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ABSTRACT

This paper addresses the friction compensation in hydrauc
actuators using an artificial neural network combined with asui-
table control technique. The proposed neural network is trained
off-line and allows calculate an estimative of the frictionforce
on-line very quickly based on the hydraulic force and on the cy-
linder velocity. The estimated friction force is introduced direc-
tly in the force line of the system using a cascade controller, in
which the hydraulic actuator is interpreted as two interconnected
subsystems: a mechanical one driven by a hydraulic one. T
convergence properties of the closed loop system are established
using the Lyapunov method. Experimental results validate the
main theoretical results of the proposed strategy.

NOMENCLATURE
A Cylinder piston area [m2]
cd Dead-zone compensation parameter [V ]
ce Dead-zone compensation parameter [V ]
d Input disturbance [N]
e Neural network input
F̃ Force vector

F̃ Upper bound force vector

FA Friction force [N]
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F̂A Estimated friction force [N]
F̃A Estimated friction force error [N]
FAc Friction force training patterns [N]
FL External force [N]
f Nonlinear function
g Nonlinear function
h Neural network activation function
KD Mechanical subsystem control law gain [N.s.m−1]
KP Hydraulic subsystem control law gain [s−1]
Ks Valve flow coefficient [m4.V−1.s−1.N−1/2]
lc Dead-zone compensation parameter [V ]
M System’s total mass [kg]
pa Pressure in the linea [Pa]
pb Pressure in the lineb [Pa]
ps Supply pressure [Pa]
p∆ Pressure difference [Pa]
p̃∆ Pressure difference tracking error [Pa]
p∆d Desired pressure difference [Pa]
R Positive constant
s Velocity trajectory tracking error [m.s−1]
t Time [s]
ts Sample period [s]
u Valve control input [V ]
uc Controller signal [V ]
V Lyapunov function
v Total volume [m3]
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Dow
va Oil volume in the linesa [m3]
vb Oil volume in the linesb [m3]
w Neural network weight
y Position trajectory [m]
ỹ Position trajectory tracking error [m]
yd Desired position trajectory [m]
ẏr Reference velocity [m.s−1]
β Oil bulk modulus [Pa]
λ Mechanical subsystem control law gains [s−1]
λmin Minimum eigenvalue
ρ Error vector

INTRODUCTION
Hydraulic actuators provide high force, stiffness and dura-

bility suitable to various applications, and there is a growing de-
mand for such actuators to operate with improved precision and
repeatability. Unfortunately, these actuators present some un-
desirable characteristics, namely, lightly damped dynamics and
highly non-linear behavior introduced by both, pressure dyna-
mics and friction, among others.

In a typical hydraulic actuator, the movement of the piston
and hydraulic fluid are subject to friction. The friction is gene-
rated by the contact between both the rod and the seal, and t
piston seal and the cylinder, and the viscous effects of the hy-
draulic fluid. This friction affects the controllability, accuracy,
and repeatability of the actuator.

The lightly damped dynamics and the non-linear flow and
friction dynamics complicate the controller design for high per-
formance closed loop applications. The simple classical con-
trollers cannot overcome the bandwidth limitation caused by the
lightly damped open loop poles position. The use of a linea
controller is limited by the non-linear behavior.

Due to these control difficulties, a combination of non-linear
control techniques offers good theoretical and experimental re-
sults. One way to combine control techniques is to use the back-
stepping method. Another way to do it is based in interpreting
the hydraulic actuator as two interconnected subsystems: ame-
chanical subsystem driven by a hydraulic one.

In this paper is chosen the second method in which the ma
idea is to promote a fast loop in the hydraulic subsystem in order
to generate hydraulic forces that allow the mechanical subsys-
tem to track the desired trajectory. This idea was formalized
in [1,2] taking into account an error during the hydraulic subsys-
tem trajectory tracking and by presenting a stability proofof the
whole interconnected system. The resulting controller is referred
as cascade controller. The experimental and theoretical results
employing this controller have demonstrated that its closed loop
performance overcomes the performance obtained with classical
controllers, with respect to the lightly damped dynamics and to
the non-linear pressure dynamics. In this paper is shown that the
cascade controller allows compensate the friction dynamics in a
2
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very simple and efficient way.
Friction is a complicated phenomenon that is still not fully

understood [3]. Stick-slip friction is a nonlinear friction pheno-
menon and can be found in hydraulic actuators around the zero
velocity range. Before motion starts, the surfaces are in the static
friction regime. A force greater than the static friction isrequired
to begin the movement. As the component starts to move, the
friction suddenly decreases as it switches to the dynamic fric-
tion regime. This sudden change in friction results in a jerky
actuator motion, making positional control and repeatability dif-
ficult [3–5].

Modeling this sudden switch is difficult and has been addres-
sed by several researches. A review can be found in [3]. More
recently a model based on the concept of a variable friction coef-
ficient was proposed and applied to in [6], which well represents
the stick-slip modes.

Generally the friction compensation consists in adding an
estimated friction force to the force reference generated by the
position controller. This kind of compensation assumes that the
actuator has a fast and accurate force response. This is generally
verified with electric actuators. Nevertheless, most servovalves,
which are the control devices of the hydraulic actuators, donot
provide a sufficient fast and efficient force response.

The approach presented in this paper allows to add the es-
timated friction force to the force reference of the mechanical
subsystem of the cascade controller and to provide a sufficiently
fast response in the hydraulic subsystem in order to compensate
the friction.

The friction force is estimated off-line using a neural
network which architecture is based on the model with the va-
riable friction coefficient [6]. This neural network possesses a
simple architecture and is easily implemented on-line.

The cascade controller with this friction compensation im-
proves the tracking performance as predicted in the theoretical
discussion presented in this paper and it is confirmed by the ex-
perimental results.

The paper is organized as follows. First is described the hy-
draulic actuator model and the cascade strategy. Next, the cas-
cade controller with friction compensation is presented. In the
sequence, the friction force estimation is described. Thenis pre-
sented the cascade controller stability analysis, describe the ex-
perimental setup and discuss the experimental results. Finally is
outlined some conclusions.

HYDRAULIC ACTUATOR MATHEMATICAL MODEL
The hydraulic actuator considered in this paper is shown in

Fig. 1. It consists of a double-rod cylinder controlled by a su-
percritical center four-way spool valve. In this modeling,it is
considered that the hydraulic power unit delivers a constant sup-
ply pressureps irrespective of the oil flow rate.
Copyright c© 2006 by ASME
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Figure 1. HYDRAULIC ACTUATOR

In Fig. 1, p0 is the return pressure,pa is the pressure in the
line a, pb is the pressure in the lineb, va is the oil volume in the
lines a, vb is oil volume in the linesb, A is the cylinder piston
cross-sectional area,M represents the total mass of the system,
FA is the nonlinear friction,y is the actuator piston position,FL

represents an external force, andu is the control input.
When the valve dynamics is sufficiently fast and can be ne-

glected, the hydraulic actuator can be represented by the fol-
lowing nonlinear equations [7]

Mÿ + FA = Ap∆ − FL (1)

ṗ∆ = A f (y)ẏ + Ksg(u, p∆)u (2)

where,p∆ = pa− pb is the pressure difference between the cham-
bersa andb of the cylinder andKs is the valve flow coefficient.
The nonlinear functionsf (y) and g(u, p∆) are given, respecti-
vely, by

f (y) =
βv

(0.5v2) − A y2 (3)

g(u, p∆) =

√
ps −

u
|u|

p∆ (4)

whereβ is the bulk modulus,v is the total volume of oil.
As it is observed, the valve model is represented by the

second term of Eq. (2), assuming that exists a linear relation
between the tension and the flow for a given pressure difference
value. This represents adequately the tension versus flow curve
presented in the valve catalog [8], non considering the valve
3
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dead-zone. This model represents well the real system behavior
since the dead-zone is compensated, as shown in the Experimen-
tal Setup section.

The model presented in this section will be used in the se-
quel.

THE CASCADE STRATEGY
The hydraulic actuator can be interpreted as two intercon-

nected subsystems: a mechanical subsystem driven by a hydrau-
lic one. This interpretation is shown in Fig. 2 and can be physi-
cally explained as follows.

HYDRAULIC ACTUATOR

yu Hydraulic
subsystem

Mechanical
subsystem

p
D

y
.

Figure 2. INTERCONNECTED SUBSYSTEMS

In the hydraulic actuator shown in Fig. 1, when the valve
spool is moved in one direction, the pressure in one chamber
starts to increase and the pressure in the other chamber starts to
decrease. It creates a pressure differencep∆ between the cham-
bers and generates a force on the cylinder piston. This forceis
applied to a mass-damper system (mechanical subsystem). The-
refore, the mechanical subsystem is driven by a hydraulic one.
On the other hand, the fluid dynamics in the chambers of the hy-
draulic subsystem is affected by the piston movement, and this
shows the system interconnection.

This interpretation is used by several authors to develop con-
trollers for hydraulic actuators [9–11]. The idea is to promote a
fast loop in the hydraulic subsystem in order to generate a force
in the hydraulic subsystem that allows the mechanical subsystem
to track the desired trajectory. In [1] this idea was formalized
taking into account an error during the hydraulic subsystemtra-
jectory tracking. Also, the stability proof for the whole system
and the resulting strategy is presented in this paper.

The control objective is thaty(t) tracks a desired trajectory
yd(t) as close as possible. To achieve this end, let

p̃∆ = p∆ − p∆d (5)

be the pressure difference tracking error, wherep∆d is the desired
pressure difference so that the control goal is reached. Substitu-
Copyright c© 2006 by ASME
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ting Eq. (5) into Eq. (1) gives

Mÿ + FA = Ap∆d + d(t) (6)

whered(t) = Ap̃∆ − FL is an input disturbance.
The system described by Eq. (6) and (2) is in the cascad

form. Equation (6) can be interpreted as a second order mech-
nical subsystem driven by a desired forceAp∆d and subjected to
an input disturbanced(t). Equation (2) represent the hydraulic
subsystem.

The design of the cascade controller for the system in Eq
(6) and (2) can be summarised as:
(i) Compute a control law to the mechanical subsystem Eq. (6
such that the cylinder displacementy achieves a desired position
trajectoryyd(t) taking into account the presence of the distur-
banced(t). With this desired forceAp∆d one can quantify the
desired pressure difference;
(ii) Compute a control lawu such thatp∆ tracks p∆d defined
above as close as possible.

CASCADE CONTROLLER WITH FRICTION
COMPENSATION

Using the cascade control strategy it is possible to introduce
the friction compensation at the force level, i.e. at the input of
the mechanical subsystem. So, the estimated friction forceF̂A is
considered as an additional input in this subsystem, as is shown
in Fig. 3.

yu Hydraulic
subsystem

Mechanical
subsystem

FA

^

+

+ S
p A

D

y
.

HYDRAULIC ACTUATOR

Figure 3. FRICTION COMPENSATION IN THE CASCADE CONTROL

The desired pressure difference required in order to the po
sition y track yd is calculated by using a Slotine and Li control
law [12] given by

p∆d =
1
A

(
Mÿr + F̂A − KDs

)
(7)

where

ẏr = ẏd − λỹ, ỹ = y − yd, s = ẏ − ẏr = ˙̃y + λỹ (8)
4
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where ˙yr is the reference velocity,s is a measure of the trajectory
tracking error,KD > 0 andλ > 0 are the mechanical subsystem
control law gains and̃y is the position trajectory tracking error.

The hydraulic subsystem control law contains the inverse
of the functionsf (y) andg(u, p∆), defined in Eq. (3) and (4),
respectively, and is given by

u =
1

Ksg(u, p∆)

[
1

f (y)
(ṗ∆d − KP p̃∆) + Aẏ

]
(9)

whereKP is the proportional gain, and ˙p∆d is the time derivative
of the desired pressure difference given in Eq. (7).

Consider that the system parameters are exactly known and
the external forceFL is null. Combining Eq. (6) and Eq. (7) and
using (8), the Eq. (6) can be rewritten by

Mṡ + KDs = Ap̃∆ − F̃A (10)

whereF̃A = FA − F̂A is the error in the estimated friction force.
Substituting the control law Eq. (9) in Eq. (2) and in the

time derivative of Eq.(5), taken into account again that thesystem
parameters are exactly known, it results

˙̃p∆ = −KP p̃∆ (11)

Remark: To deal with the system parameter uncertainties,
an algorithm named VS-ACC combining an adaptive control law
for the mechanical subsystem and a variable structure control law
for the hydraulic subsystem was proposed in [7].

FRICTION FORCE ESTIMATION
In this paper the friction force in the hydraulic cylinder is

estimated off-line using a neural network (NN).
The NN architecture proposed to learn the friction force is

a multi-layer fully connected feed-forward network [13], using
back propagation with momentum [14] as the training rule. The
input layer has two neurons corresponding to the hydraulic force
and the cylinder velocity, respectively. The output layer is com-
posed by one neuron (friction force). The hidden layer has only
four neurons, as it is shown in Fig. 4.

The friction model based on the concept of a variable vis-
cous friction coefficient introduced by [15], which allows to re-
present well the stick-slip modes, motivated the conception of
this architecture.

The hidden layer was defined after testing several feed-
forward network configurations in order to identify a configu-
ration able to learn and to reproduce the training patterns with a
minimum of neurons as done in [15].
Copyright c© 2006 by ASME
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Figure 4. NEURAL NETWORK ARCHITECTURE

The NN shown in Fig. 4 can be represented by

F̂A = h1

(
4

∑
j=1

wo
j1 h j

(
2

∑
i=1

wh
jiei +wh

j3

)
+wo

5

)
(12)

whereF̂A is the estimated friction force,h is the activation func-
tion , wh andwo are the weights of the hidden and output layers
respectively,e1 = Ap∆ is the hydraulic force ande2 = ẏ is the
velocity. Is used the hyperbolic tangent as function activation.

The training consists in adjusting the values of the weigh
of each node using the backpropagation with momentum meth
[14] with the input and output patterns established experimen-
tally.

The hydraulic force training patterns are calculated usingthe
measured chamber pressures[A(pa − pb)] and are shown in Fig.
5. The velocity training patterns are obtained by a numeric deri-
vative process of the measured cylinder position and are shown
in Fig. 6.

The output patterns corresponding to the friction force ar
calculated using the chambers measured pressures and the ace-
lerationÿ obtained by the numeric derivative of the velocity, i.e.

FAc = (pa − pb)A − Mÿ (13)

This friction force training patterns (FAc) are presented in
Fig. 7.

The training begins with an initial set of weights that are ad-
justed according the network response to the input patternswhich
is supervised by the output patterns (friction force).

The training is interrupted when the total output errors (rela-
tionship between the sum of the errors by the number of samples)
5
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is less than 1 % or with a total of 10000 iterations. The NN res-
ponse is shown in Fig. 8 and the obtained weights are shown in
the Table 1.
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Figure 5. HYDRAULIC FORCE TRAINING PATTERNS
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Figure 7. FRICTION FORCE TRAINING PATTERNS
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Figure 8. NEURAL NETWORK RESPONSE

Table 1. TRAINING RESULTS

wh
11 = [2.090 0.6337 2.326]T

wh
21 = [−0.038 3.712 −0.067]T

wh
31 = [−3.085 −0.942 3.561]T

wh
41 = [0.675 3.048 −0.198]T

wo
12 = [1.093 −0.872 −1.812 1.099 0.872]T

It should be outlined that the proposed neural network arch-
tecture is simple (see Fig. 4) and it is very easy to be implemen-
ted on-line (Eq. (12)).

THE CASCADE CONTROLLER STABILITY ANALYSIS
The cascade controller is obtained by combining the mech

nical subsystem tracking control law (Eq.(7)), the estimated fric-
tion force given in Eq.(12), and the control signal designedto
achieve the hydraulic subsystem pressure tracking given byEq.
(9).

Consider the closed loop system given byΩ = { (6), (2),
(7), (9) }. In an ideal case, in which all the system parameters a
known, the tracking error convergence properties are presented
bellow.

Theorem: When all the system parameters are known, th
closed loopΩ is globally stable and the tracking errorsỹ(t) and
˙̃y(t) converge to a residual setR ast → ∞. The setR depends on
the friction compensation efficiency.

Proof : Consider the nonnegative function

2V = Ms2 + Rỹ2 + p̃∆
2 = ρT N1ρ ≥ 0 (14)

whereR is a positive constant given byR = 2λKD and the matrix
6
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N1 is given by

N1 =




λ2M +R λM 0
λM M 0
0 0 1


 (15)

and the error vector is defined asρ =
[
ỹ ˙̃y p̃∆

]T
.

The time derivative ofV is given by

V̇ = −KDs2 + Rỹ ˙̃y + Ap̃∆s − F̃As −KP p̃∆
2 (16)

Expression (16) can be written as

V̇ = −ρT N2ρ−ρT F̃ (17)

where the matrixN2 is

N2 =




λ2KD 0 −1
2λA

0 KD −1
2A

−1
2λA −1

2A KP


 (18)

and the force vector̃F is defined as

F̃ =
[
−F̃Aλ − F̃A 0

]T
(19)

Employing the matrix theory it could be shown that the ma-
trix N2 is positive definite if the gains are related by the condition

KDKP > 0.5A2 (20)

Using the theorem of Rayleight-Ritz, the Eq. (17) can be
written

V̇ = −λmin (N2)‖ρ‖2−‖ρ‖ F̃ (21)

where‖ρ‖ is the error vector norm,λmin (N2) is the minimum

eigenvalue of the matrixN2 andF̃ is the norm of an upper bound
of the vector defined in Eq. (19).

From Eq. (22) is concluded that under condition (20) the
time derivativeV̇ is negative when

‖ρ‖ >
F̃

λmin (N2)
(22)
Copyright c© 2006 by ASME
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Expressions (14) and (22) show that‖ρ‖ tends to a residual

set which depends oñF and onλmin (N2) ast → ∞. Consequen-
tly, each error component tends to a residual set. So, the tracking
errorsỹ(t) and˙̃y(t) tends to a residual set ast → ∞.

EXPERIMENTAL SETUP
The experimental implementation was performed on a te

rig composed of a double-rod cylinder, a proportional valveNG6
[8] and its electronic card, a data acquisition and control board
DS 1102 dSPACE, pressure transducers, thermocouple , posiion
transducer, and a power and conditioning hydraulic unit. The
experimental setup are shown in Figs. 9 and 10. The hardw
for thecontrol scheme is shown in Fig. 11.

Figure 9. EXPERIMENTAL SETUP

Considering the hydraulic actuator model presented, t
system parameters areM = 20.66kg, A = 7.6576x10−4m2,
v = 9.5583x10−4m3, β = 9x108Pa andps = 10MPa.

From the valve catalog, is taken that the nominal flow ra
is 5.83x10−4m3.s−1 (35L.min−1) at a pressure differential of
0.8MPa. In this practical application the inputu is the electro-
nic amplifier input andu can assume values between−10V and
+10V , andKs = 6.55x10−8m4V−1s−1N−1/2 .

In order to reduce the noise in the measured pressures
cylinder position, is used first order filters adjusted according to
the transducers calibration curve. The used bandwidth isω f =
80rad/s.

The valve is commanded by an electronic card with a ci
cuit that reproduces a dead-zone inverse, which may be useo
compensate the valve dead-zone. This electronic card also has an
electrical dead-zone [16]. Therefore, even if the valve dead-zone
could be compensated by the electronic card circuit, there would
be a dead-zone in the relation between the electronic card input
7
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voltage and the flow rate in the valve, caused by this electrical
dead-zone. To overcome this problem, is used a dead-zone com-
pensation placed between the control signalu generated by the
control algorithm and the D/A converters (voltage applied to the
electronic card).
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Figure 10. HYDRAULIC CIRCUIT DIAGRAM
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Figure 11. HARDWARE FOR CONTROL SCHEME

In this case, the used dead-zone compensation is given by

uc(u) =





u − ce u < −lc(
−ce + lc

lc

)
u −lc ≤ u < 0

(
cd + lc

lc

)
u 0≤ u ≤ lc

u + cd u > lc

(23)
Copyright c© 2006 by ASME
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whereuc is the controller signal. To avoid spool oscillations due
to the signal noises, the signaluc is smoothened in−lc ≤ u ≤ lc.
The parameters can be identified experimentally [17] and they
are:ce =−0.5V , cd = 0.9V andlc = 0.05V . Figure 12 illustrates
this compensation.

uc

u

cd

ce

l
c

l
c

Figure 12. DEAD-ZONE COMPENSATION

EXPERIMENTAL RESULTS
In this section is presented the experimental results obtained

using the cascade controller with the described dead-zone com-
pensation, with and without friction compensation.

The desired positionyd(t) used in the experiments is presen-
ted in Fig. 13 and is given by the time function

yd(t) =





yd1(t) 0≤ t < ti
0.3 ti ≤ t ≤ 2ti
−yd1(t −2ti)+0.3 2ti < t < 3ti
0 3ti ≤ t ≤ 4ti
−yd1(t −4ti) 4ti < t < 5ti
−0.3 5ti ≤ t ≤ 6ti
yd1(t −6ti)−0.3 6ti < t < 7ti
0 7ti ≤ t ≤ 8ti

(24)

yd1(t) = −2t7 +7t6 −8.4t5 +3.5t4 (25)

whereti = 1s is the period in which the actuator is moved accor
ding the 7th order polynomial or maintained at rest.
8
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Figure 13. DESIRED POSITION

The cascade controller without friction compensation
(F̂A = 0) is referred as CC, and with neural network friction com-
pensation it is referred as CCNN.

The cascade controller gains are tuned according the de-
sign rules outlined in [7], and for the adopted sample period
of ts = 1x10−3s they result inKP = 500s−1, λ = 25s−1 and
KD = 11000N.s.m−1.

The tracking error obtained with the CC controller is shown
in Fig.14 and the corresponding control signal is presentedin
Fig.15. From Fig. 14 is observed that the tracking error conver-
ges to a residual set.
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Figure 14. CC CONTROLLER - TRACKING ERROR

Figure 16 presents the tracking error resulting with the
CCNN controller and Fig. 17 shows the corresponding control
signal. From Fig. 16 is verified that the tracking error converges
to a residual set and by comparing with Fig. 14 is concluded that
the tracking error using the CCNN controller is smaller thanthe
Copyright c© 2006 by ASME
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tracking error employing the CC controller. This is outlined in
Fig. 18, where the two results are compared.
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Figure 15. CC CONTROLLER - CONTROL SIGNAL
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Figure 16. CCNN CONTROLLER - TRACKING ERROR
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Figure 17. CCNN CONTROLLER - CONTROL SIGNAL
wnloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms o
0 1 2 3 4 5 6 7 8
-6

-4

-2

0

2

4

6
x 1 0

- 3

CC

CCNN

Time [s]

y
 -

 y
  
 [

m
]

Figure 18. CC AND CCNN - TRACKING ERROR

Despite of the control signals are very similar (see Figs. 15
and 17), the tracking error is smaller using the CCNN becausein
this case the friction force is partially compensated by theesti-
mated friction force presented in Fig. 19.
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Figure 19. THE ESTIMATED AND COMPUTED FRICTION FORCE

Figure 19 shows the estimated friction forcêFA obtained
using the trained neural network (Eq. 12) and the computed
friction force calculed from Eq. (13). In this figure, it could
be observed that the estimated friction force is very near tothe
computed friction force.

In order to outline the influence of the controller gains
in the tracking error, is performed the same experiment using
λ = 30s−1 insteadλ = 25s−1. To this end, is necessary to reduce
the sample period tots = 0.5x10−3s as recommended in [7]. The
resulting tracking error obtained with the CCNN compared with
9 Copyright c© 2006 by ASME
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the tracking error obtained with CCNN usingλ = 25s−1 is pre-
sented in Fig. 20.
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Figure 20. TRACKING ERROR USING λ = 25s−1 and λ = 30s−1

In Fig. 20, is observed the bettering of the tracking obtained
using greater controller gains.

CONCLUSIONS
In this paper, a neural network to learn the friction force

in a hydraulic actuator is proposed to be accomplished with
cascade controller in order to reduce the effects of friction during
the tracking of actuators movements.

It is theoretically stated and experimentally confirmed that
the tracking error is in fact reduced using the proposed controller.
This occurs due to both the good force estimative provided bythe
neural network and the cascade control characteristics.

The good friction force estimative derives both from the
network architecture based on the friction model and the correct-
ness of the training method. The network architecture simplicity,
defined after testing several network configurations, has a simple
implementation as consequence. By the time, due to its structure,
the cascade control technique allows introduce the compensation
at the force level on hydraulic actuators.
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