of a possible generalization of these results to other groups.

The reason why we call the distribution W(Q1, . . . ,Qk) refined is that one
can consider its coarse version W(q1, . . . qk) obtained by putting qi,j = qi for
all i and j . In this case one obtains the so-called multimahonian distribution∑

(σ1,...,σk)∈W(k) q
maj(σ1)

1 · · ·qmaj(σk)

k which has been extensively studied in the liter-
ature (see, e.g., [1, 5, 8, 15, 16]).

Corollary 3.8 There exists a map T : W(k) −→ S T k satisfying the following two
conditions:

1. For every k-tuple of tableaux (T1, . . . , Tk),

|T −1(T1, . . . , Tk)| = gμ(T1),...,μ(Tk).

In particular it depends only on the shapes of the tableaux T1, . . . , Tk ;
2. if T (σ1, . . . , σk) = (T1, . . . , Tk) then Des(Ti) = Des(σi) for all i = 1, . . . , k.

The classical Robinson-Schensted correspondence (see [32, §7.11] for a descrip-
tion of this correspondence) provides a bijective proof of this corollary in the case
k = 2.
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We can also conjecture the existence of a correspondence T that satisfies the con-
ditions of Corollary 3.8 and is well-behaved with respect to cyclic permutations of
the arguments in the sense that

T (σ1, . . . , σk) = (T1, . . . , Tk) =⇒ T (σ2, . . . , σk, σ1) = (T2, . . . , Tk, T1).

One can also ask whether the correspondence T can be chosen to have the following
symmetry property

T (σ1, . . . , σk) = (T1, . . . , Tk) =⇒ T (w0σ1w0, . . . ,w0σkw0) = (T J
1 , . . . , T J

k ),

where T �→ T J denotes Schützenberger evacuation of the standard tableau T (see
[15, 27] and Proposition 4.6).

Problem 3.9 Find a map T as in Corollary 3.8 explicitly.

We observe that the resolution of this Problem would provide also an explicit
combinatorial interpretation for the coefficients gμ(1),...,μ(k) .

4 Combinatorial applications

In this final section we deduce some combinatorial results on Kronecker coefficients
and permutation enumeration that follow from the results of the previous section.
Our next goal is to show that we do not need to know the coefficients gμ(1),...,μ(k) to
solve Problem 3.9. This is because Corollary 3.8 uniquely determines the coefficients
gμ(1),...,μ(k) in the following sense.

Proposition 4.1 Let T : W(k) → S T k be such that

1. |T −1(T1, . . . , Tk)| depends uniquely on the shapes of T1, . . . , Tk ;
2. if T (σ1, . . . , σk) = (T1, . . . , Tk) then Des(Ti) = Des(σi) for all i = 1, . . . , k.

Then T satisfies the conditions of Corollary 3.8, i.e. |T −1(T1, . . . , Tk)| =
gμ(T1),...,μ(Tk) for all (T1, . . . , Tk) ∈ S T k .

This proposition is an immediate consequence of the following elementary results
that we state without proof.

Lemma 4.2 Let μ = (μ1, . . . ,μr) be a partition of n (with μr > 0). Then

1. there exists a unique standard tableau Tμ of shape μ and descent set Des(Tμ) =
{μ1,μ1 + μ2, . . . ,μ1 + · · · + μr−1};

2. if T is a standard tableau and Des(T ) = Des(Tμ), then μ(T ) � μ.

The unique tableau Tμ satisfying the conditions of Lemma 4.2 is called the row
superstandard tableau of shape μ by Garsia and Maclarnan in [17] and is obtained by
inserting the numbers form 1 to μ1 in the first row of the Ferrers diagram of μ, then
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the numbers from μ1 + 1 to μ1 + μ2 in the second row and so on in the following
rows.

The following corollary is a recursion satisfied by the coefficients gμ(1),...,μ(k) , it
proves Proposition 4.1 and provides also an explicit entirely combinatorial algorithm
to compute the coefficients gμ(1),...,μ(k) .

Corollary 4.3 Let μ(1), . . . ,μ(k) be a multipartition and let Di = Des(Tμ(i) ). Then

gμ(1),...,μ(k) =

|{(σ1, . . . , σk) ∈ W(k) : Des(σi) = Di}| −
∑

{
T1,...,Tk∈S T :Des(Ti )=Di and
(μ(T1),...,μ(Tk))�(μ(1),...,μ(k))

}
gμ(T1),...,μ(Tk).

Proof By Corollary 3.8 we have

∑

T1,...,Tk∈S T :
Des(Ti )=Di

gμ(T1),...,μ(Tk) = |{(σ1, . . . , σk) ∈ W(k) : Des(σi) = Di}|.

Now the claim follows by Lemma 4.2. �

Example 4.4 Let n = 4 and k = 3. We compute g
, ,

by means of Corollary 4.3. In

this case we have D1 = {3},D2 = {2},D3 = {2,3}. We have to determine all tableaux
having these descents sets. Now we observe that the unique tableau having descent
set D1, is T and the unique tableau having descent set D3 is T . On the other hand

there are two tableaux having descent set D2 and these are T and . So we have

g
, ,

= |{(σ1, σ2, σ3) ∈ W(3) : Des(σi) = Di}| − g
, ,

.

We observe that the cardinality of {(σ1, σ2, σ3) ∈ W(3) : Des(σi) = Di} is 2 since the
only two triplets in this set are (1243,1423,1432) and (2341,2413,2431). So we
deduce that g

, ,
= 2 − g

, ,
. Now we compute g

, ,
by applying again

Corollary 4.3. In this case we have D1 = D2 = {3} and D3 = {2,3}. By the previous
observations on the tableaux having these descent sets we deduce that

g
, ,

= |{(σ1, σ2, σ3) ∈ W(3) : Des(σi) = Di}|.

We can easily verify that the only element in this set is (1342,1243,1432) and we
can conclude that g

, ,
= 1.

It is clear that one can produce an algorithm to compute Kronecker coefficients
based on Corollary 4.3, so some observations on the complexity bound for such al-
gorithm are in order, at least in the case k = 3.
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• Determination of the index set in the sum. Given an input set D ⊆ {n−1}, we need
to compute, for any partition λ, the number of standard tableaux with descent set
D and shape λ. A naive way to do this is to list all standard tableaux having a given
descent set D and n boxes. This can be done recursively by observing that deletion
of the box containing n in a a tableau with descent set D produces a tableau with
n − 1 boxes and descent set D \ {n − 1}. This observation leads to a recursive
algorithm of complexity �(|D|t (D)) where t (D) is the number of tableaux with
at most n boxes and descents prescribed by D. This can be bounded by O(n2Tn)

where Tn is the number of tableaux with n boxes or equivalently the number of
involutions in W .

• Determination of the number of recursion steps. A coarse bound for this is given
by the number of triplets (λ(1), λ(2), λ(3)) with λ(i) � μ(i) and this is O(p(n)3)

where p(n) is the number of partitions of n.
• Determination of the cardinality of the set {(σ1, σ2, σ3) : Des(σi) = Di and

σ1σ2σ3 = 1}. A naive approach to this problem would determine all permutations
σ1 having descent set D1 and all permutations σ2 having descent set D2, and then
verify for how many such pairs (σ1, σ2) one has Des((σ1σ2)

−1) = D3. Listing all
permutations with a fixed descent set D can be done with an algorithm of complex-
ity �(nβn(D)) where βn(D) = |{σ ∈ W : Des(σ ) = D}| (see [31, Example 2.2.4]
for an explicit determinantal expression for the numbers βn(D)) by means of the
following observation. Given D ⊆ [n − 1], let S = (s1, . . . , sn−1) be the charac-
teristic binary sequence of D, i.e. si = 1 if i ∈ D and si = 0 otherwise. If we let

F(S, i)
def= {σ ∈ W : Des(σ ) = D and σ(i) = n}, then “deletion” of n on elements

in F(S, i) produces all elements in

⋃

j

(
F

(
(s1, . . . , ŝi , . . . , sn−1), j

) ∪ F
(
(s1, . . . , ŝi−1, . . . , sn−1), j

))
,

where F(s1, . . . , ŝi , . . . , sn−1), j)
def= ∅ if i = 0, n. The enumeration of how many

pairs (σ1, σ2) with Des(σi) = Di satisfy Des((σ1σ2)
−1) = D3 is an algorithm of

complexity �(βn(D1)βn(D2)n). Now a simple observation that the average of the
numbers βn(D) is n!/2n−1 implies that such an algorithm to compute the Kro-
necker coefficients would be less efficient than the one shown by Derksen in
[14] based on the Murnaghan-Nakayama rule. To improve the efficiency of an
algorithm based on Corollary 4.3 one should be able to enumerate the elements
in {(σ1, σ2, σ3) : Des(σi) = Di and σ1σ2σ3 = 1} without listing them explicitly.
A possible approach to this can be the following. Let

βn(D1,D2,D3)
def= |{(σ1, σ2, σ3) : Des(σi) = Di and σ1σ2σ3 = 1}|

and

αn(D1,D2,D3)
def= |{(σ1, σ2, σ3) : Des(σi) ⊆ Di and σ1σ2σ3 = 1}|.

Then the numbers βn can be expressed as an alternate sum of the numbers αn by
inclusion-exclusion and, as a direct consequence of Theorem 3.5, one can show
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that αn(D1,D2,D3) is equal to the number of 3-partite partitions whose i-th row
is a reordering of the entries of the partition λ(σi), where σi is any element with
descent set Di . Then, if we let λ(σs) = (rms,r , . . . ,2ms,2 ,1ms,1), for s = 1,2,3, one
can easily deduce that αn(D1,D2,D3) is equal to the number of 3 dimensional ar-
rays (ci,j,k)i,j,k∈[r] with non negative integral coefficients satysfying the following
conditions (see also Theorem 4.8 below):

∑

i,j

ci,j,k = m3,k,
∑

i,k

ci,j,k = m2,j ,
∑

j,k

ci,j,k = m1,i .

Next we show some new results on permutation statistics that can be deduced from
Corollary 3.8. The first observation is a direct consequence of the symmetry of Kro-
necker coefficients with respect to their arguments. Let D1, . . . ,Dk ⊆ [n − 1] and let
π be any permutation on {1, . . . , k}. Then

|{(σ1, . . . , σk) ∈ W(k) : Des(σi) = Di}| = |{(σ1, . . . , σk) ∈ W(k) : Des(σi) = Dπ(i)}|.
(4)

This naturally leads to consider the following.

Problem 4.5 Find a combinatorial bijective proof for the identity (4).

It is plausible that the resolution of this problem could be a first step towards the
resolution of Problem 3.9.

The classical Robinson-Schensted correspondence allows one to prove some re-
sults on permutation enumeration and in particular on the bimahonian distributions
(see for example [5, 12, 15]). So, it is natural to ask how we can generalize these prop-
erties using the existence of the multivariate Robinson-Schensted correspondence. If
X is either a permutation on n elements or a tableau with n entries we denote by

Codes(X)
def= {i : n − i ∈ Des(X)};

Asc(X)
def= [n − 1] \ Des(X);

Coasc(X)
def= {i : n − i ∈ Asc(X)}.

The following is a multivariate generalization of a result of Foata and Schützenberger
([15, Theorem 2])

Proposition 4.6 For all I ⊂ {1, . . . , k} there exists an involution FI : W(k) → W(k)

such that, if FI (σ1, . . . , σk) = (τ1, . . . , τk), then

Des(σi) =
{

Codes(τi) if i ∈ I ;
Des(τi) otherwise.

Proof We recall (see [15, 27]) that there exists an involution T �→ T J on the set of
standard tableaux of the same shape such that Des(T ) = Codes(T J ). Then the result
follows immediately from Corollary 3.9. �
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It is clear that we can substitute in Proposition 4.6 Des with Asc and Codes with
Coasc obtaining an analogous result. We can unify and generalize Equation (4) and
Proposition 4.6 in the following statement.

Theorem 4.7 Fix k subsets D1, . . . ,Dk ⊆ [n − 1] arbitrarily. Then for any inte-
ger sequence 0 ≤ i1 ≤ i2 ≤ i3 ≤ k and for any permutation π on [k] the cardinality
C(i1, i2, i3;π) of the set

⎧
⎪⎪⎨

⎪⎪⎩
(σ1, . . . , σk) ∈ W(k) : Di =

⎧
⎪⎪⎨

⎪⎪⎩

Des(σπ(i)) if 0 < i ≤ i1,

Codes(σπ(i)) if i1 < i ≤ i2,

Asc(σπ(i)) if i2 < i ≤ i3,

Coasc(σπ(i)) if i3 < i ≤ k,

⎫
⎪⎪⎬

⎪⎪⎭

depends only on the parity of i2, and in particular it does not depend on the indices
i1, i3 and on the permutation π .

Proof Since the knowledge of one of the three sets Codes(σ ), Asc(σ ), Coasc(σ ) is
equivalent to the knowledge of the set Des(σ ) it is clear that, by (4), the number
C(i1, i2, i3;π) does not depend on π . So we can assume that π = Id . Then, from
Proposition 4.6, we deduce that C(i1, i2, i3; Id) depends only on i2.

To prove that C(i1, i2, i3;π) depends only on the parity of i2 we consider the
following permutation on W(k)

(σ1, . . . , σk) �→ (σ1w0,w0σ2, . . . , σ2h−1w0,w0σ2h, σ2h+1, . . . , σk),

where h is an integer such that 2h ≤ k and w0 = (n,n − 1, . . . ,1) is the top ele-
ment of W . Observing that Des(σ ) = Coasc(σw0) = Asc(w0σ) for all σ ∈ W , this
map proves bijectively that C(k, k, k, Id) = C(k − 2h, k − 2h, k − h,π), where π =
(2h+1,2h+2, . . . , k,2,4, . . . ,2h,1,3, . . . ,2h−1) and C(k−1, k−1, k−1, Id) =
C(k − 1 − 2h, k − 1 − 2h, k − 1 − h),π ′), where π ′ = (2h + 1,2h + 2, . . . , k −
1,2,4, . . . ,2h,1,3, . . . ,2h − 1, k)) and the proof is complete. �

We conclude this paper with the following result that we state without proof.
The Robinson-Schensted correspondence can be naturally generalized to the so-
called RSK-correspondence (where the “K” stands for Knuth) between multisets
with support in N

2 of cardinality n and pairs of semistandard tableaux of the same
shape. One can show that an analogous correspondence exists also in the multi-
variate case between multisets with support in N

k of cardinality n and k-tuples of
semistandard Young tableaux of size n preserving “descents”. Here the descent sets
Des1(A), . . .Desk(A) of a multiset A are by definition the descent sets of the per-
mutations appearing in Theorem 3.5 for the k-partite partition obtained reordering
the elements of A. The descents of a semistandard tableau are the descents of its
standardized tableau.

Theorem 4.8 There exists a correspondence T between multisets with support in N
k

of cardinality n and k-tuples of semistandard Young tableaux of size n such that,

1. |T −1(T1, . . . , Tk)| = gμ(T1),...,μ(Tk);
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2. if T (A) = (T1, . . . , Tk) then the multiplicity of i in Tj is equal to the multiplicity
of i within the j -th coordinates of the elements of A and

3. Des(Ti) = Desi (A).

Acknowledgement A particular gratitude goes to Vic Reiner for his precious comments on a prelimi-
nary draft of this paper.
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