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Tolerance Analysis for Sheet 
Metal Assemblies 
Traditional tolerance analyses such as the worst case methods and the statistical 
methods are applicable to rigid body assemblies. However, for flexible sheet metal 
assemblies, the traditional methods are not adequate: the components can deform, 
changing the dimensions during assembly. This paper evaluates the effects of deforma
tion on component tolerances using linear mechanics. Two basic configurations, 
assembly in series and assembly in parallel, are investigated using analytical methods. 
Assembly sequences and multiple joints beyond the basic configurations are further 
examined using numerical methods (with finite element analysis). These findings 
constitute a new methodology for the tolerancing of deformable parts. 

1 Introduction 
Sheet metal assembly is practiced widely in such industries 

as automobile, aerospace, electronics and furniture-making. One 
metric for the overall quality of the product is the amount of 
variation from nominal dimensions, as caused by the variation 
in the parts. A typical method for determining the overall varia
tion is called stack-up: by "adding" the variations in the parts 
to arrive at the variation of the whole. Because the components 
are put together "end to end," the assembly and the tolerances 
are in series. This paper examines an alternative method: assem
bling and tolerancing in parallel. For two components with 
variations v-^ and. V2, the resulting variation v depends on the 
configurations, viz.: 

series v = Ui + 1/2 

parallel i'=f{v\,V2) 

(1) 

(2) 

where the function / in the parallel assembly is to be deter
mined. For example, if the function fisf(ui, V2) = {\l'i)vx 
+ (1 /3) t/2, then in concept a decrease in the assembly variation 
would result. The function / depends on the coefficients of 
stiffness of the components in the parallel assembly. 

In his statistical study of production data, Takezawa (1980) 
observed that, for flexible sheet metal assemblies, "the conven
tional addition theorem of variance is no longer valid." Further
more, he noted that "the assembly variance has decreased and 
is closer to the variance of the stiffer components." This paper 
seeks an explanation of this phenomenon by using analytical 
mechanics. The effect of assembly sequences will also be inves
tigated when involving flexible parts. To gain an insight in 
the importance of sequencing, an automotive body assembly is 
illustrated. There are n components as shown in Fig. 1. The 
basic inquiry is: In what sequence should the components be 
assembled such that the resulting variation is minimized? For 
simplicity, suppose the components are classified as either 
"rigid" or "flexible." An underbody and a door ring could be 
considered as rigid while a quarter panel or a shelf is flexible. 
Common sense would suggest that one builds a ' 'cage'' of rigid 
components—in series—and then lays the flexible panels on 
the rigid cage—in parallel. Alternatively, a flexible "shell" of 
panels could be built in series and then laid on the rigid cage in 
paraUel. Indeed, different sequencing of the components would 
result in different variation in the final assembly. 

Tolerance is defined as the permissible variations of a dimen
sion in engineering drawings or designs (ANSI 1994). It may 
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be treated deterministically. A dimension d is said to have a 
nominal value D with an upper bound T„ and a lower bound 
Ti, i.e., d & [D - Ti, D + T „ ] . Since a permissible dimension 
can occur anywhere in this range, the notion of a random vari
able arises with the probabilistic treatment. Assuming an under
lying probability distribution, the nominal dimension then corre
sponds to the mean, and the tolerance corresponds to the stan
dard deviation (or variance). Typically, the range [D - TI, D 
+ r„] corresponds to 6 standard deviations {6a, the natural 
tolerance). Therefore, there are correspondingly two methods 
for the analysis of assembly tolerance: worst case (determinis
tic) and statistical analysis (probabilistic). 

The worst case method evaluates an assembly by assuming 
that the dimensions of all components take on their extreme 
values (Chase and Greenwood, 1987; Dong and Soom, 1990; 
Dong et al., 1994; Fortini, 1967; Greenwood and Chase, 1987; 
Spotts 1978). While simple and efficient, this method overesti
mates the assembly tolerance, because the probability of all the 
components in the assembly having the "worst case" dimen
sions simultaneously is very small. The effect of applying this 
technique is that very tight tolerances for the components are 
required in order for the final assembly tolerance to meet the 
design specifications. It is known that tolerances are inversely 
proportional to manufacturing cost (Wu et al., 1988). There
fore, an unnecessarily high cost may result. 

In statistical analv.iis, the component tolerances are assumed 
to adopt known distributions. Calculating the joint distribution 
of some linear or nonlinear function of component distributions 
as a result of the assembly is the main task (Chase and Green
wood, 1987; Fortini, 1967; Greenwood and Chase, 1987, 1990; 
Lee and Woo, 1990; Spotts, 1978; and Treacy et al , 1991). 
Detailed reviews of tolerancing methods are available (Chase 
and Parkinson, 1991; Juster, 1992; Roy et al., 1991; and Wu et 
al., 1988). Statistical analysis is more effective in supporting 
interchangibiUty for mass production and efficient for cost re
duction. 

Whether using worst case or statistical analysis, there is an 
underlying assumption in these state-of-the-art tolerance analy
ses: that the components are rigid (e.g., independent of the 
applied forces). In other words, during assembly, the compo
nents do not deform, hence their dimensions do not change. 
Sheet metal components, on the other hand, are flexible: their 
dimensions may change during locating, clamping and joining. 
This paper investigates such changes. Section 2 examines an 
assembly in series and in parallel. The equations for analyzing 
the tolerances are derived for the basic configurations. Linear 
mechanics is employed, hence identifying deflection with toler
ance, denoted by the variable v. Section 3 explores tolerance 
stack-up in configurations beyond the basic. As the number of 
simultaneous equations inevitably exceeds the ability to solve 
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LH door ring 

Fig. 1 Automotive body panel structure 

them manually, the finite element method is invoked. Statistical 
simulation is also conducted. In doing so, the variable v is 
treated as a random variable in the following sense. Consider 
a linear system with two independent variables Ui and V2: 

V = C\Vx + C2V2 (3) 

as a generalization of Eqs. (1) and (2), where v is the system 
response, and C| and Cj are the parameters to be determined by 
the assembly configuration (series or parallel). For a normal 
distribution with mean /.« and variance a^, Eq. (3) becomes: 

/X = Cx\X^ + C2/U2 (3a) 

(3^^) 

And if the tolerance r is set at the da level, then the assembly 
tolerance is related to the component tolerances by: 

. V 

\ 

5; 

Datum 

/ ^ 

Beam 

L 

P 

t - . X 

Fig. 2 Datum and variation 

Next, consider two components with variations v^ and Vi. at 
their respective free ends joined mechanically. (The assumption 
of mechanical joining is made so that later calculations are 
unencumbered by thermal considerations. In other words, a 
weld nugget is indistinguishable from a rivet.) The problem is 
to determine the parameters C; in Eq. (3) . Two basic configura
tions are examined. 

Configuration S: Two components are assembled in series; 
see Fig. 3(a). A clamp (Clamp 1) exerting a force F, in the 
y-direction on Beam 1 brings vi to its nominal; likewise, a 
force F2 from Clamp 2 brings i/j to nominal; see Fig. 3ib). 
(Forces and moments at the datum are not shown.) A joining 
agent, shown as a welding or riveting gun, is brought in to join 
the two free ends. Then, as shown in Fig. 3(c) , the clamps are 
released, upon which a reactive force F results, which must 
necessarily be equal to the sum of Fi and F2 in magnitude 
though opposite in direction (indicated by a reverse direction 
of the arrow): 

F = F, + F2 (4) 

T = Vc'iT? + CJTJ (3c) 

When the fixture on Beam 2 is released, the reactive force F2 
and a reactive moment M balancing F2 from Clamp 2 must 
necessarily be released. (The force and the moment at the Da
tum for balancing F, from Clamp 1 do not affect the final 
dimension of the assembly.) Finally, the variation of the as
sembly i/„ can be calculated at two points of interest: v,, 1 where 

2 Problem and Its Analysis 

Tolerance analysis in sheet metal assemblies can be stated 
simply. Components, each with its own tolerance, are fixtured 
together and joined; the overall tolerance of the assembly is 
sought. While the problem is easily understood, the considera
tions are manifold. External forces are applied in order to bring 
the flexible components together. The components are joined— 
mechanically (such as by riveting) or by thermal means (such 
as by resistance welding, arc welding, or laser welding). The 
external loading (from clamping and joining) as well as internal 
loading (from residual stresses, for example) may cause buck
ling, for which there is no closed form solution. Thus the prob
lem of tolerance analysis of sheet metal assemblies does not 
seem to yield easily. And, indeed, this explains the scarcity of 
literature on flexible components (Lee and Haynes, 1987; and 
Menassa and DeVries, 1991) despite the immense utility of 
sheet metal assemblies in industry. In explaining the phenome
non of reduced variation after flexible components are fixtured 
and assembled, simplicity is adopted for clarity. Later, general
izations are made. 

2.1 Linear Mechanics. Let a piece of sheet metal be ide
alized as a cantilevered beam of length L and consider the 
variation of a single point/?, as shown in Fig. 2. The fixed end 
is due to fixturing or due to a prior weldment. In the context 
of tolerancing, such a fixed point is the datum. The free end p 
reflects the variation v. In general f has three components {Ux, 
Vy, and v^). In Fig. 2 only Vy. is shown and in the subsequent 
discussion Vy is identified with v, without loss of generality. 

Fixture 

Datum 

/ / / 

(a) Component variations 

^il • I Fi 
Fixture M=f,A 

Clamp 1 • Clamp 2 

Gun 

(b) Tooling and welding 

(c) Assembly variation 

Fig. 3 Assembly In series 
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(a) Component variations 
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Clamp I Gun 

(b) Tooling 

(c) Assembly variation 

Fig. 4 Assembly in parallel 

the free ends were joined and 1/^2 which was a fixed end for 
Beam 2. 

Configuration P: The assembly of two components in parallel 
is illustrated in Fig. 4. While the same forces as in Eq. (4) are 
involved, there is a difference in the structure—the resulting 
assembly is "thicker," hence less subject to deflection. The 
relation between v and F is estabhshed first. 

A linear model of a cantilevered beam acts as a spring. A 
force F causes a deflection i^ according to Hooke's law: 

Kf (5) 

where K is the spring constant (coefficient of stiffness). Spe
cifically, f is related to F by (Skalmierski, 1979): 

FIJ 

3 EI 
(6) 

where L is the length of the beam, E is the Young's modulus 
of the material, and / is the moment of inertia of the cross-
section of the beam. Then the coefficient of stiffness K can be 
calculated by substituting Eq. (6) to Eq. (5): 

K = 
3 EI 

(7) 

2.2 Tolerance Analysis. For assemblies in series, the 
variations (spring-back) I'ai and j/„2 at the two points shown in 
Fig. 3(c) can be calculated using the following equations (the 
derivations of which are omitted): 

series v^i -

FJA 
3 EL 

= 1 + 

1 + 

FJA 
3 Eh 

3L, 

2L, 

(8) 

F2LI 

6 Eh 

3L2 
2L, 

V\ + 0.51^2 
(9) 

Note that the assembly variation is independent of the material 
properties (Young's modulus and the coefficient of stiffness); 
only the geometry (the length) contributes to the parameters c, 
in Eq. (3). Equations (8) and (9) indicate that the assembly 
tolerances will be affected by part tolerances and the geometry 
of the parts in serial assembly. 

For assembly in parallel, as shown in Fig. 4(fe), the reactive 
force F is also the sum of the clamping forces Fi and F2, each 
is related to the component variations Vi and V2 by Eq. (5): 

F = F , -H F2 = K,v, + K2V2 (10) 

Force F causes an assembly variation Va, with a stiffness Kp, 
for assembly in parallel. The spring model results in: 

K„v„ (11) 

By comparing Eqs. (10) and (11), the variation takes on the 
form of: 

parallel 
K, K2 

(12) 

Interestingly, if one of the two components has a large coeffi
cient of stiffness and a negligible variation, the assembly varia
tion becomes very small. (This is often the case in industrial 
practice. The automotive chassis, for example, is much stiffer 
than the body panels. And the chassis serves as a reference onto 
which the panels assemble.) Assume that ^1 > K2 and i/^ ~ 0. 
Then Eq. (12) becomes: 

K2 K2 
— V2~ — V2<Vl (13) 

In other words, the assembly variation can be much smaller 
than the component variation, provided that the assembly is 
done in parallel and that one of the two components is stiff and 
almost error-free. 

3 Examples and Validation 
The phenomenon that the assembly variation can be less than 

the component variation (Takezawa, 1980) has been explained 
by Eq. (13), using simple mechanics, for two components. 
When the number of components exceeds two, or when multiple 
joints are used, the composite stiffness coefficient involves the 
solution of simultaneous equations. In the following, two exam
ples are offered beyond the basic configurations. The first exam
ple involves three components and examines the effects of se
quencing on the assembly tolerance. The second example in
volves two components resulting from multiple joints. 

3.1 Assembly Sequences. Consider the various se
quences of assembling the components shown in Fig. 5. There 
are three components: panel Pi, panel P2, and chassis C; with 

^/J'ZJ', 
X 

Fig. 5 Two panels and a chassis 
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(a) Three components 

I 
(bl) Pi andP2in series 

results in? 12 

I •^12 

I i: J 

(cl) ?! and C in parallel 
results in PiC 

I P,C 
(b2) P12 and C in parallel (c2) PiC and P2 in parallel 

Fig. 6 Two assembly sequences 

variations i^u 1^2 and Vc', and coefficients of stiffness K,, K2 
and Kc, respectively. As C is the chassis, Kc> Ku Kc> K2, 
and Vc ~ 0 are assumed. 

To simplify the computations, the components are treated as 
cantilevered beams, so that the previously derived equations 
can be used directly; see Fig. 6(a) . Two sequences are exam
ined; they are: 

Sequence SP: Panels Pi and P2 are first joined in series 
and then the resulting panel P12 is joined to the chassis C 
in parallel. As illustrated in Fig. 6(b\), the "left" side of 
Pi serves as the datum and the "r ight" side of the resulting 
panel Pjj exhibits a variation 1/12. In the subsequent step, 
illustrated in Fig. 6(b2), the left side of the chassis again 
serves as the datum and the variation on the right side i/i2c 
is the assembly variation. 

Sequence PP: Panel Pi is first joined to the chassis C in 
parallel resulting in PiC. Then panel P2 is joined to PiC, 
also in parallel. In joining Pi to C, the left side of C is the 
datum and the right side of Pi shows a variation Vic, while 
the right side of C yields a variation V2c\ refer to Fig. 6 ( c l ) . 
Similarly, in joining P j to PiC, the left side of P2 is the 
datum and its right side gives a variation Vxc2 as shown in 
Fig. 6 ( c 2 ) . 

The dimensions of both panels and the chassis are shown in 
Table 1. The material is mild steel, with Young's modulus E 
= 207,000 N/mm^ 

Variations in the X- and Z-directions are set to zero so as to 
simplify the computation. For simplicity, assume the variations 
V\ and V2 are identical. The variation of the chassis C is set to 
zero, and finite element analysis (CBAR beam element, MSC/ 

Table 1 Dimensions of panels and chassis (mm) 

Components 

Length L 

Width W 

Thickness T 

Panels P, and P^ 

500 

500 

1 

Chassis C 

1000 

500 

2 

i . Y 

'/% Fixture 

I 
/ 

1 
X L - - \ - * - U „ 

(a) Distributions of welds (c) Nodal DOF 

1 
2 

3 
4 

5 
6 

7 
8 

(b) Finite element scheme 

Fig. 7 Assembly with multiple welds 

NASTRAN 1988) is used to obtain the coefficients of stiffness 
of the two sequences. The results are: 

Sequence SP: :̂ i2c = 0.0983i^i + 0.0197?>2 (14) 

Sequence PP: u,c2 = 0.0658iy, + 0.00941^2 (15) 

If the component standard deviations are identical and are set 
at 1 mm. 

(Ti = (72 = 1 m m (16) 

then from Eq. (ib), 
quence SP is: 

the assembly standard deviation for Se-

V0.0983V? + 0.0197V1 = 0.1 mm (17) 

and the assembly standard deviation for Sequence PP is: 

cr„, = V0.0658V? + 0.0094Vi = 0.066 mm (18) 

It is clear that PP results in less variation than SP. 

3.2 Multiple Joints. The effect that additional joints have 
on a large panel is of interest since the joints serve the same 
purpose as multiple parallel assemblies of "smaller" panels. 
The effect is most vivid if the undercarriage from the previous 
example is "softened"; that is, two sheet metal components of 
equally low stiffness are joined, in parallel, at multiple spots. 

Consider the assembly of two cantilevered beams with four 
joints. The thickness of both components is I mm. The dimen
sions are length L = 100 mm, width W = 10 mm (in Z-direc-
tion). The material used is steel. The four joints are distributed 
uniformly along the beams, see Fig. 7 (a ) . Force F is the same 
as that shown in Eq. (10). 

Finite element analysis is again used to find the coefficients 
of stiffness. There are eight beam elements (CBAR, MSC/ 
NASTRAN 1988) in the assembly; see Fig. l{b). The beam 
element is a three degree-of-freedom node element. The nodes 
coincide to the spot welds shown in Fig. 7 (a ) . At each node / 
{i = 1 to 4) there are three degrees of freedom (DOF): two 
translations and one rotation; see Fig. 7(c) . Since each weld 
constrains 3 DOF between the two cantilevered beams, the over
all stiffness of the welded structure will be affected by the 
welds. Thus the number of welds will influence the assembly 
dimension. In total, there are 12 degrees of freedom (4 nodes, 
with 3 DOF at each node). The equations are: 
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0 

193200 

-165600 
0 
0 

331200 
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-3312 

0 
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3312 
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0 

193200 

-165600 
0 
0 

165600 

-265 
-3312 

0 
256 

3312 
-13800 

0 
-3312 
96600 

• 

C 1 

Sal 

t^a2 

Sal 

Ua3 

l^n-f 

Sa-i 

«o4 

Vai 

, ^""t . 

. = . 

0 
0 
0 
0 

°\ 
0 
0 
0 
F 

[o J 
(19) 

where the force released ( f ) is calculated from Eq. (10). If the 
geometry and Young's modulus are substituted into Eqs. (7) 
and (10), then an explicit form for F is obtained: 

F = Kiv^ + K2U2 = 0.5175;^i + 0.5175/^2 (20) 

Variations in the y-direction at the four nodes can be solved 
from Eq. (19) with the solution: 

= ( 

0.0122 
0.0420 
0.0835 

10.1309 J 

I'l + 

0.0122 
0.0420 
0.0835 

.0.1309 

1/2 (21) 

A statistical simulation of t/j and 1/2 reveals the effect of multiple 
joints in Eq. (21) graphically (MATLAB 1994). Suppose both 
variables v^ and 1/2 are normally distributed with zero mean and 
unit standard deviation as shown in the upper-right box of Fig. 
8. The variations at nodes 1 through 4 decreases towards the 
fixed end (datum) of the assembly. 

Tolerance stack-up is now analyzed based on the tolerance 
model, Eq. (21). For example, given unit standard deviations 
of Ui and j/2, as in Eq. (16), the standard deviations of the 
selected points after assembly can be obtained from Eq. (3b): 

(22) 

where (7„( represents the standard deviation of the assembly at 
joint i (i = 1 to 4) . Equation (22) shows that the largest varia-

C^al 

kO-<,4, 

. = -

0.0173 
0.0594 
0.1181 

[0 .1851 

tion appears at the free end (/ = 4) of the assembly. Variation 
at i = 1 is very small. These calculations agree with the results 
of the Monte Carlo simulation of Fig. 8. 

The effect of having multiple joints, as given by Eq. (22) 
can be compared to that of a single joint, as illustrated in Fig. 
4. The finite element modeling for a single joint assembly gives: 

(23) 

The assembly stiffness coefficient (K^) relates to the spring-
back (va) at the free end and the force released (F) by inverting 
Eq. (23): 

41400 
0 
0 

0 
4.1 

- 2 0 7 

0 
- 2 0 7 

24150 

«a 

U„ 
On 

K„ 2.3657 
(24) 

As expected, the assembly stiffness Kp is larger than the sum 
of the component stiffness ^1 and ATa; refer to Eq. (20): 

2.3657 > 0.5175 + 0.5175 

The difference is contributed from the tensile stiffness of the 
joint. (After joining, the components can no longer slide along 
each other). Now, Eq. (12) becomes: 

F K, K2 0.5175 , 0.5175 ^„,^ 
Va - = V\ H ^2 = V\ H î 2 ( 2 5 ) 

K, K, K, 2.3657 2.3657 

= 0.2188i/i + 0.2188^/2 

cr, = V0.2I88V? + 0.2188V^ = 0.31 mm (26) 

by assuming Eq. (16). By comparing Eq. (26) which gives the 
standard deviation of an assembly at the free end with one joint 
and Eq. (22) which shows the results with four joints, the 
variation (tolerance) reduction at the free end of the assemblies 
is about: 

0.31 - 0.1851 

0.31 
X 100% «• 40% (27) 

Fig. 8 Monte Carlo simulation 

A similar analysis can be performed to show the "diminishing 
return" of additional joints in an assembly. 

4 Summary 
Two basic configurations, i.e., assembly in series and in paral

lel have been presented. The importance of assembly sequenc
ing has been illustrated and the effect of multiple joints assessed. 

Assembly tolerances are affected not only by the geometry 
of the components, but also by the stiffness of the components 
in parallel assembly. This study provides an explanation as to 
why the assembly tolerance can be less than the "stacked up" 
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tolerances of the components in flexible bodies. In serial assem
bly, only the geometry of the components affects the tolerance 
of the assembly. 

In this work, linear mechanics is employed which by no 
means explains the possibly nonlinear behaviors in assemblies, 
series or parallel. No thermal consideration was taken either. 
It is the hope that this work will generate further interest in 
investigating these phenomena. 

References 

ANSI Y14.5M, 1994, Dimensioning and Tolerancing, The American Society 
of Mechanical Engineers, New York. 

Chase, K, W., and Greenwood, W. H., 1987, "Design Issues in Mechanical 
Tolerance Analysis," ASME Manufacturing Review, Vol. 1, No. 1, pp. 50-59. 

Chase, K. W., and Parkinson, 1991, "A Survey of Research in the Application, 
of Tolerance Analysis to the Design of Mechanical Assemblies,'' Research in 
Engineering Design, No. 3, pp. 23-37. 

Dong, Z., and Soom, A., 1990, "Automatic Optimal Tolerance Design for 
Related Dimension Chains," ASME Manufacturing Review, Vol. 3, No. 4, pp. 
262-271. 

Dong, Z., Hu, W., and Xue, D., 1994, "New Production Cost-Tolerance Models 
for Tolerance Synthesis,'' ASME JOURNAL OF ENGINEERING FOR INDUSTRY, Vol. 
116, May, pp. 199-206. 

Fortini, E. I., 1967, Dimensioning for Interchangeable Manufacturing, Indus
trial Press, New York. p. 48. 

Greenwood, W. H., and Chase, K. W., 1987, "A New Tolerance Analysis 
Method for Designers and Manufacturers," ASME Journal of Engineering for 
Industry, Vol. 109, May, pp. 112-116. 

Greenwood, W. H., and Chase, K. W., 1990, "Root Sum Square Tolerance 
Analysis with Nonlinear Problems," ASME Journal of Engineering for Industty, 
Vol. 112, Nov., pp. 382-384. 

Juster, N. P., 1992, "Modelling and Representation of Dimensions and Toler
ances: A Survey," Computer Aided Design, Vol. 24, No. 1, pp. 3-17. 

Lee, J. D., and Haynes, L. S., 1987, "Finite Element Analysis of Flexible 
Fixturing Systems," ASME Journal of Engineering for Industry, Vol. 109, pp. 
134-139. 

Lee, W. J., and Woo, T. C„ 1990, "Tolerances: Their Analysis and Synthesis," 
ASME Journal of Engineering for Industry, Vol. 112, May, pp. 113-121. 

MATLAB, 1994, The Mathworks, Inc., Version 4.2a. 
Menassa, R., and DeVries, W., 1991, "Optimization Methods Applied to Se

lecting Support Positions in Fixture Design," ASME Journal of Engineering for 
Industry, Vol. 113, Nov., pp. 412-418. 

MSC/NASTRAN, 1988, User's Manual, The MacNeal-Schwendler Corpora
tion. 

Requicha, A. A. G., 1993, "Mathematical Definition of Tolerance Specifica
tions," ASME Manufacturing Review, Vol. 6, No. 4, pp. 269-274. 

Requicha, A. A. G., and Chan, S. C., 1986, "Representation of Geometric 
Features, Tolerances, and Attributes in Solid Modelers Based on Constructive 
Geometry," IEEE J. Robotics and Automation, Vol. RA-2, Sept., pp. 156-166. 

Roy, U., Liu, C. R., and Woo, T. C , 1991, "Review of Dimensioning and 
Tolerancing: Representation and Processing," Computer Aided Design, Vol. 23, 
No, 7, pp. 466-483. 

Skalmierski, B., 1979, Mechanics and Strength of Materials, Elsevier Sciendfic 
Publishing Company, New York. 

Spotts, M. F., 1978, "Dimensioning Stacked Assemblies," Machine Design, 
Apr., pp. 60-63. 

Takezawa, N., 1980, "An Improved Method for Estabhshing the Process-Wise 
Quality Standard," Reports of Statistical Application Research, Union of Japanese 
Scientists and Engineers (JUSE), Vol. 27, No. 3, September, pp. 63-76. 

Treacy, P., Ochs, J. B., Ozsoy, T. M., and Wang, Nanxin, 1991, "Automated 
Tolerance Analysis for Mechanical Assemblies Modeled with Geometric Features 
and Relational Data Structure," Compuler-Aided Design, Vol. 23, No. 6, pp. 
444-453. 

Turner, J. U., 1993, "A Feasibility Space Approach for Automated Toleranc
ing," ASME Journal of Engineering for Industry, Vol. 115, Aug., pp. 341-346. 

Wu, Z., ElMaraghy, W. H., and ElMaraghy, H. A., 1988, "Evaluation of Cost-
Tolerance Algorithms for Design Tolerance Analysis and Synthesis," ASME 
Manufacturing Review, Vol. 1, No. 3, pp. 168-179. 

Journal of Mechanical Design MARCH 1996, Vol. 1 1 8 / 6 7 

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use




