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ABSTRACT Fa
This paper addresses the friction compensation in hydrauli EA
Ac

actuators using an artificial neural network combined wisluia
table control technique. The proposed neural network isdth
off-line and allows calculate an estimative of the frictifamce
on-line very quickly based on the hydraulic force and onthe ¢ 9
linder velocity. The estimated friction force is introddcedirec-

tly in the force line of the system using a cascade contrdlher Kp
which the hydraulic actuator is interpreted as two intenzamed Kp
subsystems: a mechanical one driven by a hydraulic one. TheKs
convergence properties of the closed loop system are isstat| le

using the Lyapunov method. Experimental results validage t M
main theoretical results of the proposed strategy. Pa
Po
Ps
Pa
P
NOMENCLATURE
. . Pad
A Cylinder piston arean?] R
¢y Dead-zone compensation parameér [ s
Ccc Dead-zone compensation paramedr [ t
d InputdisturbanceN] ts
e Neural network input u
F  Force vector Ue
[= Upper bound force vector \%
Fa Friction force N] v

Estimated friction forceN]

Estimated friction force erroiN]

Friction force training patterndN]
External force N]

Nonlinear function

Nonlinear function

Neural network activation function
Mechanical subsystem control law ga.§.m!]
Hydraulic subsystem control law gais 1]
Valve flow coefficient f*.V 1.5 1.N"1/2]
Dead-zone compensation parametér [
System’s total maskg]

Pressure in the lina[Pa]

Pressure in the linb [Pq]

Supply pressureFg]

Pressure differencé§]

Pressure difference tracking erréia]
Desired pressure differenced]

Positive constant

Velocity trajectory tracking erromp.s 1]
Time [9]

Sample periodd]

Valve control input Y]

Controller signalY]

Lyapunov function

Total volume fr?]
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Va  Oil volume in the linesa [m?]

Vp,  Oil volume in the lines [m?]

w Neural network weight

y Position trajectory]

y Position trajectory tracking erronf
Yd Desired position trajectorynf]

Vi Reference velocityrp.s 1]

B Oil bulk modulus Pa]

A Mechanical subsystem control law gaiss]]
Amin  Minimum eigenvalue

p Error vector

INTRODUCTION

Hydraulic actuators provide high force, stiffness and dura
bility suitable to various applications, and there is a gnognde-
mand for such actuators to operate with improved precisimh a
repeatability. Unfortunately, these actuators presentesan-
desirable characteristics, namely, lightly damped dyearand
highly non-linear behavior introduced by both, pressuraady
mics and friction, among others.

In a typical hydraulic actuator, the movement of the piston,
and hydraulic fluid are subject to friction. The friction isrge-

rated by the contact between both the rod and the seal, and the

piston seal and the cylinder, and the viscous effects of Yhe h
draulic fluid. This friction affects the controllability,cauracy,
and repeatability of the actuator.

The lightly damped dynamics and the non-linear flow and
friction dynamics complicate the controller design fortiger-
formance closed loop applications. The simple classical co
trollers cannot overcome the bandwidth limitation causgthle
lightly damped open loop poles position. The use of a linear
controller is limited by the non-linear behavior.

Due to these control difficulties, a combination of non-#ine
control techniques offers good theoretical and experiaiaet
sults. One way to combine control techniques is to use thie-bac
stepping method. Another way to do it is based in interpgetin
the hydraulic actuator as two interconnected subsysteme-a
chanical subsystem driven by a hydraulic one.

In this paper is chosen the second method in which the main
idea is to promote a fast loop in the hydraulic subsystemdieior
to generate hydraulic forces that allow the mechanical ysibs
tem to track the desired trajectory. This idea was formdlize
in [1,2] taking into account an error during the hydraulibsys-
tem trajectory tracking and by presenting a stability profothe
whole interconnected system. The resulting controllezfierred
as cascade controller. The experimental and theoretisaltse
employing this controller have demonstrated that its aldeep
performance overcomes the performance obtained withictdss
controllers, with respect to the lightly damped dynamicd tm
the non-linear pressure dynamics. In this paper is showriliba
cascade controller allows compensate the friction dynsumia

very simple and efficient way.

Friction is a complicated phenomenon that is still not fully
understood [3]. Stick-slip friction is a nonlinear frictiggheno-
menon and can be found in hydraulic actuators around the zel
velocity range. Before motion starts, the surfaces aredrsthtic
friction regime. A force greater than the static frictiomeégjuired
to begin the movement. As the component starts to move, th
friction suddenly decreases as it switches to the dynamnge fr
tion regime. This sudden change in friction results in ayjerk
actuator motion, making positional control and repeaitstiif-
ficult [3-5].

Modeling this sudden switch is difficult and has been addres
sed by several researches. A review can be found in [3]. Mor
recently a model based on the concept of a variable frictomf-c
ficient was proposed and applied to in [6], which well reprgése
the stick-slip modes.

Generally the friction compensation consists in adding ar
estimated friction force to the force reference generatethb
position controller. This kind of compensation assumesitia
actuator has a fast and accurate force response. This ieafjgne
verified with electric actuators. Nevertheless, most seves,
which are the control devices of the hydraulic actuatorsnaio
provide a sufficient fast and efficient force response.

The approach presented in this paper allows to add the e
timated friction force to the force reference of the mecbahi
subsystem of the cascade controller and to provide a suffigie
fast response in the hydraulic subsystem in order to conapens
the friction.

The friction force is estimated off-line using a neural
network which architecture is based on the model with the va
riable friction coefficient [6]. This neural network posses a
simple architecture and is easily implemented on-line.

The cascade controller with this friction compensation im-
proves the tracking performance as predicted in the thieafet
discussion presented in this paper and it is confirmed byxhe e
perimental results.

The paper is organized as follows. First is described the hy
draulic actuator model and the cascade strategy. Next,ahe c
cade controller with friction compensation is presenteu thie
sequence, the friction force estimation is described. Thene-
sented the cascade controller stability analysis, deschib ex-
perimental setup and discuss the experimental resultallyis
outlined some conclusions.

HYDRAULIC ACTUATOR MATHEMATICAL MODEL

The hydraulic actuator considered in this paper is shown ir
Fig. 1. It consists of a double-rod cylinder controlled byua s
percritical center four-way spool valve. In this modelirigis
considered that the hydraulic power unit delivers a constap-
ply pressureps irrespective of the oil flow rate.
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Figure 1. HYDRAULIC ACTUATOR

In Fig. 1, po is the return pressurg, is the pressure in the
line a, py is the pressure in the lirg v, is the oil volume in the
linesa, v, is oil volume in the lined, A is the cylinder piston
cross-sectional ared) represents the total mass of the system,
Fa is the nonlinear frictiony is the actuator piston positiofy
represents an external force, ant the control input.

When the valve dynamics is sufficiently fast and can be ne-
glected, the hydraulic actuator can be represented by the fo
lowing nonlinear equations [7]

My +Fa=Apa— R @

pa = Af(y)y + Ksg(u, pa)u 2

where,pa = pa— pp is the pressure difference between the cham-
bersa andb of the cylinder ans is the valve flow coefficient.
The nonlinear functiond (y) andg(u, pa) are given, respecti-
vely, by

_ Bv
fly) = (052) _Ay? 3)
g(u, pa) = m—ﬁm (4)

wheref3 is the bulk modulusy is the total volume of oil.

As it is observed, the valve model is represented by the
second term of Eq. (2), assuming that exists a linear relatio
between the tension and the flow for a given pressure diféeren
value. This represents adequately the tension versus flowe cu
presented in the valve catalog [8], non considering theevalv

3

dead-zone. This model represents well the real system lmehav
since the dead-zone is compensated, as shown in the Experime
tal Setup section.

The model presented in this section will be used in the se
quel.

THE CASCADE STRATEGY

The hydraulic actuator can be interpreted as two intercon
nected subsystems: a mechanical subsystem driven by alhydre
lic one. This interpretation is shown in Fig. 2 and can be phys
cally explained as follows.

u Hydraulic P Mechanical : y
subsystem subsystem
... HYDRAULIC ACTUATOR
Figure 2. INTERCONNECTED SUBSYSTEMS

In the hydraulic actuator shown in Fig. 1, when the valve
spool is moved in one direction, the pressure in one chambe
starts to increase and the pressure in the other chambir tstar
decrease. It creates a pressure differgqmcbetween the cham-
bers and generates a force on the cylinder piston. This ferce
applied to a mass-damper system (mechanical subsystem). Tt
refore, the mechanical subsystem is driven by a hydraulic on
On the other hand, the fluid dynamics in the chambers of the hy
draulic subsystem is affected by the piston movement, aisd th
shows the system interconnection.

This interpretation is used by several authors to develop co
trollers for hydraulic actuators [9-11]. The idea is to poiena
fast loop in the hydraulic subsystem in order to generateefo
in the hydraulic subsystem that allows the mechanical sibry
to track the desired trajectory. In [1] this idea was formedi
taking into account an error during the hydraulic subsysiem
jectory tracking. Also, the stability proof for the wholestgm
and the resulting strategy is presented in this paper.

The control objective is that(t) tracks a desired trajectory
y4(t) as close as possible. To achieve this end, let

Pa = Pa — Pad )

be the pressure difference tracking error, whaxgis the desired
pressure difference so that the control goal is reachedstiBukb
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ting Eq. (5) into Eq. (1) gives wherey; is the reference velocitgis a measure of the trajectory
tracking errorKp > 0 andA > O are the mechanical subsystem

MY + Fa = Apag + d(t) (6) control law gains andgl is the position trajectory tracking error.
The hydraulic subsystem control law contains the inverse
whered(t) = AP, — F_ is an input disturbance. of the functionsf(y) andg(u, pa), defined in Eq. (3) and (4),

The system described by Eq. (6) and (2) is in the cascade "€SPectively, and is given by
form. Equation (6) can be interpreted as a second order mecha

nical subsystem driven by a desired foAp,g and subjected to 1 1. _ .
an input disturbance(t). Equation (2) represent the hydraulic u= K pa) [Ty (Pad — KePa) + Ay 9
subsystem.

The design of the cascade controller for the system in Eq. , i i .. i .
(6) and (2) can be summarised as: whereKp is the proportlor_lal gain, anmd is the time derivative
(i) Compute a control law to the mechanical subsystem Eq. (6) of the de§|red pressure difference given in Eq. (7).
such that the cylinder displacemaraichieves a desired position Consider that the system parameters are exactly known ar
trajectoryyq(t) taking into account the presence of the distur- he external forcéy is null. Combining Eq. (6) and Eq. (7) and
banced(t). With this desired forcé\pag one can quantify the ~ USing (8), the Eq. () can be rewritten by
desired pressure difference;
(i) Compute a control lawu such thatp, tracks pag defined M$+ Kps = Apa — Fa (10)
above as close as possible.

whereF, = Fa — Fa is the error in the estimated friction force.

CASCADE CONTROLLER WITH ERICTION Substituting the control law Eq. (9) in Eq. (2) and in the
COMPENSATION time derivative of Eq.(5), taken into account again thasystem

Using the cascade control strategy it is possible to inttedu ~ Parameters are exactly known, it results
the friction compensation at the force level, i.e. at theutnpf
the mechanical subsystem. So, the estimated friction flexas 5 — _KoD,

. . . o . pPa (11)
considered as an additional input in this subsystem, asisrsh
in Fig. 3.
J Remark: To deal with the system parameter uncertainties,
an algorithm named VS-ACC combining an adaptive control law
for the mechanical subsystem and a variable structureadav
for the hydraulic subsystem was proposed in [7].

i v |
u 5 Hydrauli Pud +Z Mechanical oy FRICTION FORCE ESTIMATION
; subsystem * subsystem In this paper the friction force in the hydraulic cylinder is
estimated off-line using a neural network (NN).
HYDRAULIC ACTUATOR . The NN architecture proposed to learn the friction force is

a multi-layer fully connected feed-forward network [13Eing
back propagation with momentum [14] as the training rulee Th
input layer has two neurons corresponding to the hydraaticef
and the cylinder velocity, respectively. The output layecdm-

The desired pressure difference required in order to the po- posed by one neuron (friction force). The hidden layer hag on
sition Yy traCkyd is calculated by USing a Slotine and Li control four neurons, as it is shown in F|g 4.

Figure 3. FRICTION COMPENSATION IN THE CASCADE CONTROL

law [12] given by The friction model based on the concept of a variable vis-
cous friction coefficient introduced by [15], which allows rte-
1 L ick-sli i i
Pad = = (Myr F— KDs) @) pr_esent \_/veII the stick-slip modes, motivated the conceptib
A this architecture.

The hidden layer was defined after testing several feed
where forward network configurations in order to identify a configu
) ration able to learn and to reproduce the training patteitis av
Vi =Ya—AY, Y=Y—VYg, S=Y—Y¥%=YV+AYy (8) minimum of neurons as done in [15].
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: is less than 1 % or with a total of 10000 iterations. The NN res-
| ponse is shown in Fig. 8 and the obtained weights are shown i
! the Table 1.

gJ’{raulic @\:\ 600 ; ; ; ‘
orce
Ap, | Friction u ‘/ U

F 400 (

Force [N]

-2001

1

|

1

1 1

1 1

! | -4000 /\ f\ \

Input 1 Hidden 1 Output
1 1
1 1

Layer

-600 i i i i i i
3 0 1000 2000 3000 4000 5000 6000 7000

Patterns

Figure 4. NEURAL NETWORK ARCHITECTURE .
Figure 5. HYDRAULIC FORCE TRAINING PATTERNS

The NN shown in Fig. 4 can be represented by

0.8

4 2
o5 (S b i) 1)
= i=

wherelfA is the estimated friction forcd is the activation func-
tion , w" andw® are the weights of the hidden and output layers,
respectivelye; = Ap, is the hydraulic force and, =y is the
velocity. Is used the hyperbolic tangent as function atitiva
The training consists in adjusting the values of the weights
of each node using the backpropagation with momentum method s ‘ ‘ ‘ ‘ ‘ ‘
[14] with the input and output patterns established expenim "0 1000 2000 3000 000 5000 6000 7000
tally.
The hydraulic force training patterns are calculated ugieg
measured chamber pressuf&ép, — pp)] and are shown in Fig.
5. The velocity training patterns are obtained by a numesiéd
vative process of the measured cylinder position and ar@rsho
in Fig. 6. 600
The output patterns corresponding to the friction force are J
calculated using the chambers measured pressures anctéie ac 400
lerationy obtained by the numeric derivative of the velocity, i.e.

Velocity [m/s]

Figure 6. VELOCITY TRAINING PATTERNS

200

Fac

(Pa—po)A — My (13)

Force [N]

-200f
This friction force training patternd=.) are presented in /\

Fig. 7. -400f
The training begins with an initial set of weights that are ad
justed according the network response to the input pattenich 000 1000 2000 3000 4000 5000 6000 7000
is supervised by the output patterns (friction force). Patterns
The training is interrupted when the total output errortafre
tionship between the sum of the errors by the number of sanple Figure 7. FRICTION FORCE TRAINING PATTERNS
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600 ‘ ‘ ‘ ‘ ‘ ‘ N, is given by
400” l/ 7
AMM+R AM 0
z 2 Ni = AM M 0 (15)
" 0 0 1
2 0
Bs
-200f ] and the error vector is defined ps= [y y ﬁA]T.
J\ The time derivative o¥/ is given by
-4001 y
_ L L L L L | V = —K 0 AN — "-:v — K D, 2 l
6000 1000 2000 3000 4000 5000 6000 7000 D52 + Ryy + pAS AS PpA ( 6)
Patterns
Expression (16) can be written as
Figure 8. NEURAL NETWORK RESPONSE
LT =
Table 1. TRAINING RESULTS V=-pNp—pF (17)
where the matriN, is
wh, =[2090 06337 232§ ?
wh), =[-0.038 3712  -0.067" A2Kp 0 ~1A
wh, =[-3.085 -0.942 3561T Nz = 0 Kp —%A (18)
1 1
wh, =[0.675 3048  —0.198" —M —5A L Ke
w),=[1.093 -0.872 -1.812 1099 a872" ~
and the force vectdr is defined as
It should be outlined that the proposed neural network archi
tecture is simple (see Fig. 4) and it is very easy to be impteme _ _ LT
ted on-line (Eq. (12)). F=|-FaA —Fa 0 (19)

Employing the matrix theory it could be shown that the ma-

THE CASCADE CONTROLLER STABILITY ANALYSIS trix N3 is positive definite if the gains are related by the condition

The cascade controller is obtained by combining the mecha-
nical subsystem tracking control law (Eq.(7)), the estiddtic-

tion force given in Eq.(12), and the control signal desigted KpKp > 0.5A% (20)

achieve the hydraulic subsystem pressure tracking givelacpy

(9). . . Using the theorem of Rayleight-Ritz, the Eq. (17) can be
Consider the closed loop system givenQy= { (6), (2), written

(7), (9) }. In anideal case, in which all the system parameters are

known, the tracking error convergence properties are ptede ) 5 =

bellow. V= —Amin(N2) [lP[I*— [Pl F (21)
Theorem: When all the system parameters are known, the

closed looQ is globally stable and the tracking errgré) and where||p| is the error vector normmin (N) is the minimum

y(t) converge to a residual sRtast — . The seR depends on
the friction compensation efficiency.
Proof : Consider the nonnegative function

eigenvalue of the matrikl, andF is the norm of an upper bound
of the vector defined in Eq. (19).

From Eq. (22) is concluded that under condition (20) the
time derivativeV is negative when
V=M +RP+mZ=p Nip>0 (14)

whereR s a positive constant given By = 2AKp and the matrix Pl > Amin (N2) (22)

6 Copyright (© 2006 by ASME



Expressions (14) and (22) show thiat| tends to a residual voltage and the flow rate in the valve, caused by this elexdtric

set which depends df and oM\ (N2) ast — . Consequen- dead-zone. To overcome this problem, is used a dead-zone col
tly, each error component tends to a residual set. So, thkiniga ~ Pensation placed between the control signgenerated by the
errorsy(t) andi?(t) tends to a residual set Bs- . control algorithm and the D/A converters (voltage appliedht

electronic card).

EXPERIMENTAL SETUP . @ - 1A1 - Hydraulic cylinder
The experimental implementation was performed on a test 151 - Pressure transducer
rig composed of a double-rod cylinder, a proportional val&6 182 - Temperature transducer
[8] and its electronic card, a data acquisition and contozrtd % 183 - Pressure transducer
DS 1102 dSPACE, pressure transducers, thermocouple iguosit Gs3] | 184 - Pressure transducer
T . : VA Al [B 1S5 - Position transd
transducer, and a power and conditioning hydraulic unite Th ~ —- —.-— .= 1= - osition transducer

experimental setup are shown in Figs. 9 and 10. The hardware > I 1V - Proportional valve
. . . T 1 Z1-H li itioni
for thecontrol scheme is shown in Fig. 11. - 1 R A

Figure 10. HYDRAULIC CIRCUIT DIAGRAM

D/A Converter

Hydraulic
Host D.S.P Card Servo-A ctuator
P.C. with
TMS 320 C31 Sensors

A/D Convertter

Figure 9. EXPERIMENTAL SETUP [alve spool position transducer

piston position transducer

pressure ( p,) transducer

Considering the hydraulic actuator model presented, the
system parameters aml = 20.66kg, A = 7.6576x10*n?,
V= 9.5583x104m3, [3 _ 9x103Pa and Ps = 10MPa. « velocity is obtained using a filter and a numeric derivative process
From the valve catalog, is taken that the nominal flow rate
is 5.83x10*m?.s™1 (35L.min"1) at a pressure differential of
0.8MPa. In this practical application the inputis the electro-
nic amplifier input andu can assume values betweefOv and
+10V, andKs = 6.55x108mfvV ~1s7IN-1/2 .
In order to reduce the noise in the measured pressures and
cylinder position, is used first order filters adjusted adoay to
the transducers calibration curve. The used bandwidtby is-

pressure (pp) transducer

Figure 11. HARDWARE FOR CONTROL SCHEME

In this case, the used dead-zone compensation is given by

80rad/s. U—Ce u<—le

The valve is commanded by an electronic card with a cir- —Cot e
cuit that reproduces a dead-zone inverse, which may be osed t ( I ) u —lc<u<0
compensate the valve dead-zone. This electronic card atsarh Uc(u) = ¢ (23)
electrical dead-zone [16]. Therefore, even if the valvaddeane <Cd+ lc) u o<u<le
could be compensated by the electronic card circuit, thexddv le -
be a dead-zone in the relation between the electronic card in U+ ¢4 u>le

7 Copyright (© 2006 by ASME



whereu; is the controller signal. To avoid spool oscillations due
to the signal noises, the signalis smoothened in-l; <u <|..
The parameters can be identified experimentally [17] any the
are:ce = —0.5V, ¢g = 0.9V andl. = 0.05V. Figure 12 illustrates
this compensation.

U

¢l

~

o

Figure 12. DEAD-ZONE COMPENSATION

EXPERIMENTAL RESULTS

In this section is presented the experimental results obdai
using the cascade controller with the described dead-zome c
pensation, with and without friction compensation.

The desired positioyy(t) used in the experiments is presen-
ted in Fig. 13 and is given by the time function

Yau(t) o<t <y
0.3 G <t <2
_ydl(t—zti)-‘ro.3 A <t < 3
_J0 3 <t < 4
)/d(t) o —ydl(t —4t) 4t <t < 5 (24)
-0.3 8 <t<eg
Yar(t —6t) — 0.3 o <t <7
0 <t <8
ya(t) = —2t7 +7t® —8.4t> +- 3.5t (25)

wheret; = 1sis the period in which the actuator is moved accor-
ding the 7th order polynomial or maintained at rest.

4
Time [s]

Figure 13. DESIRED POSITION

The cascade controller without friction compensation
(IfA = 0) isreferred as CC, and with neural network friction com-
pensation it is referred as CCNN.

The cascade controller gains are tuned according the de
sign rules outlined in [7], and for the adopted sample perioc
of ts = 1x10°3s they result inKp = 50051, A = 2551 and
Kp = 1100(N.sm™ .

The tracking error obtained with the CC controller is shown
in Fig.14 and the corresponding control signal is preseirted
Fig.15. From Fig. 14 is observed that the tracking error eonv
ges to a residual set.

y-Ye [m]

Figure 14. CC CONTROLLER - TRACKING ERROR

Figure 16 presents the tracking error resulting with the
CCNN controller and Fig. 17 shows the corresponding contro
signal. From Fig. 16 is verified that the tracking error coges
to a residual set and by comparing with Fig. 14 is concludat th
the tracking error using the CCNN controller is smaller thizen

Copyright © 2006 by ASME



tracking error employing the CC controller. This is outlina
Fig. 18, where the two results are compared.

u [V]

Time [s]

Figure 15. CC CONTROLLER - CONTROL SIGNAL

y-Ye [m]

Time [s]

Figure 16. CCNN CONTROLLER - TRACKING ERROR

u [V]

Time [s]

Figure 17. CCNN CONTROLLER - CONTROL SIGNAL

y-y [m]

Figure 18. CC AND CCNN - TRACKING ERROR

Despite of the control signals are very similar (see Figs. 15

and 17), the tracking error is smaller using the CCNN because
this case the friction force is partially compensated bydbg-
mated friction force presented in Fig. 19.

800

Computed
Friction Force

Friction Force [N]

-200r

-400r

Estimated >
Friction Force "+ aq
600 ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 1 2 3 4 5 6 7 8

Figure 19. THE ESTIMATED AND COMPUTED FRICTION FORCE

Figure 19 shows the estimated friction foré@ obtained

using the trained neural network (Eq. 12) and the compute

friction force calculed from Eq. (13). In this figure, it caul
be observed that the estimated friction force is very nedin¢o
computed friction force.

In order to outline the influence of the controller gains
in the tracking error, is performed the same experimentgusin
A =30s linstead\ = 25s1. To this end, is necessary to reduce
the sample period t = 0.5x10-3s as recommended in [7]. The
resulting tracking error obtained with the CCNN comparethwi

Copyright © 2006 by ASME



the tracking error obtained with CCNN usidg= 2551 is pre-
sented in Fig. 20.

x10°

y-Ye [m]

Figure 20. TRACKING ERROR USING A = 255 1 and A = 30571
In Fig. 20, is observed the bettering of the tracking obtaine
using greater controller gains.

CONCLUSIONS
In this paper, a neural network to learn the friction force

in a hydraulic actuator is proposed to be accomplished with a [10]

cascade controller in order to reduce the effects of faictioring
the tracking of actuators movements.

It is theoretically stated and experimentally confirmed tha
the tracking error is in fact reduced using the proposedrobiet.
This occurs due to both the good force estimative providettidy
neural network and the cascade control characteristics.

The good friction force estimative derives both from the
network architecture based on the friction model and theectr
ness of the training method. The network architecture saitypl
defined after testing several network configurations, hasple
implementation as consequence. By the time, due to itstateic
the cascade control technique allows introduce the conapiens
at the force level on hydraulic actuators.
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