Asynchronous, Hierarchical and Scalable
Deployment of Component-Based Applications

Vivien Quéma', Roland Balter?, Luc Bellissard?,
David Féliot?, André Freyssinet?, Serge Lacourte?

YINPG - Laboratoire LSR-IMAG (CNRS, INPG, UJF) - projet Sardes
2ScalAgent Distributed Technologies
INRIA Rhéne-Alpes, 655 av. de I'Europe, 38334 Saint-Ismier Cedex, France
Vivien.QuemaQ@inrialpes.fr

Abstract. The deployment of distributed component-based applications
is a complex task. Proposed solutions are often centralized, which ex-
cludes their use for the deployment of large-scale applications. Besides,
these solutions do often not take into account the functional constraints,
i.e. the dependences between component activations. Finally, most of
them are not fault-tolerant. In this paper, we propose a deployment ap-
plication that deals with these three problems. It is hierarchical, which
is a necessary feature to guarantee scalability. Moreover, it is designed as
a distributed workflow decomposed into tasks executing asynchronously,
which allows an “as soon as possible” activation of deployed components.
Finally, the proposed deployment application is fault-tolerant. This is
achieved by the use of persistent agents with atomic execution. This
deployment application has been tested and performance measurements
show that it is scalable.

1 Introduction

1.1 Context and objectives

As underlined by Emmerich in [1], it was claimed for a long time that object-
orientation was the solution to software reusability. Nevertheless, the large num-
ber of fine grained classes generated during object-oriented modelling induces
a large number of dependencies between them, thus making it difficult to take
classes out of the context in which they were developed. To overcome these
problems, component models were elaborated. “A component is a unit of com-
position that can be deployed independently and is subject to composition by a
third party.” [2]

First component models like COM or JavaBeans had their execution limited
to just one machine. These component models have been extended to allow for
distributed execution across multiple machines: .NET or EJB. These distributed
technologies have induced a new approach of software development that is of-
ten referred to as component-based development (CBD). CBD raises numerous
challenges, such as distribution management, component discovery, integration
of components with legacy software modules, etc. One of the major, not yet
solved challenge is the deployment of distributed component-based systems.

According to Carzaniga and al. [3], deployment is a collection of interrelated
activities that form the deployment life-cycle. In this paper, we focus on the steps

preliminary to the application’s launching, that is: installation, instantiation,
binding, and finally activation of the components. In existing component tech-
nologies, these steps are often reduced to software delivery: the component code
located on one server node is first sent to n customer sites and then activated.
Such a deployment process does take into account neither the applicative logic,
nor the physical constraints of the physical environment where the application is
to be deployed. A distributed application encompasses a set of components that
interact with each other in a complex way, thus making them interdependent. To
run consistently components require the availability of other (possibly legacy)
components. These dependencies must be carefully taken into account to ensure
a consistent activation of each of the components. This issue is referred to as
the application logic enforcement. On the other hand the deployment process
must be fault tolerant, even in the case of large-scale applications executing on
numerous heterogeneous devices with varying operational conditions (i.e. net-
work failures, disconnected mode, etc.). This issue is referred to as the physical
constraints enforcement.

1.2 Approach

The paper addresses the two above-mentioned challenges. Application logic en-
forcement is achieved through the use of an architecture description language
(ADL) to describe the distributed application to be deployed. This description
relies on a hierarchical component model which is general enough to allow the de-
scription of most of component-based systems. Physical constraints enforcement
is achieved by designing the deployment process as a scalable and fault toler-
ant distributed application. Scalability requires that the deployment process is
distributed. This is achieved through a hierarchical structure of the deployment
process in close connection with the component hierarchy of the application to
be deployed. In addition, we propose to implement the deployment application
on top of an asynchronous reliable runtime system, to meet the fault tolerance
objective.

This paper is structured as follows: section 2 describes the hierarchical com-
ponent model, and its associated architecture description language is introduced
in section 3. Section 4 presents the deployment application. We describe its im-
plementation in section 5 and performance figures are presented in section 6.
Related work in addressed in section 7, before concluding the paper in section 8.

2 A hierarchical component model

In this section, we present the component model that is used to model applica-
tions to be deployed. For space limitations, we will not justify all the choices that
have been made. Our main objective was that the component model be general
enough to allow modeling most of the component-based systems. It is inspired by
previous work made on distributed component-based applications [4]. It shares
similarities with Fractal [5], a recent component model, which also aims at mod-
eling component-based systems. An application is represented by a hierarchical
assembly of components. Every component is made of two parts: a functional
part and a control part. Moreover, components are bound using connectors.

The functional part The functional part of a component corresponds to the
services it provides to other components and the services it requires from other
components. These services are accessed via functional interfaces defined by their
type, which consists of:

— An identifier: a name which is valid in the context of the component that
owns the interface,

— A role specifying whether the considered interface is a client or a server
interface,

— A signature: a collection of method signatures. Interface signatures are em-
bodied as usual Java interfaces.

— A contingency used to specify whether a client interface is mandatory or
optional (i.e. if it must be bound or not at runtime).

The model does not impose any implementation language: components may
be developed in Java, C, etc.

The control part A component also owns control interfaces which are server
interfaces that embody the control behavior associated with the component. In
particular, the control part allows one to manage the component’s lifecycle: start,
stop, activate and deactivate. Decoupling the control part from the functional
part is a necessary feature for administration applications (like deployment ap-
plications) to easily manage component-based applications. For instance, we will
show later in the paper that the deployment application requires an activation
interface.

Composite components The component model is hierarchical: a set of com-
ponents can be manipulated as a component, called composite. Composite com-
ponents are useful to represent hierarchical applications. A composite usually
encapsulates components that cooperate to provide a functionality. Similarly
to primitive components, composite components own functional and control in-
terfaces. Nevertheless, we distinguish internal interfaces that can be bound to
encapsulated components and external interfaces that can be bound to compo-
nents outside the composite.

Connectors A functional interface can be bound to one (or several) other
functional interface(s) using a connector. There exist several connectors: local
and remote procedure calls, asynchronous message passing, etc. A connector is
instantiated by a connector factory. Each factory must provide a create method,
whose parameters are the identifiers of the interfaces to be bound. Note that
binding two functional interfaces requires that the components owning these
interfaces are encapsulated within the same composite.

Example Figure 1 represents the architecture of an application that conforms
to the component model. For readability purpose, some connectors have been
omitted. The application is represented by the Application composite. It en-
capsulates two primitive components Client 1 and Client 2, and a composite
component Topic. Each client owns two client interfaces — subscribe to sub-
scribe to the topic, and publish to publish a message on the topic —, and a

server interface receive to receive messages broadcasted by the topic. The Topic
composite component owns three external interfaces and three internal interfaces
that are bound to two primitive components responsible for subscribers handling
and message broadcasting.

Application
o Topic l«1— composite
[client1 SﬁL‘*\r——u»qu»—/"* Event control part
N\ broadcastin
4‘\:\‘ 7,,—*% J functional part
H Naanall +
N L L | pinding
P
H | Client2 sSH e primitive
R

Fig. 1. Example of application following the model.

3 An architecture description language

To manipulate the above described component model, we have defined an ar-
chitecture description language (ADL). In this paper, we will only show how
this ADL is used to deploy applications. Note that it is also used for other pur-
poses [6]. Like other ADLs [7-11], it aims at describing an application as an
assembly of interacting components. It is inspired by previous work made on the
Olan configuration language [12]. It allows the description of:

— the functional part of the application, i.e. the set of (possibly legacy) involved
components and their interactions.

— the non functional part of the application, i.e. the location of components to
be deployed and the order in which they must be activated.

Components and connectors involved in the application are described in a file
called description. The description of a primitive component specifies its func-
tional interfaces, its control interfaces and its implementation (Java class, binary
file, etc.). Similarly, the description of a composite component gives its interfaces
(internal and external) and its implementation. Moreover, it describes its inter-
nal architecture, that is the set of encapsulated components, their locations,
their bindings using connectors and their dependences in term of activation.

As for components, two kinds of connectors may be used: primitive and com-
posite connectors. Primitive connector descriptions only specify the connector
factory to be used. Composite connectors are described as assemblies of inter-
acting components bound by primitive connectors. This makes the description
of a composite connector comparable to that of a composite component.

Figure 2 depicts the description of the Application composite. It gives its
control interfaces and its implementation. For legacy components, the implemen-
tation field is replaced by a description of the component location. Furthermore,
encapsulated components and connector factories are specified with the keyword
new, with in parameter the site where they have to be deployed. Bindings be-
tween components are specified with the symbol => and with the keyword using

Composite Application {

**x No functional interfaces *x*x*
**x Control interfaces **x
Activation controller {
signature = fr.application.Activation ;

}

% Implementation *x
Implementation Application {
type = java ;
funct_part
contr_part

}

void ;
fr.application.ApplicationControl ;

**x Encapsulated components **x*

Client clientl = new Client (zirconium.inria.fr);
Client client2 = new Client (argent.inria.fr);
Topic topic = new Topic (strontium.inria.fr);

**x Connector factory
Rmi rmiF = new Rmi (zirconium.inria.fr) ;

**% Component bindings **x*

clientl.abonnement => topic.abonnement using rmiF ;

*** Activation dependencies **x*
(clientl, client2) depend on topic ;

Fig. 2. Description of the Application composite.

that is used to indicate the connector factory to be used. Finally, the order of
component activations is specified: it is mentioned that the two client component
activations depend on the topic activation. Note that when no activation order is
given, a component is considered to be activable as soon as its client functional
interfaces are bound, even though the components owning the server interfaces
are not activated.

4 The deployment application

The deployment application uses the ADL description to instantiate and bind
application components. Our goal is twofold: (1) to use the ADL description to
ensure the respect of functional constraints and (2) to exploit the hierarchical
structure of the application to distribute the deployment intelligence. To reach
our goal, the deployment application is implemented as a distributed workflow
decomposed in tasks. Tasks execute in parallel or sequentially. They are respon-
sible for the various deployment operations: instantiation, binding, activation.
These tasks execute within hierarchically organized entities called deployment
controllers. We first show how the controller hierarchy is built. We then describe
the architecture of controllers.

4.1 Deployment controller hierarchy

Recall that the component model requires that two bound components be en-
capsulated in the same composite. As a consequence, an application built using

this model has always a tree-like architecture: nodes of the tree are compos-
ite components, whereas leafs are primitive components. The deployment con-
trollers’ hierarchy follows this treelike hierarchy: each composite is associated
with a controller. Figure 3 illustrates this concept: a deployment controller is
associated to each of the four composites C1, C3, C3 and Cy.

5 = @
c3. . ca . @ @
N @)

Deployment controller
hierarchy

Application architecture

Fig. 3. Applicative hierarchy.

However, it is also possible to extend this hierarchy by creating controllers in
charge of a subset of components. Such an example is depicted on figure 4: com-
ponents P; , P, and P5, Py are associated to controllers DC Bis; and DC Bisa,
respectively. This consists in creating “virtual” composites, without functional
and control code. This extension possibility is interesting for applications built
using flat component models such as the Corba Component Model (CCM [13]),
or Sun’S EJB model [14].

Q
'

DCBis2

Deployment controller
hierarchy

Application architecture

Fig. 4. Extended hierarchy.

4.2 Deployment controller architecture

Principle Except for the root deployment controller, each controller is cre-
ated by its parent controller. To communicate, two controllers must establish a
session. This session is used to exchange control messages.

As depicted on figure 5, each controller hosts a set of tasks responsible for
various aspects of the deployment. These tasks can either be created by other
tasks hosted by the controller or by tasks executing within the parent controller

Parent controller

Session opening Acknowledgment
Control operation Control event
Controller
Update
Tasks Subscription Architecture
repository
Event
Session opening Acknowledgment
Control operation Control event

Child controller

Fig. 5. Architecture of a controller.

(creation orders are propagated using the session established between the two
controllers). Tasks store their results in an architecture repository. Each time
the repository is updated, it sends an event reporting the update to interested
tasks, which react by either executing local operations, or creating other tasks.

Tasks We distinguish four kinds of tasks:

— Crreation tasks are in charge of creating components. Their code depends
on the type of component to be instantiated (Java, C, etc.). Moreover, in
the case of composite components, the creation task creates the controller
associated with the composite and opens a session that takes as parameter
the ADL description of the composite to be deployed. This session is used
by other tasks to send control orders. At the end of this task, the architec-
ture repository is updated with references to the created component and its
functional interfaces. Note that in the case of a “virtual” composite, stored
references are those of its encapsulated components.

— Integration tasks are in charge of integrating legacy components. These are
retrieved using information stored in the ADL description. The architecture
repository is then updated with information about the component references.

— Binding tasks are in charge of binding components. Their code depends on
the type of connector to be instantiated. Nevertheless they follow the same
pattern: they first create the connector factory using information stored in
the ADL description; then, they create the connector by calling the create
method with appropriate parameters. These parameters are retrieved from
the architecture repository.

— Activation tasks are in charge of activating components. For primitive com-
ponents, this only consists in calling the activate method provided by the
Activation control interface. For composite components, this task uses the
session established with the child controller to send an activation order. Once
the order is completed, the session with the child controller is closed.

Organization of tasks Tasks are created by a controller according to the ADL
description of the composite to be deployed. One creation (or integration) task
and one activation task are created for each encapsulated component. Moreover,
one binding task is created for each connector to be built. Note that in the case
of a “virtual” composite, only connectors between encapsulated components are
managed by the controller. Indeed, the bindings between encapsulated and other
components are done by the parent controller.

Tasks within a controller execute independently. They synchronize through
events generated by the repository upon updates. Tasks execute either in parallel
or sequentially according to their type and the components they work on: all the
creation and integration tasks execute in parallel. On the other hand, a binding
task depends on the creation and integration tasks in charge of the components
to be bound. Finally, an activation task executes after both all the component’s
required services have been bound and all the components it depends on have
been activated. This organization of tasks guarantees an “as soon as possible”
activation of each component. This would not be the case if all the creation tasks
were delayed until all the binding tasks complete, themselves being delayed until
the completion of all the creation tasks.

4.3 Fault tolerance

Like every large-scale distributed application, the deployment application can
be subject to node crashes, network breakdowns, disconnected sites, etc. It is
thus necessary to discover and handle these faults.

Fault detection Two kinds of faults may happen: either a task is blocked
— for example, a component creation does not complete —, or a network or
a machine crashes. In the latter case, the tasks interacting with this machine
will block. Thus, each fault causes one or several tasks to block. Two fault
discovering strategies are possible: the first one consists in setting bounds to
the execution times of the different tasks. Once a bound has been raised, an
error message is propagated. This method is not viable for the deployment of
large-scale applications, since it is very difficult to determine realistic bounds.

The strategy we have adopted is “optimistic’: no error message is propa-
gated. Instead, every controller owns a supplementary task, called monitoring
task whose role is to observe other tasks’ progression. This task collects events
produced by the repository, filters them and forwards interesting events to the
monitoring task executing within the parent controller. All these events are re-
ceived by the monitoring task executing within the root controller. This task is
used by the application administrator to check the deployment progression and
to detect faults.

Fault handling Faults are handled following a two steps process: all or part
of the controllers are stopped. Then, a new deployment order is given. Between
these two steps, a site can be restarted, the ADL description can be modified,
etc. Stopping a deployment controller is made possible by sending a stop order
using the session established with its parent controller. This causes the different
tasks executing within the controller to stop. Redeploying the application is
made possible by opening new sessions along with the (possibly modified) ADL

description. Stopped tasks are restarted (sometimes recreated). The repository
is also restarted and used to determine the operations that remain to be done. It
is important to note that for this mechanism to work correctly, it is required (1)
that repositories and tasks have persistent states, and (2) that communications
between them be reliable.

5 Implementation

The deployment application has been implemented using the ScalAgent middle-
ware [15]. It is a fault-tolerant platform that combines asynchronous communi-
cations with a programming model using distributed, persistent software entities
called agents.

The agent paradigm Agents are autonomous reactive objects executing con-
currently, and communicating through an event-reaction pattern, thus following
the actor paradigm [16]. An event is a typed data structure used for exchang-
ing information with other agents. Once an agent receives an event, it reacts
accordingly, thus changing its state and/or communicating with other agents.
Agents are persistent, which means that the agent lifetime is not bounded to the
duration of the execution. However, persistence is not sufficient for retrieving
a consistent state after failure. Also, agent reactions are atomic. This property
ensures that a reaction is either fully executed or not executed at all.

The execution infrastructure This event-reaction model is based on a MOM
which guarantees the reliable, causal delivery of messages. The MOM is repre-
sented by a set of agent servers organized in a bus architecture. Each server is
made up of two components, the local bus and the engine (see figure 6). The local
bus conveys messages. It is made of a channel in charge of routing messages and
several networks that implement the basic message-based communication layers.
The engine is responsible for the creation and execution of agents. It behaves
according to their event-reaction model. It performs a set of instructions in a
loop, getting the next message from the channel and making the proper agent
react.

SCServer SCServer
‘ Engine ‘ ‘ Engine ‘
‘ Channel ‘ ‘ Channel ‘ Global
message
‘ Network 1 ‘ ‘ Network 2 ‘ ‘ Network 3 ‘ ‘ Network 1 ‘ ‘ Network 2 ‘ bus
\. .| -\ Local bus Jl\tocalbus N\J |

Fig. 6. Two interconnected agent servers.

Implementing the deployment application Controllers, tasks, as well as
repositories are implemented using agents. At session creation time, the agent

implementing the child controller is (possibly remotely) created. This controller
agent creates the agent responsible for the repository and uses the ADL descrip-
tion to create the agents responsible for the various tasks: a creation and an
activation task by encapsulated component, as well as a binding task for each
binding to be established. Fault tolerance is made possible by the atomic execu-
tion of agents, which guarantees that restarted tasks and architecture repositories
are in a consistent state.

6 Evaluation

Performance measurements have been done to validate the proposed deploy-
ment application. They have been performed on a 216 PCs cluster equipped
with 733MHz Intel Pentium IIT processor and 256Mo RAM. Tests consisted in
deploying applications, whose architecture follows the pattern represented on
figure 7. Application components are implemented using Java objects communi-
cating using the ScalAgent middleware.

Fig. 7. Architecture of the test application.

Recall that deployed applications have always a tree-like hierarchy. The test
application hierarchy is made of three levels: a central site connected to n com-
posite components, each one encapsulating a regional composite connected to m
local composites. Every local composite encapsulates 10 primitive components.
Every regional composite encapsulates 10 primitive components as well as local
composites. The measured metric is the average deployment completion time.
We varied several parameters:

— The number of physical machines that host application components. This
number ranges from 11 to 151.

— The number of local composites. This number ranges from 1 to 7000. In the
case of the test application, each local composite execute within a Java pro-
cess. As a matter of fact, the more the number of local composites increases,
the more the required power on the machine is significant.

— The number of regional composites. This number ranges from 1 to 50. Note
that increasing the number of regional composites decreases the number of
local composites that each one encapsulates.

6.1 Distribution impact evaluation

To evaluate the distribution impact, the number of regional and local composites
remains constant (m = 10 and n = 100), whereas the number of machines that
host application components varies (from 20 to 111). Such applications involve
110 Java processes, each one hosting approximately 10 components. Obtained
results are presented on figure 8. The average completion time ranges from 45
to 55. We can see that up to a certain number of machines, the decentralization
increases the deployment performances. This is mainly due to the fact that each
machine hosts less Java processes. Nevertheless, a too large number of machines
increases the use of remote communications, thus reducing the deployment per-
formances.

Completion time (seconds)
a
g

L L L L L
20 40 60 80 100 120
Number of machines

Fig. 8. Distribution impact evaluation.

6.2 Architectural impact evaluation

This test aims at evaluating the impact of the composite hierarchy. Recall that
the application is represented by a central composite encapsulating m regional
composites, each one encapsulating — besides its own primitive components —,
n = m local composites. Figure 9 shows that, for both a fixed number of machines
(=60) and a fixed number of local composites (n = 500), the deployment com-
pletion time is minimum for m = 10 regional composites (i.e. n = m = 50). This
arises from the deployment application architecture which associates a controller
to each composite. An increase of the number of controllers induces a paralleliza-
tion of the deployment. Nevertheless, this number must be kept reasonable, since
too large of a number causes each controller to handle a large number of ses-
sions, which slows down the deployment process. This experience shows that the
hierarchical structure of the application architecture has an impact on the de-
ployment performances, which opens research perspectives towards tools to help
determining an application’s optimal architecture with regard to its deployment.

6.3 Scalability evaluation

This test is the most important. It aims at verifying that the proportional in-
crease of parameters (n, m and the number of machines) does not cause an

220 |

215 |

210 |

Completion time (seconds)

.
0 5 10 15 20 25 30 35 40 45
Number of regional composites

Fig. 9. Architectural impact evaluation.

exponential increase of the deployment completion time. Figure 10 shows that
this time remains linear, with n ranging from 10 to 450, m from 1 to 45, and
the number of machines from 3 to 91.

200 [

150 |

100 |

Completion time (seconds)

L L L L L L L L L
0 10 20 30 40 50 60 70 80 90
Number of machines

Fig. 10. Scalability assesment.

7 Related work

Deployment has been an increasing area of interest this last 10 years. Work
has been done on the SOFA component model [17]. Similarly to our approach,
they use an ADL (CDL for Component Definition Language) which allows the
description of the application to be deployed as a hierarchical assembly of com-
ponents. Nevertheless, the proposed deployment process is centralized and does
not take advantage from the hierarchical structure of the application. Indeed, a
centralized server uses the ADL to propagate creation and binding orders.

[18] focuses on a deployment specific problem: the one of component dis-
covery. The authors propose a trading service based both on the type of the
component interfaces and on semantic information about the component. This
tool has been integrated into the Corba component model (CCM) deployment

process. The proposed protocol is synchronous and centralized, which we think
is not a viable approach for large-scale applications. Such a tool could be in-
tegrated into our proposition as complementary to the ADL. It would be used
by the different tasks to retrieve information they need, thus allowing dynamic
evolution of the ADL description.

Researchers at University of Colorado have proposed a reconfiguration system
for the Sun’s EJB component model [19]. BARK (Bean Automatic Reconfigura-
tion FrameworK) is designed to facilitate all the tasks in the deployment lifecycle
for EJBs. It provides functions to download component packages over the Inter-
net and load them into the EJB container. It also manipulates the component
package descriptors to provide control over component bindings. In that sense,
BARK may be compared to an ADL. BARK is composed of a set of Application
Server Modules (ASM) that work in cooperation with EJB application servers.
A central Repository is used for storing component software packages. Finally, a
tool determines the scripts to be executed by each ASMs. The proposed deploy-
ment process shares similarity with ours since it uses an ADL-like description of
EJBs. However, deployment orders are centralized and synchronous.

Hall et al. have worked on software deployment [20]. The architecture they
propose, called Software Dock, is composed of a set of servers, or docks. These
docks help registering software releases and software consumer configurations.
They are used by agents that are in charge of a specific deployment task. Agents
can migrate from dock to dock and communicate using a wide-area event system.
Similarly to our approach, this system uses asynchronous communications and
agents. However, this system is not dedicated to component deployment; it is
agnostic to development approaches. As a matter of fact, the deployment is not
hierarchical and it does not allow an “as soon as possible” activation of part of
the components. Finally, agents do not execute atomically, which precludes fault
tolerance.

We conclude this related work survey with work conducted by the Grid
community. In particular, proactive [21] is an active object-based distributed
programming model. One of the designers’ goal is to remove any reference to
physical machines, repositories, etc. from the code of objects. This is achieved
by using “virtual structures”. They are mapped onto physical structures us-
ing XML descriptors. Proactive shares our goal of separating functional code
from deployment-related data. Nevertheless, we do not aim at the same type of
deployment: this system targets lowlevel software deployment like Java virtual
machines. We are focused on component-based applications.

8 Conclusion and future work

The deployment of distributed component-based applications is one of the chal-
lenges raised by the component-based development. Existing solutions are often
centralized and only consist in software delivery. Such deployment processes
have several drawbacks: their centralized control excludes the deployment of
large-scale distributed applications. Moreover, these processes do not take into
account the applicative logic: the activation is often unnecessarily delayed and
they do not propose to integrate legacy components with deployed applications.
Finally, they do not take into account the physical constraints of the system on

which the application is to be deployed: as a consequence, most of them do not
tolerate faults.

In this paper, we have proposed a deployment application that solves these
three challenges. (1) There is no centralized control: the deployment application
is hierarchically organized according to the application’s architecture. This hier-
archical organization avoids bottlenecks and makes the deployment scalable. (2)
The asynchronous and parallel execution of tasks allows an “as soon as possible”
activation of deployed components. Indeed, every task synchronizes (using the
architecture repository) only with tasks it depends on. Dependency knowledge
is made available by the ADL description of the application. (3) Finally, the
proposed deployment application is fault tolerant. This is achieved by the use of
persistent agents with atomic execution.

Future work: first performance measurements are an excellent encourage-
ment to pursue our work. First, we plan to refine the experiments we have done
in order to evaluate the computational and memory overheads of the deployment
controllers, and the number of concurrent tasks a controller can support. Second,
we plan to provide the deployment application with support for high availability.
As a matter of fact, while allowing a great deal of parallelism, the hierarchy of
deployment controllers is still amenable to bottlenecks and single points of fail-
ure. We are currently adding replication capabilities to the ScalAgent MOM; this
will allow duplicating the deployment controllers, thus improving the availability
of the deployment application.

References

1. W. Emmerich. Distributed Component Technologies and their Software Engineer-
ing Implications. In Proceedings of the 24th International Conference on Software
Engineering (ICSE’02), pages 537 — 546, Orlando, Florida, May 2002.

2. C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

3. A. Carzaniga, A. Fuggetta, R. Hall, A. van der Hoek, D. Heimbigner, and A. Wolf.
A Characterization Framework for Software Deployment Technologies. Technical
Report 857-98, Department of Computer Science, University of Colorado, 1998.

4. L. Bellissard, S. Ben Atallah, F. Boyer, and M. Riveill. Distributed Application
Configuration. In Proceedings of the International Conference on Distributed Com-
puting Systems (ICDCS’96), pages 579-585, Hong-Kong, May 1996.

5. E. Bruneton, T. Coupaye, and J.-B. Stefani. Recursive and Dynamic Software
Composition with Sharing. In Proceedings of the 7th ECOOP International Work-
shop on Component-Oriented Programming (WCOP’02), Malaga, Spain, June
10th-14th 2002.

6. Vivien Quéma and Emmanuel Cecchet. The Role of Software Architecture in
Configuring Middleware: the ScalAgent Experience. In Proceedings of the 7th In-
ternational Conference on Principles of Distributed Systems (OPODIS’2003), La
Martinique, France, 2003.

7. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik.
Abstractions for Software Architecture and Tools to Support Them. Software
Engineering, 21(4):314-335, 1995.

8. N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A Language and Environment
for Architecture-Based Software Development and Evolution. In Proceedings of
the 21st International Conference on Software Engineering (ICSE’99), pages 44—
53, 1999.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

V. Issarny, C. Bidan, and T. Saridakis. Achieving Middleware Customization
in a Configuration-Based Development Environment : Experience with the Aster
Prototype. In Proceedings of the 4th International Conference on Configurable
Distributed Systems, pages 207-214, Annapolis, Maryland, USA, May 1998.

D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann.
Specification and Analysis of System Architecture Using Rapide. In IEEE Trans-
actions on Software Engineering, Special Issue on Software Architecture, Vol. 21,
No. 4, pages 336-355, April 1995.

R. Allen, D. Garlan, and R. Douence. Specifying Dynamism in Software Archi-
tectures. In Proceedings of the Workshop on Foundations of Component-Based
Software Engineering, Zurich, Switzerland, September 1997.

R. Balter, L. Bellissard, F. Boyer, M. Riveill, and J.Y. Vion-Dury. Architecturing
and Configuring Distributed Applications with Olan. In Proceedings of the IFIP
International Conference on Distributed Systems Platforms and Open Distributed
Processing (Middleware’98), The Lake District, UK, September 1998.

Philippe Merle, editor. CORBA 3.0 New Components Chapters. OMG TC Docu-
ment ptc/2001-11-03, November 2001.

Enterprise JavaBeansTM Specification, Version 2.1, August 2002. Sun Microsys-
tems, http://java.sun.com/products/ejb/.

L. Bellissard, N. de Palma, A. Freyssinet, M. Herrmann, and S. Lacourte. An Agent
Plateform for Reliable Asynchronous Distributed Programming. In Symposium on
Reliable Distributed Systems (SRDS’99), Lausanne, Switzerland, October 1999.
G. A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
In The MIT Press, ISBN 0-262-01092-5, Cambridge, MA, 1986.

T. Kalibera and P. Tuma. Distributed Component System Based On Architecture
Description: the SOFA Experience. In Proceedings of the 4th International Sym-
posium on Distributed Objects and Applications (DOA’02), Irvine, CA, October
2002.

D. Kebbal and G. Bernard. Component Search Service and Deployment of Dis-
tributed Applications. In Proceedings of the 8rd International Symposium on Dis-
tributed Objects and Applications (DOA’01), Roma, Italy, September 2001.

M. Rutherford, K. Anderson, A. Carzaniga, D. Heimbigner, and A. Wolf. Re-
configuration in the Enterprise JavaBean Component Model. In Proceedings of
the IFIP/ACM Working Conference on Component Deployment (CD’02), pages
67-81, Berlin, Germany, June 2002.

R. Hall, D. Heimbigner, and A. Wolf. A Cooperative Approach to Support Software
Deployment Using the Software Dock. In Proceedings of the 21st International
Conference on Software Engineering (ICSE’99), pages 174-183, Los Angeles, CA,
May 1999.

F. Baude, D. Caromel, F. Huet, L. Mestre, and J. Vayssieére. Interactive and
Descriptor-based Deployment of Object-Oriented Grid Applications. In Proceed-
ings of the 11th International Symposium on High Performance Distributed Com-
puting (HPDC"02), pages 93-102, Edinburgh, Scottland, July 2002.

