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Abstract

We model an infinite horizon trading game of a limit order market with informed
traders. Agents with a private and common value motive for trade randomly arrive in a
market and may either post prices (submit limit orders) or accept posted prices (submit
market orders). If their orders have not executed, traders may reenter the market and
thus solve a dynamic problem. We consider agents’ incentive to acquire information.
We characterize how information acquisition changes agents’ strategies and demonstrate
the effect of this on the efficiency of market prices. We demonstrate that for some costs
of acquiring information, there are multiple equilibria in the information acquisition
game. Finally, we demonstrate that information acquisition can make all agents worse
off.



1 Introduction

How does information get into stock prices? The answer to this question is important for

both practical and theoretical reasons. Theoretically, the notion of efficient markets requires

that information is acquired voluntarily by agents and through their trading behavior is

incorporated into price. Practically, if we know who acquires information and how this

affects their trading strategies, better inferences can be drawn from transactions data.

The relationship between price and information pertinent to the common value was first

explored by Hirschliefer (1971), who found that in equilibrium, if prices are fixed, then each

agent has an incentive to acquire information. However, this can lead to market breakdown

and has no social value (i.e., all agents are worse off).1 Grossman and Stiglitz (1980)

observed that if costly information is immediately impounded in price, then agents do not

acquire it. Clearly, both arguments depend on how agents profit from their information. If

they benefit through trading in the asset, then all results are specific to the price formation

mechanism. Thus, to answer these questions robustly, a model should either explicitly

model current real–world markets or include stylized representations of the most important

trading frictions.

To date, important insights into how information is impounded in price have been gen-

erated in both competitive and strategic rational expectations models. By contrast, our

framework is a fully strategic trading game and thus falls outside this paradigm. Under-

standing trading frictions in a competitive rational expectations equilibrium is complicated

by the fact that generically, Blume and Easley (1990) show that there is no game that has

the competitive rational expectations equilibrium as an outcome. Or, there is no reason to

suppose that any functioning security market will display the properties of a rational expec-

tations equilibrium. Interestingly, Reny and Perry (2004) provide an example of a double

auction that under stringent regularity conditions converges to the rational expectations

equilibrium. Thus, while the rational expectations equilibrium is not generically the limit

of any strategic market game, the closest example to a game which could converge to this

outcome has the flavor of a limit order market with discrete prices.

We model an infinite horizon asset market as an open electronic limit order market.

Most equities are traded in a variant of a limit order market. Briefly, this is a continuous

double auction, where investors may either post prices (submit limit orders) or accept a

posted price (submit a market order). In our model, risk neutral agents who value the

asset as the sum of a private and common value arrive randomly at the market. Agents

have different information about the cash flows accruing to the owners of the asset i.e.,
1Hakansson, Kukel and Ohlson (1982) demonstrate in an exchange economy that if the market is not

allocationally efficient and posteriors are not the same then information can have social value.
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the common value. Each agent has one share to trade, and if his order does not execute,

revisits the market with fixed probability and can revise his order. Thus, agents’ strategies

are fully dynamic. Ex ante, before the start of the trading game, agents choose to acquire

costly information. An informed agent views the current value of the cash flows, while an

uninformed agent views the cash flows with a lag. Each time an agent revisits the market,

his information set is updated.

We show how traders’ strategies change depending on their beliefs about other’s infor-

mation sets. One measure we use to determine how much trading outcomes have changed

is the allocative efficiency of the market. We analyze the informational efficiency of market

prices: how quickly new information becomes impounded in price and how quickly agents

update their beliefs about the common value. We demonstrate that there can be multiple

equilibria in the information acquisition game. Finally, we find that all agents in the market

can be made worse off when some optimally acquire information.

The key difference between our approach and that of the older literature is that in our

model, the gains from trade are fixed. If traders in one particular stock are modelled as risk

averse, then if some agents become informed, the risk sharing opportunities are reduced.

This, is the basis of the Hirshleifer effect. By contrast, we consider a world in which there

are gains to trade and information affects how agents split such gains. Thus, we focus on the

role of adverse selection, and how it affects agents’ market behavior. We interpret rational

expectations results with risk averse traders as primarily about industry or factor returns.

Trade in these models is driven by risk sharing. However, from a portfolio perspective,

the only risk sharing that is relevant should be systematic risk. One thinks of insiders or

privately informed having information that pertains to the idiosyncratic returns. If investors

hold well–diversified portfolios then aggregate risk sharing should not be an important trade

motivation for agents averse to idiosyncratic risk.2

Agents in financial markets can acquire different types of payoff relevant information.

First, there can be information about the underlying cash flows of the asset. For example,

agents might have insider information or information about earnings or sales. Second, agents

may have information about trading opportunities. That is, agents may be differentially

informed about quotes, depth and other variables that allow them to tip the terms of trade

to their advantage. In this paper, we consider information about the common value of the

asset. Thus, we primarily interpret information as general company information such as

earnings reports or corporate balance sheets.

Our model can also be interpreted as a model of private information. Since trading
2Bernardo and Judd (1997), find that information acquisition leads to a reduction in welfare as uncertainty

is resolved before trade (the Hirshleifer effect), and rent–seeking trades by informed reduce optimal risk
sharing.
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on inside information is illegal in the United States, it is not immediate that a privately

informed investor will trade in the underlying stock. In the US, the SEC monitors stocks

and aggressively prosecutes those who trade based on insider information. If an insider

chooses a more circuitous route (either trading on options or through other instruments),

the information content of those prices will become available to all market participants.

While all this of information is readily available, acquiring it is costly. There can be

an explicit cost such as subscribing to a news service, or an opportunity cost of time.

Information about trading opportunities also enters our analysis in that it determines the

inference agents can make about the common value. In equilibrium, traders in our model

must choose whether to pay the cost of information. All informed investors have the same

information; i.e., their signals are perfectly correlated.

The canonical strategic rational expectations model is Kyle (1985). One equilibrium

condition in this model is that the market maker’s price is the expected value of the asset

conditional on all public information, including the direction and magnitude of contempo-

raneous order flow. Thus, this framework is inappropriate for examining how potentially

information about (say) earnings gets incorporated into price. Presumably, in this frame-

work, the market makers’ price instantaneously adjusts to reflect such public information.

Further, as all trades are consummated at the market maker’s quoted prices, there is no

distinction between quotes and transaction prices. The only other observable characteristic

of the market is the net order flow.

An agent can benefit from superior information if he can trade on it: anything that

restricts his ability to do so will reduce his benefit from acquiring it. Holden and Subrah-

manyam (1992) show in a Kyle setting with multiple informed traders that prices reveal

information almost immediately: informed traders compete away trading profits. Such a

result relies on the fact that noise traders do not adjust their trades. Spiegel and Subrah-

manyam (1992) demonstrate that changing the Kyle assumptions, by allowing uninformed

traders with risk sharing motives to choose trades, generates different comparative statics.

In particular, the welfare of liquidity traders monotonically decreases in the number of in-

formed traders. This is because risk averse liquidity traders reduce the amount that they

trade in the presence of adverse selection. Endogenous information acquisition has been

examined in a Kyle framework with endogenous liquidity traders by Mendelson and Tunca

(2004). In a model with strategic risk averse noise traders, they consider the effect of three

types of information: intractable that cannot be acquired, tractable that can be, and public.

As liquidity traders are risk averse, they benefit from the existence of an insider (this reduces

uncertainty). As the insider takes into account the effect of his actions on liquidity traders,

they find that the insider may choose not to acquire information (even at a zero cost).
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Finally, an insider may acquire more information than the welfare maximizing amount. In

a continuous time setting, Back, Cao and Willard (2000) demonstrate competing traders

reveal less information than a monopolist insider if their signals are not perfectly correlated

and they find that the market becomes illiquid at the end of trading. Taub, Bernhardt and

Seiler (2004) consider the case of multiple informed agents and repeated information shocks

and find that the properties of Kyle (1985) hold in a more complex model.

This paper is conceptually related to the seminal work of Admati and Pfleiderer (1987a)

who provide conditions under which information is concentrated among traders (i.e., agents’

incentives to acquire information) in a competitive multi–asset noisy rational expectations

framework. They find that because information becomes aggregated in price, and agents

condition on price, signals about the payoff of an asset, may become more valuable.3 By

contrast, we find that as more agents acquire information, the price they are willing to pay

for it is lower (i.e., information is less valuable). Further, as we have a model of strategic

trade, agents may trade at prices before information becomes revealed. Indeed, the true

value of the asset changes frequently in our model, and trade occurs both before and after

such changes. This is one significant difference with between a strategic model and the

rational expectations literature: the welfare properties in a strategic model are necessarily

different.

Our paper links the literature on information acquisition to that on dynamic limit or-

der markets. Work on dynamic limit order markets includes Rosu (2004), who presents a

continuous time model of a limit order market. His solution technique requires continuous

prices and instantaneous punishment strategies. Foucault, Kadan and Kandel (2004) char-

acterize equilibrium in a dynamic limit order book with private values and differences in

time preferences. Goettler, Parlour and Rajan (2004) numerically solve an infinite horizon

model of a limit order market with private and common values. They assume that cancella-

tions are exogenous: agents do not revisit the market and thus do not solve a truly dynamic

problem. Further, their model is in discrete time. By contrast, the current framework is in

continuous time and agents may revisit the market.

There is an extensive literature that considers the effects of differential information

about the limit order book or trading opportunities. Foucault et al (2003) consider the

effect of trader identity on a limit order book through a natural experiment. Pagano and

Roell (1993) consider the redistributive effects of transparency in a Kyle (1985) type setting.

Madhavan (1995) finds that the price volatility is higher in a market with less transparency

because less information gets impounded into price. Biais (1993) compares centralized and
3Barlevy and Veronesi (2000) in a single asset Grossman Stiglitz framework with supply shocks also find

that learning can be a strategic complement.
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fragmented markets in which traders only have a private motive for trade. From a natural

experiment on the NYSE, Boehmer, Yu, and Saar (2004) find that agents condition on the

limit order book and that access to the limit order book can affect market quality. We find

that uninformed traders benefit from information in the limit book as it allows them to

infer private signals.

There is a literature that considers purveyors of information. Admati and Pleiderer

(1986, 1987b, 1990) in a rational expectations framework, demonstrate that if price is

revealing, a monopolist seller of information may prefer to provide noisy signals, or to set

up a mutual fund to trade directly on his information. Simonov (1999) shows in a rational

expectations context that if signals are complements then the price of information in a

duopoly is higher than in a monopolist setting. Leshchinskii (2000) demonstrates that if

strategic traders differ in risk aversion, then the more risk averse may reveal his signal

to allow the less risk averse as an incentive to provide more information. In contrast to

this literature, we take the price of information as given and characterize the equilibrium

allocations that can obtain.

In Section 2 we outline the general model. Details of the algorithm, convergence criteria

and parameterizations follow. We proceed by analyzing agents’ order submission strategies

under different information acquisition assumptions (Section 3). As market efficiency has

been identified as an important determinant of the demand for information, we consider

how quickly information becomes impounded in price across different assumptions about

information acquisitions (Section 4). Finally, in Section 5 we characterize the demand

for information for different possible information acquisition strategies, which allows us

to find subgame perfect equilibria of the endogenous information acquisition game. We

then compare the welfare properties across the different equilibria and draw conclusions in

Section 6.

2 Model

We model an infinite horizon limit order market for a single stock. In philosophy, the model

is similar to that in Goettler, Parlour and Rajan (2004). There is a common value to the

asset, v, and it also has a private benefit, β, to each trader. On entry into the market,

a trader observes the limit order book, and decides whether to submit a buy or a sell

order. The equilibrium cannot be determined analytically in closed form, so we solve for it

numerically. One important difference that significantly enriches the model is that traders

who have submitted limit orders are allowed to re-enter the market, and change or cancel

their order. That is, cancellations in this paper are fully endogenous.
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Time in the model is continuous, though events happen only after discrete time intervals.

There is a large (possibly infinite) set of discrete prices, denoted {p0, p1, . . . , pN}, at which

traders may submit orders. The distance between any two consecutive prices is a constant,

d, and we refer to it as “tick size.” Associated with each price pi ∈ {p0, . . . , pN} is a backlog

of outstanding limit orders, �i(τ). We sometimes refer to this as the depth at price pi. We

adopt the convention that buy orders are denoted as a positive quantity, and sell orders as

a negative quantity. The limit order book, L(τ), is the vector of outstanding orders, so that

L(τ) = {�(τ)i}N
i=0. The bid price is defined by the highest price at which there is a limit

buy order on the book, and the ask price by the lowest price at which there is a limit sell

order.

New traders arrive at the market according to a Poisson process with parameter λN .

Hence, the actual time between the arrivals of traders is random. Each trader has a type

denoted by θ = {ρ, β, I}. The first element of the trader’s type, ρ, is a continuous discount

rate. The payoff he earns as a result of trading is discounted back to his first arrival time

in the market at this rate. The discount rate captures the notion that traders would rather

execute sooner than later. In the model, it prevents a trader from infinitely postponing

trade.4 In this paper, we hold ρ fixed across all agents.

In addition, each trader has a private value for the asset, which we denote β. The

private value represents private benefits to trade as a result of liquidity shocks or private

hedging needs. Its presence implies potential gains to trade among agents. We consider

β distributions that are symmetric, have a mean of zero, and have finite support. Let Fβ

denote the distribution of β. The private value β is independently drawn across traders.

In addition to a private value for each trader, the asset at any instant τ has a common

value, denoted v(τ). The common value is interpreted as the expectation of the present

value of future cash flows on the stock. Innovations in the common value arrive according

to a Poisson distribution with mean µ. If an innovation occurs, then with probability 1
2 the

common value increases by one tick and with the same probability decreases by one tick.

Changes in the common value reflect new information about the firm or the economy.

Finally, I refers to the information the trader has about the common value, v. In this

paper, we consider two kinds of agents. Informed agents know the current value of v at each

instant. Uninformed agents view v with a lag ∆τ . For computational convenience, this lag

is measured in terms of the number of trader arrivals to the market. That is, an uninformed

agent in the market at time t knows the true value of v at the time of the previous ∆th
τ

trader arrival. An informed agent in the market at time t knows the current value v(t).
4Discount rates are also present in the models of Foucault, Kadan and Kandel (2004) and Rosu (2004).

These models fix the gains from trade and follow Demsetz (1968) in that differential waiting costs imply
particular patterns of trade.
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Thus I = {0, ∆τ}.
We are interested in endogenous information acquisition by the agents. That is, suppose

there is a cost c to acquiring information about v. Before they first enter the market, agents

may choose whether to subscribe to a service that reports the current value of v. Since

the state of the market changes more rapidly (on average) than the common value of the

asset, our traders do not have the option of choosing whether to buy information based on

the observed situation in the market. Since the information is potentially available to all

investors, there is a sense in which this is public information.

If they choose to not buy information, they observe v with a lag of ∆τ trader arrivals.

If they do subscribe to the service, they observe the current value of v when they are in the

market. Since traders make this choice before entering the market, in practice, each (ρ, β)

pair will make the same choice, given c and given the information acquisition strategies of

other agents—either all agents with this β and ρ will acquire information, or none of them

will.

In practice, we solve for the equilibrium of the model for different cases, assuming

an information acquisition strategy for each (ρ, β) pair. We then compute the change in

expected payoff for each pair from deviating at the information acquisition stage. This

provides bounds for the information acquisition cost, c, for which the assumed information

acquisition strategies constitute an equilibrium.

Each trader is allowed to trade exactly one share of the asset. However, they may choose

to buy or sell a share. Further, traders who have entered the market previously, but have

not executed yet, re-enter the market at some random time. As a result, on any particular

entry, a trader may choose to submit no order. Traders are potentially active until their

order executes, at which time they leave the market for ever. Thus, at any point of time,

there will be a random number of agents who have not yet traded. Each unexecuted trader

re-enters the market according to a Poisson distribution with parameter λR. This captures

the idea that agents monitor the market, but not continuously. The re-entry times are

independent across agents. Let G denote the distribution over re-entry time, with g the

associated density. At any particular instant, there is at most one agent (either a new or

returning trader) who takes a decision.

Upon re-entry, a trader may leave an existing order on the book, or cancel it and submit

a new order. The benefit of retaining the existing order is that he maintains his time priority

(his place in the queue). The cost is that the asset value may have moved in a manner that

affects the expected payoff from the order. For example, if he submitted a buy order and

the asset value has fallen since then, his order may be picked off. Conversely, if the asset

value has risen since then, his offer may be at too low a price, and there may be little chance
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of it executing. Of course, a trader may also find that the priority of a previous order has

improved by the time he re-enters the market. Suppose a trader submitted an order at price

p. Given book L(τ), let q(τ) denote the number of orders with higher priority at the same

price, among all orders at price p at time τ .

When he is in the market at time τ , a trader may submit an order xi(τ), which denotes

an order at price pi, and

xi =


1 if a buy order is submitted at pi

−1 if a sell order is submitted at pi

0 if no order is submitted at pi.
(1)

If there is an existing order at price pi on the other side of the market, the submitted order

executes immediately and is called a market order. Alternatively, if there is no order on the

other side of the market at that price, the order joins the existing orders on the same side

at that price. All limit orders are executed according to time and price priority. That is,

orders submitted earlier are further forward in the queue. Buy orders are accorded priority

at higher prices, and sell orders at lower ones. Therefore, an order executes if no other

orders have priority, and a trader arrives who is willing to be a counter-party.

The perceived trading opportunities for each trader depend on his information set. Let

s(θ) be the state observed by the trader. For a fully-informed trader in the market at time

τ , s(θ) = {L(τ), v(τ)}. That is, he knows the entire book L(τ) and the current consensus

value v(τ). In addition, the trader also knows the price p and priority at that price q of his

previous order.

Consider instead a trader who is not fully informed, but only views the consensus value

of the asset with a lag of ∆τ trader arrivals. Let τ̃ denote the (random) time before τ at

which the previous ∆th
τ trader arrival was recorded. In addition, this agent observes the

transactions that have taken place since τ̃ . To limit the size of the state space, we allow the

trader to condition on the difference between the total number of market buy orders and

market sell orders that have taken place since then, n∆τ . This difference may be positive

or negative. Hence, the state space for an uninformed trader is s(θ) = {L(τ), v(τ̃), n∆τ }.
For computational tractability, for all agents (informed and uninformed) we restrict order

submission to a finite set of prices centered around the agent’s expectation of v(τ). That

is, the agent is allowed to submit a limit order at prices up to k ticks above or k ticks below

his expectation of v(τ). He is allowed to submit a market buy (sell) order at the current

ask (bid), regardless of his expectation of v(τ).

Consider the problem faced by a trader who is in the market at time t. Suppose this

trader is re-entering the market (the problem faced by a new trader is similar to the problem

faced by a re-entering trader who did not submit an order on his previous entry), and, on
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his previous entry (at t′ < t), he had submitted an order at price p that is still active. This

order may have improved in priority at price p between times t′ and t. The trader has the

option of leaving the order as is, and taking no further action.

To capture this possibility, let a = (p, q, x) denote an action taken by a trader. Here,

p is the price at which an order is submitted, and q is the priority of his order among all

orders on the same side at the market at price p. As before, x is −1 or 1 depending on

whether the order is a sell or a buy order. If no order is submitted, let x = 0. In the latter

case, p and x correspond to the values chosen at the time the retained order was submitted.

When x = 0, and no order is submitted, the values of p are irrelevant.

Let A(θ, s(θ), a) denote the action set of the trader. Here, s(θ) denotes the state faced

by the trader when he is in the market at this time, and a = (p, q, x) is the status of the

previous action of this trader. If he is a new trader, we let x = 0. The feasible action set

for the trader depends on his type. As mentioned, each trader can submit a market order

(at the prevailing quotes), or a limit order within k ticks of his expectation of the common

value. Since the latter depends on his type, so does the action set.

Traders are risk-neutral, and submit orders to maximize their expected discounted pay-

off. Utility is earned only if an order executes. For a particular trader θ = (ρ, β, I), the

instantaneous utility at time τ may be defined as

u(τ) =


β + v(τ) − pi if he executes a buy order at price pi and time τ
pi − β − v(τ) if he executes a sell order at price pi and time τ
0 if he does not execute an order at time τ

(2)

If a trader submits a limit order, his execution time, T̃ , is random. The limit order

executes only if another trader submits a market order that executes against it. Let F
T̃
(· |

s, a) denote the distribution of execution time of his order, given that he takes action a and

the state he faces is s. Execution times for limit orders are endogenous: they depend on

the actions of this trader as well as those of future traders.

The probability distribution over execution times is different for different prices and

orders. In particular, a market order submitted at t executes at time t. Formally, this is

represented as a probability distribution that has a mass of 1 at t. Intuitively, we expect

limit buy orders at higher prices to execute sooner than orders at lower prices.

Consider a trader in the market at time t. Suppose he faces state s, and his previous

action is given by a. When the trader submits an order, he has to consider the distribution

over execution times for that order, as well as the distribution of his own re-entry time into

the market. Upon re-entry, if his order is unexecuted, he has the option to cancel it and

submit a new order. The payoff-maximizing order depends on both these outcomes. The

trader, therefore, solves a dynamic program to determine the optimal order.
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We denote the value to trader type θ of being in the market in state s, given that his

previous order is a, as J(s, a | θ). On entry into the market, the trader has a finite action

set, A(θ, s, a). Each action ã in this set gives rise to an expected payoff that consists of two

components: first, a payoff conditional on the order executing before the trader re-enters

the market, and second, the value associated with re-entering the market in some new state

s′. For convenience, we normalize the time at which the trader has to take a decision to

be time 0. Let φ(τ, vτ ; s, ã) be the probability that an action ã taken in state s at time

0 executes at time τ > 0 when the common value is vτ . Then, the value J(s, a | θ) to

trader type θ of entering the market in state s, given that his previous action was a, may

be written as follows:

J(s, a | θ) = max
ã∈A(θ,s,a)

[ ∫ ∞

w=0

{∫ w

τ=0

∫ ∞

vτ=−∞
e−ρτ x̃(β + vτ − p̃)φ(τ, vτ ; s, ã)fv(vτ | v, τ)dvτdτ

+ (1 − F
T̃
(w | s, ã))e−ρw

∫
(s′,ã′)∈S×A

J(s′, ã′ | θ)h(s′, ã′ | s, ã, w)d(s′, ã′)
}

g(w)dw

]

The first term on the RHS indicates the payoff from execution before re-entry at the

random time w. The distribution of execution time is denoted F
T̃
. This distribution is

defined as F
T̃
(w) =

∫ w
τ=0

∫ ∞
vτ=−∞ φ(τ, vτ ; s, ã)fv(vτ | v, τ)dvτdτ . This depends on the action

taken (for example, for a market order, F
T̃
(0) = 1, since the order executes immediately),

and on changes in the common value. The latter affects the actions taken by subsequent

agents.

Suppose the agent takes an action ã = (p̃, q̃, x̃). Suppose further that his order executes

at a time τ ∈ [0, w]. Then, the payoff to the order depends on the common value at

time τ , which we denote vτ . As noted, the instantaneous payoff of this order at time τ is

x̃(β + vτ − p). This payoff must then be discounted back to time 0, at the rate ρ. The

innermost integral of the first term on the RHS is over the different common values that can

obtain at time τ . Picking off risk is manifested in φ(·), which is higher when v has moved

in an adverse direction (for example, v has decreased after a limit buy was submitted).

The second term captures the payoff to the trader if his order remains unexecuted at

time w. The probability of this is
(
1 − F

T̃
(w | s, ã)

)
. The agent re-enters the market at the

random time w. If his order is still unexecuted, he can choose to instead submit an order

at a different price p̃ �= p or in a different direction, x̃ �= x. This implies a cancellation of

the previous order. Alternatively, he can choose to leave his previous order on the books,

by setting p̃ = p and x̃ = x. In this case, we have q̃ = q, so that the order retains its

status. Of course, the state may have changed since he first submitted the order, to s′.
This could happen for exogenous reasons (for example, a change in the common value) or

due to actions taken by other agents. The latter could enhance the priority of this agent’s
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order at the price p̃ (so that q̃w < q̃0), or it could reduce the overall priority, if other agents

submitted limit orders at prices more aggressive than p̃. Hence, the action ã taken at time

0 evolves to ã′ by the time the trader re-enters at time w. Recall that g is the density of

re-entry time; the outermost integral is over this random re-entry time.

Each time a trader is in the market, he chooses a payoff-maximizing action; that is, he

chooses an action that maximizes his value given the current state. If a trader chooses to

not submit an order, we have x̃ = 0, so the first term on the RHS is zero. Since a trader

is never forced to submit an order, and, in this model, there is no cost to re-entering the

market, the value of any state is bounded below by zero, given any previous order submitted

by the trader. Hence, the overall value of any state is no lower than zero.

Since the action set is finite on any entry, the maximum over all feasible actions exists

and is well-defined. The value of a state and previous action pair is just the maximal

expected payoff over all feasible actions the trader can take.

2.1 Existence

The equilibrium concept we use is stationary Markov-perfect equilibrium. The existence of

a Markov perfect equilibrium follows from standard results. On each entry, the action space

for a trader is finite. Further, the state space is countable. The state changes as a result

of either changes in the common value or actions taken by traders; each occurs at most a

countable number of times over an infinite horizon. It then follows from the theorem of

Rieder (1979) that a Markov-perfect equilibrium exists. Since the time at which a trader

enters the market is unimportant, given his state and the status of his previous action, this

equilibrium is stationary.

Perfection requires that agents’ beliefs about payoffs to actions off the equilibrium path

be correct. Numerically, this requires the computation of beliefs about actions that are not

chosen. To do this, we introduce the notion of trembles. With probability (1− ε) close to 1,

agents play best responses whenever they enter the market. However, on each entry, there

is a small probability ε that an agent may tremble to a sub-optimal action. For informed

traders, the payoff of a market order is known with certainty, so trembles only need to be

to limit orders.

known to the trader, they are easily determined in the simulation, and can be used to

update traders’ beliefs even when market orders are not chosen. Hence, again, trembles

by these agents only need to be to limit orders. The trembles enable the determination

of payoffs for all limit orders a trader may submit. Of course, the probability of trembles

has to be sufficiently small to not affect the strategies along the equilibrium path (in the

simulation, traders will respond to the possibility that other agents may tremble, and their
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equilibrium strategies may change).

2.2 Solving for Equilibrium

The simulation algorithm follows Pakes and McGuire (2001) in that it is asynchronous, and

the values for each state are only obtained on the recurrent class of states. We depart from

Goettler, Parlour and Rajan (2004) as we directly solve for the equilibrium values for every

state encountered by every type of trader. Since traders may return to the market several

times, they are solving true dynamic programs. Even if there were no changes in common

value in this model, therefore, it is not possible to reduce the problem to one of determining

execution probabilities for every order they can submit.

There are three sets of exogenous events that drive the simulation—arrival of new

traders, re-entry of old traders who have not yet executed, and changes in the common

value.

The algorithm is as follows:

1. At time 0, we start with an empty book. At this time, there are no returning traders.

Hence, the only two exogenous events that can occur are a new trader arrival or a

change in the common value. For each of these two events, we draw a random time

from the respective random process. The time interval between events for a Poisson

process has an exponential distribution, so we use the latter to draw these times. Let

tv denote the additional time until v changes, and tn the additional time until a new

trader arrives.

2. At t = min{tv, tn}, an exogenous event occurs. Suppose tv < tn. Then, the common

value changes at time tv; with probability 1
2 it increases by one tick, and with prob-

ability 1
2 it decreases by a tick. The time before a new trader arrives is now tn − tv.

When the common value changes, we draw a new random time tv for the next change

in common value.

Suppose, instead, tn < tv. A new trader arrives to the market. His type is

denoted as θ = {ρ, β, I}. The discount factor ρ is the same for all traders, and β is

drawn independently from the distribution Fβ . The trader’s information may depend

on his β (details are specified in Section 4).

The trader observes the state s and his previous action a Since he is a new

trader, his previous action has x = 0, and the state when the first new trader enters is

(Ltn , vtn), where Ltn is the empty book, and vtn is the current value of v. The trader

takes an action an. At this time, the common value will change after a further lapse of
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time given by tv − tn. We also draw a new random time interval tn before the arrival

of a new trader, and a random time interval to before the current new trader returns

to the market.

3. After the first trader has entered the market, either a returning trader or a new one

may come to the market. When an event occurs, let tv, tn, to be the elapsed time

before the common value changes, a new trader arrives, or an old trader returns. The

next event occurs at t = min{tv, tn, to}. If the event that occurs at t is a change in

common value or a new trader arrival, the process in the previous step is repeated.

Suppose, instead, it is an old trader that returns (so that to < tv and to < tn. The

old trader observes the current state sto and the status of his previous action a, and

takes some action (which could include retaining his previous order). If he submits a

market order, he executes and leaves the market for ever. If he takes any other action,

the interval for a change in common value is redefined to be tv − to, and for a new

trader arrival it is tn − to. We then draw a new time interval to before this old trader

returns to the market yet again.

4. Suppose a trader is in the market. To choose a payoff-maximizing action, he has beliefs

about the discounted expected utility from every action he can take in that state. The

trader has a type θ, and observes the current state s(θ) (recall that the state is defined

to depend on trader type), and the status of his previous action, a. Let U(ã | θ, s, a)

be the (actual) discounted expected utility to a trader of type θ from taking action ã

in state s, when his previous action is a. Then, J(s, a) = maxã∈A(θ,s,a) U(ã | θ, s, a).

At the start of the simulation, traders have beliefs over these payoffs. Let

Uk(ã | θ, s, a) be the trader’s belief about the expected payoff, after the action ã has

been taken k times in state s, given previous action a. The initial belief is denoted

U0(ã | θ, s, a), since this action has never been taken.

5. Suppose a trader is a new trader at time t, and takes an action ã that does not

represent a market order. This action could involve not submitting an order at time

t. At some future point of time, t′, the trader re-enters the market. He finds that his

action has evolved to ã′, and the new state is s′. The payoff from the action ã on this

visit (i.e., the continuation value of this action) is then defined to be e−ρ(t′−t)J(s′, ã′).
This payoff is “averaged in” to the belief Uk(ã | θ, s, a) in the following manner. We

define

Uk+1(ã | θ, s, a) =
n + k

n + k + 1
Uk(ã | θ, s, a) +

1
n + k + 1

e−ρ(t′−t)J(s′, ã′), (3)
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where n is some integer chosen at the beginning of the simulation that determines

how fast beliefs are updated.

Similarly, suppose a trader submits a limit order (denoted by action ã) at time

t, and this order executes against a market order submitted by another trader at time

t′. The actual payoff to the limit order is x(β + vt′ − p̃), where β denotes the private

value of the trader. In this case, we update

Uk+1(ã | θ, s, a) =
n + k

n + k + 1
Uk(ã | θ, s, a) +

1
n + k + 1

e−ρ(t′−t) x(β + vt′ − p̃),(4)

6. Whenever a trader has to take a decision, his belief about the payoff to a market

order is updated in similar fashion. For example, let ãb denote the action that involves

submitting a market buy order, given state s and previous action a. In the simulation,

we know the payoff to a market order in every state, whether a trader is informed

about the current value of v or not. Hence, these payoffs can be averaged in for market

orders even when such orders are sub-optimal for the trader. For this updating, we

use equation (4), with t′ = t and vt′ = vt.

7. Suppose the trader in the market at some time t is a returning trader, with an order on

the book. To determine the payoff to a new order he submits, he must hypothetically

cancel his existing order, thereby altering the book (and thus the state). He then

compares the optimal action given the new state, and its associated payoff, to the

action of retaining his order on the book. The overall optimal action is the one that

yields maximal payoff across these two.

8. In the simulation, most traders take the optimal action given their beliefs. If all

traders did this, there is the possibility that the algorithm would be “stuck” at a non-

equilibrium state—every trader of a given type would take the same action in that

state, so these traders would never learn the payoffs to other actions in that state. If

there is an error in beliefs, all traders of that type may play sub-optimally.

To ensure that beliefs are updated for all actions in every state, we introduce

trembles. Specifically, with probability ε a trader trembles over all sub-optimal actions

available to him. He chooses among sub-optimal actions with equal probability. The

algorithm will then naturally update the beliefs about payoffs to this action.5

The initial beliefs are chosen to ensure that traders converge to the optimal action in

a given state relatively quickly. Given that we allow traders to tremble, any initial belief
5When a player trembles, the payoff of the optimal action is used to update Uk(·) to Uk+1(·). Thus,

traders do not anticipate behaving sub-optimally in the future.
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can eventually lead to an equilibrium. The choice across initial beliefs is driven more by

computational considerations (in particular, converging to equilibrium more quickly) than

by a theoretical need.

2.3 Convergence Criteria

We run the model for a few billion events until we check for convergence. Along the

way, we evaluate the change in value functions every 100 million periods, by computing

|Uk2(ã | θ, s, a) − Uk1(ã | θ, s, a)| for each ã, θ, s, a. Here, k1 is the number of times the

action ã has been chosen given θ, s, a at the start of the current 100 million periods, and

k2 > k1 the number of times it has been chosen at the end of the current 100 million periods.

Essentially, if this weighted absolute difference (weighted by k2 −k1) is small, that suggests

the value functions have converged.

When this weighted difference is below 0.01, we apply other convergence tests. At this

point, we hold value functions fixed and simulate the model for a total 100 million more

trader arrivals (new and returning). Let U∗(ã | θ, s, a) be the fixed beliefs.

We compare the empirical payoffs from different actions to the fixed beliefs. This com-

parison is done at two levels: first, limit orders may transition to different states by the time

a trader re-enters. The updating process here is given by equation (3); the convergence test

involves comparing the actual utility e−ρ(t′−t)J(s′, a′ | θ) to the belief U∗(ã | θ, s, a). Sec-

ond, eventually every trader in this model executes, and leaves the market. At the time he

executes, he obtains a realized payoff. We compare this realized payoff e−ρ(t′−t) x(β+vt′−p̃)

to his belief at the time of initial entry, U∗(ã | θ, s, a).

We use three convergence criteria. The most stringent of these is a χ2 test similar to

that in Goettler, Parlour and Rajan (2004).6 Suppose U∗(·) indeed represents equilibrium

values. Since the computed values Uk(·) are averages, the central limit theorem implies that

the empirical distribution of values for each action in each state is approximately normal

with mean U∗ and a variance that is empirically determined from the simulation. The test

statistic standardizes these normal variables and sums their squares. The statistic is χ2

with degrees of freedom equal to the number of states used in the summation. We only use

states visited at least 100 times to ensure that the central limit approximation is accurate.

The algorithm has converged if the test statistic is less than the 1% critical value.

The other two tests are similar to those proposed by Pakes and McGuire (2001). First,

we consider the correlation between beliefs U∗(·) and realized outcomes. This correlation

exceeds 0.999. Second, we consider the mean absolute error in beliefs, weighted by the

number of times the state and action are observed. This mean absolute error is less than
6The theoretical properties of this test were derived by den Haan and Marcet (1994).
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0.01.

2.4 Parametrization

• We let ∆τ = 24, where this represents the number of trader arrivals (returning and

new) that occur between the time the uninformed trader observed v and the time that

he is in the market.

• ρ, the continuous discount rate is the same for all agents and set to 0.05.

• Fv, the distribution for changes in common value, is a Poisson distribution. The

expected time between changes in v is 12 units of real time.

• New traders arrive at the average rate of 1 trader per unit of real time.

• Agents re-enter the market at an average rate of 6 units of real-time per re-entry.

Re-entries are independent across traders and entries.

• The support of the discrete β distribution is {−4,−2,−0.1, 0.1, 2, 4}. The probability

of −4,−2, 2, 4 are all 20% and the probabilities of −0.1, 0.1 are 10% each. The traders

with β = −0.1, 0.1 constitute traders who may be willing to buy or sell, depending on

the state of the market when they come in. The traders with β = 2, 4 are likely to be

buyers overall, and those with β = −2,−4 are likely to be sellers (this is borne out in

our simulations).

• Limit orders may be submitted up to three ticks above or below an agent’s expected

value of v. For an informed trader, this is just his last observation on value. For traders

who observed v with a lag, this consists of their best estimate given the common value

they observed, the current book, and the difference between the cumulative market

buys and sells observed in the interim.

• The probability that an agent trembles to a sub-optimal order is 0.01.

3 Trading strategies in different information acquisition regimes

A consistent feature of our results is that information is most valuable to the agents with

|β| = 0.1. These agents have a low private motive for trade relative to the common value.

Hence, when fully informed about the common value, they are only willing to trade if the

transaction price is sufficiently above (if they are selling) or below (if they are buying) the

common value. If other agents in the model are uninformed, these traders therefore have

the most to gain from knowing the exact common value. Conversely, even if other agents in
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the model are informed, they have the most to lose if they are uninformed. An agent with

a β of 4, for example, who buys the asset 2.5 ticks above the common value, still earns a

positive payoff overall. However, an agent with β = 0.1 needs to buy (sell) the asset at a

price below (above) the common value to avoid a loss. Hence, these agents have the highest

value for up-to-date information about v. It also follows that agents with |β| = 2 value

information more than those with |β| = 4.

We therefore consider four basic variants of our model:

1. All agents are informed about the current value of v.

2. Only the traders with |β| = 0.1 are informed.

3. The traders with |β| = 0.1 or 2 are informed.

4. All agents observe v with a lag.

In each variant, we consider the payoff to each agent if they deviated at the information

acquisition stage, but played optimally thereafter. For example, in the second case above,

we compute the payoff to the |β| = 0.1 agents if they chose to not acquire information, and

to the |β| = 2, 4 agents if they did acquire information. A comparison of the equilibrium

payoffs with the payoffs to such deviations determines the value of information to each type

of trader.

To determine how information acquisition and the belief that others have acquired in-

formation affects order submissions, we first compare two distinct cases: equilibrium in

which all agents are informed and equilibrium in which only the |β| = 0.1 are informed.

We consider three different sets of actions. First, we compare the equilibrium actions for

the different trader types between the two equilibria to see how beliefs about other agents’

strategies affect optimal order submission. Second, we consider optimal deviations within

the equilibrium to determine how an agent’s action would change if he acquired information

holding the actions of the other agents fixed. Notice, that if β = |0.1| are informed, then

these traders deviate to being uninformed, while all others, |β| ∈ {2, 4} deviate to acquiring

information (becoming informed).

As our market and equilibrium are symmetric, we compare order submission strategies

for β ∈ {0.1, 2, 4}. Recall, traders with positive βs value the asset more than the common

value and thus are the natural buyers in the market. Of course, this decision is endogenous

which we comment on later. We first provide information on the ultimate disposition

of shares in Table 1. If a trader eventually executed via a market order, he demanded

immediacy, since his order executed against an existing limit order. If a trader eventually
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executed via a limit order, his order had previously been submitted to the market as a price

contingent order and thus supplied immediacy.

β All informed |β| = 0.1 informed
type Equilibrium Strategies Equilibrium Strategies Optimal Deviation

% Market % Limit % Market % Limit % Market % Limit
0.1 56.38 43.62 37.72 62.28 62.35 37.65

2 39.91 60.10 44.2 55.78 41.26 58.75
4 56.33 43.67 61.58 38.42 62.10 37.90

Table 1: Eventual execution by order type

If all agents are equally informed, then β = 0.1 types execute more frequently by market

orders than limit orders. We hypothesize that such traders, who not have a large private

incentive to trade, wait to find aggressively priced limit orders and take advantage of them.7

We investigate this intuition further when we consider order placement strategies.

In the equilibrium in which the |β| = 0.1 traders are the only ones who are informed,

they are more likely to execute by limit orders, compared to the case in which all traders

are informed. The contrast is especially strong when looking at the optimal strategy of

these traders if they deviated and chose to be uninformed about the current value of v.

In the latter case (shown in the “Optimal Deviation” column in Table 1), these traders

are far more likely to execute via market orders. These observations are consistent with

informed trade being conducted with limit orders. In an experimental setting, Bloomfield

et al. (1999) find that informed traders are more likely to submit limit orders.

A unique feature of this model is that an agent may enter the market more than once.

The value of reentering differs across β type and information structure, as well as the book

encountered upon entry. In Table 2 we consider the average number of times that agents

enter the market. The minimum number of entries is 1. Intuitively, when |β| = 0.1 have

private information, then they are more likely to reenter the market than if all are informed.

This is consistent with the idea that agents who have few gains to trade monitor the market

for profitable trading opportunities. Interestingly if they deviate, then they are even more

likely to enter the market. In this case, not knowing the true value of v, they incur higher

waiting costs before finding a profitable transaction. By contrast, with the same discount

rate, waiting costs are higher for β = 4, and across all the information acquisition regimes

execute most quickly.

The equilibrium in which only the |β| = 0.1 traders are informed has the following

curious feature. If this type chose to remain uninformed (i.e., observe v with a lag), it
7An aggressively priced sell order is one below the common value, and an aggressively price buy order is

one above the common value.
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All Informed |β| = 0.1 Informed
β Equilibrium Equilibrium Deviation

type Entries Entries Entries
0.1 2.08 3.40 4.47
2 1.75 1.82 2.14
4 1.28 1.25 1.47

Table 2: Average number of market entries by type.

re-enters the market more often (and thus takes longer to execute following initial entry

into the market). The traders with |β| = 2, 4 are uninformed in equilibrium; if they choose

to become informed, they similar extend the number of re-entries and the eventual time to

execution.

In Table 3 we present more detail on the average actions taken by traders. Notice that

the sum of order submissions adds up to the average entries less any non orders. The latter

occurs if an agent does not have an order on the book (retained order) and chooses not to

submit any, but to wait until he returns to the market.

All Informed |β| = 0.1 Informed
β Equilibrium Equilibrium Deviation

type Retained Market Limit Retained Market Limit Retained Market Limit
0.1 0.55 0.56 0.98 1.25 0.38 1.76 1.18 0.63 2.41
2 0.57 0.40 0.78 0.43 0.44 0.88 0.54 0.46 1.00
4 0.20 0.57 0.51 0.13 0.62 0.48 0.18 0.60 0.56

Table 3: Optimal Order Submissions Per Trader

The β types who are closer to the common value of the asset are more likely to supply

liquidity (submit limit orders). This effect occurs even if the trader is uninformed. Consider

the last three columns of the table, which indicate the optimal strategies followed by traders

if they deviate at the information acquisition stage. The deviation strategy for the 0.1 trader

(if he chooses not to become informed) is to submit more limit orders. Interestingly, when

not informed, this trader type also submits more market orders, suggesting that informed

traders are more likely to submit limit orders. If β = 2 or β = 4 deviate and become

informed, they will also submit more limit orders. The difference between order submission

strategies and ultimate execution reflects the fact that execution is endogenous.

In Table 4, we consider the decision to buy or sell, and show that it is indeed endogenous.

|β| = 2, 4 are invariably buyers, but β = 0.1 both buy and sell, depending on the state of

the limit order book when they enter. As these traders do not derive large private benefits

from trade, they appear on both sides of the market. They submit market orders if the more
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extreme traders have submitted aggressive orders, and they supply liquidity at conservative

prices when necessary.

Order β Type
Information Type 0.1 2 4

Limit 0.715 0.778 0.518
All Buy Market 0.269 0.397 0.563

Informed Limit 0.273 0.002 0.00
Sell Market 0.295 0.002 0.00

Limit 1.00 0.877 0.482
|β| = 0.1 Buy Market 0.260 0.442 0.616
Informed
Equilibrium Limit 0.748 0.004 0.000

Sell Market 0.117 0.000 0.000
Limit 1.405 0.992 0.536

|β| = 0.1 Buy Market 0.364 0.397 0.621
Informed
Deviation Limit 1.235 0.002 0.000

Sell Market 0.259 0.015 0.000

Table 4: Optimal Buying/selling and limit and market order submission per
Trader

This is reflected in the placement of limit orders relative to the common value. Notice

that if agents are uninformed, then they place their limit order relative to the expected

consensus value. These are reported in Table 5.

Limit Buys Limit Sells
Informed β above v = v < v below v = v > v

0.1 0.00 0.00 100.00 0.00 0.00 100.00
All 2 50.04 0.00 49.96 0.00 0.00 100.00

4 77.77 0.00 22.23 0.00 0.00 0.00
0.1 0.00 0.00 100.00 0.00 0.00 100.00

|β| ∈ {0.1, 2} 2 45.55 0.00 54.45 0.00 0.00 100.00
4 63.06 0.00 35.94 0.00 0.00 0.00

0.1 0.00 0.00 100.00 0.00 0.00 100.00
|β| = 0.1 2 40.25 0.00 59.75 4.41 0.00 95.59

4 59.55 0.00 40.45 0.00 0.00 0.00
0.1 25.05 0.00 75.95 17.23 0.00 82.77

None 2 48.05 0.00 51.95 10.00 0.00 90.00
4 60.76 0.00 39.24 0.00 0.00 0.00

Table 5: Submission of Limit orders relative to v

The β types with the lowest gains to trade (those with |β| = 0.1), submit very conserva-
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tive orders. That is, they sell above the consensus value of the asset and seek to buy below

it. This pattern is consistent across all information regimes. By contrast, those types with

the highest gains to trade, |β| = 4, are more likely to post orders that are very aggressive.

These trader types, essentially make price concessions to increase the probability that their

order will execute.

A final measure of order submission strategy that we consider is the difference between

the price of the executed order and the consensus value; that is,

p − v(τ) for a buy order
v(τ) − p for a sell order

If this measure is negative then the trader bought the asset below the average valuation

(but not necessarily his), and sold it above.

β All |β| ∈ {0.1, 2} |β| = 0.1 None
type Informed Informed Informed Informed

4 0.0957 0.3740 0.3818 0.0669
2 −0.1871 −0.1714 0.0976 −0.1215

0.1 −0.6866 −0.8309 −1.0996 −0.6497

Table 6: Difference between the transaction price and consensus value by β type

As Table 6 demonstrates, the traders with |β| = 0.1, on average execute on the advan-

tageous side of the common value. This is consistent with the notion that if there are a

large number of traders who monitor the market, they will trade whenever the posted price

deviates from its fundamental value. Their ability to extract surplus is highest when they

are the only ones who are informed. However, they still only execute advantageously when

both everyone is informed and all are uninformed.

4 Market Efficiency across different information acquisition
regimes

There are two notions of market efficiency we consider. In this section, we look at informa-

tional efficiency—is information about v reflected in market outcomes? In the next section,

we consider efficiency in the welfare sense—how well does the market perform, relative to

welfare benchmarks?

Is information acquired by investors reflected in market outcomes? Information in our

model is potentially public (since it is available to all investors). Thus, we examine whether

market outcomes are semi-strong efficient. Of course, in equilibrium, some (or every) sub-

set of investors may choose to not acquire information. If no investor chose to acquire

information, it remains private (we do not model the information-generation process).
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The rational expectations literature (e.g. Grossman, 1976, and Admati and Pfleiderer,

1987) has typically focussed on whether transaction prices reflect privately held information.

Since our market is inherently dynamic, other than the transaction price itself, other factors

such as the direction of the transaction, or the number of transactions in a given period,

may be informative about changes in the common value. As this is a strategic model in

which agents have a private motive for trade, transaction prices may occur above or below

the common value of the asset. Indeed, a trade is more likely to be initiated by a buyer

(seller) if the transaction price is below (above) the true value of the asset.

On prices as well, one could consider quotes or transaction prices. Informed traders

submit both limit and market orders in this model, depending on the state they face on

arrival. For now, we examine transaction prices. We examine both a static measure of

efficiency (the standard deviation of transaction price minus common value) and a dynamic

one (after a change in the common value, how quickly do transaction prices come close to

the common value).

One way to measure whether information is impounded in price is to compare transaction

prices to the true common value. In a frictionless market with only informed agents, one

would expect trades to occur at or close to the common value.8

In Table 7 we report the average time between transactions and the average character-

istics of transaction price minus the common value. That is, suppose a transaction occurs

at time τ . We consider the instantaneous difference between the transaction price and the

common value, vτ . Given the discrete prices and our assumption that v falls between two

ticks, the smallest absolute value of this difference is 1
2 tick.

Measure All Informed | β |∈ {0.1, 2} | β |= 0.1 All Uninformed
Informed Informed

Time between Mean 2.005 1.994 2.006 2.006
transactions Std.Dev. 1.751 1.707 1.731 1.731
p̃ = pτ − vτ Mean 0.003 0.005 0.001 0.008

Std. Dev. 0.748 0.903 1.169 1.543
∆p̃ = p̃τ+1 − p̃τ Mean 0.000 0.000 0.000 0.000

Std Dev. 0.616 0.771 0.807 0.745

Table 7: Transaction Frequency and the difference between transaction price and
the common value

The time between transactions has a very similar mean and standard deviation across all

four models. That is, there is a certain robustness to the market—regardless of information,

there are gains to trade, and agents have an incentive to consummate these quickly. The
8All prices between −0.1 and 0.1 of the common value constitute Walrasian equilibria in this model.
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average transaction price is very close to the true value of the asset, which is to be expected

in a symmetric model (that is, roughly as many transactions occur above the common value

as below it). The standard deviation of (pτ − vτ ) is decreasing in the number of informed

agents. Prices in this model, therefore, do reflect information available to investors. The

greater the number of informed people, the less dispersed prices are around the true common

value. Finally, the standard deviation of price changes (relative to v) from transaction to

transaction is also lowest when all agents are informed. However, this measure is higher

when a subset of agents are informed, than when all agents are uninformed.

4.1 Speed with which information is impounded in price

A second measure of informational efficiency is the speed with which changes in the common

value are reflected in transaction prices. To measure this, we do the following. Let every

change in vt be an information event. Consider isolated information events only; that is,

consider information events that have the property that, for a defined interval of time both

before and after the event, no other information event occurs. For this section, we consider

information events that occur no sooner than ten units of real time from another change in

common value. Then, a change in the common value may be interpreted as a shock to the

system.

After every information event, we can track how informative the transaction price is

about the event. That is, for the next n transactions, we measure | pτ(n) − vτ(n) |, where

τ(n) reflects the time of the nth transaction after the change in common value. This provides

a guide to how quickly the system recovers from shocks. All four models are similar in terms

of the approximate time between transactions following an information event. Hence, this

measure also serves as a proxy for how close the transaction price is to the common value

in real time.

Figure 1 displays the absolute difference of transaction price and common value for the

first ten transactions after an information event.

The results are intuitive. With each transaction following an information event, the

prices converge towards the consensus value. Recall that the smallest |pτ − vτ | can be is

0.5 ticks. When all agents are informed, after five transactions, the price is within 0.6 ticks

of the common value. Further, prices occur closer to the common value when there are

a larger number of informed agents. When no agent is informed about v, even after ten

transactions prices are over a tick away from v. When some or all agents are uninformed

about the latest common value, a higher value of |pτ − vτ | could reflect either uncertainty

about vτ or an unwillingness to post an order close to vτ (to prevent being picked off by

informed agents).
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Figure 1: Response of Transaction Price after Information Event

Another measure of the speed with which information is reflected in prices is the time

following an information event until | p − v | first reaches 0.5 ticks. We restrict attention

here to information events that are isolated enough to allow a transaction at 0.5 ticks from

the common value before there is another change in common value. The results are reported

in Table 8. The mean time until price is first within 0.5 ticks of the common value is lowest

when all agents are informed, and increases as the number of informed agents decreases.

All Informed |β| ∈ {2, 0.1} Informed | β |= 0.1 Informed Uninformed
Mean 2.503 2.727 3.762 5.550
Max 29.570 36.203 32.254 32.155

Table 8: First time before |p − v| = 0.5
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4.2 Beliefs of Uninformed Traders

Another way to gauge whether information is reflected in market outcomes is by examining

the beliefs of uninformed traders about the true common value. These traders observe

market outcomes (specifically, in our simulation, they observe (i) the limit order book

(ii) cumulative net buys and sells since their last observation of v (iii) the most recent

transaction price), and update their beliefs about common value. If market outcomes reflect

all privately held information about v, the beliefs of uninformed traders should be correct.

All |β| ∈ {2, 0.1} |β| = 0.1 All
Informed Informed Informed Uninformed

0.3875 0.4369 0.6469 1.0323

Table 9: Average absolute Difference between Belief of Uninformed Traders and
True Common Value

In Table 9, we report the mean absolute difference between trader belief about the

current consensus value and the true consensus value. This is reported for the uninformed

traders. In the model in which all agents are informed, these are the beliefs agents have if

they deviate at the information acquisition stage. The more the number of informed agents

in the market, the better the estimates of the current common value. Hence, the more

agents who acquire information, the easier it is for the uninformed to predict it.

The ease with which agents can infer the common value, v, is similar to the rational

expectations notion of a “revealing price.” In our simulations, therefore, market outcomes

are partially revealing. In a trading game, the important difference is that individuals have

traded at prices before they became revealing. This implies that the welfare properties of

revealing prices in a rational expectations equilibrium and a trading game are different.

Hence, the incentive to acquire information is different.

5 Endogenous information acquisition

If prices are fully revealing, then information has no value. This is Grossman–Stiglitz

(1980) paradox. If agents have an unobservable private motive for trade, then price may

not reveal information. The degree to which it does reveal information affects the amount

strategic agents are willing to pay for information. Thus, for a given information acquisition

strategy, we consider the expected consumer surplus that each agent makes in the trading

game holding the information structure fixed. This is determined in the equilibrium of the

trading game: that is, his trading strategy and those of the other agents when all are correct

in their beliefs about others’ information acquisition strategies.
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5.1 The Demand for Information

Let σβ = {0, 1} denote the information acquisition strategy of an agent of private type β. If

σβ = 0, then he does not acquire information, and if σβ = 1, then he does. Σ−β denotes the

information acquisition strategy of all agents other than θ. Ex ante, before he enters the

market, a trader has beliefs about the payoff he will receive for participating in the market.

Let E[W (β) | σβ, Σ−β ] be the gross expected utility (consumer surplus) of an agent of type

θ and information acquisition strategy σβ who participates in the market when the other

agents follow an information acquisition strategy of Σ−β .

All surplus numbers we report in this section are gross, in the sense that they do not

account for the cost of acquiring information. This then allows us to determine the optimal

information acquisition strategy for different costs.

We run the model under different information acquisition strategies for each type. To

determine the marginal value of being informed holding the actions of all other agents fixed,

we need to calculate E[W (β) | 1, Σ−β ] − E[W (β) | 0, Σ−β ]. To hold the actions of other

agents fixed, for each such simulation, we allow a negligible number of agents to deviate (i.e.,

acquire information if their β type is uninformed or not acquire information if their β type

is informed). Welfare is then computed given that such agents follow an optimal trading

strategy. Thus, a deviation in the information acquisition game means both changing the

information an agent acquires and changing his trading strategy, holding the information

acquisition and trading strategies of other agents fixed.

We first ensure that introducing the negligible number of deviators does not substantially

alter equilibrium outcomes. To investigate this, we compare such outcomes with a model

in which no agents deviate. In Table 10, we demonstrate that the ex ante welfare of agents

with full information, in the equilibrium in which a small mass of agents deviate (1% of

each type) is similar to that in which none deviate.9

Equilibrium with Deviation Equilibrium with no Deviation
β type Informed Informed Difference

4 3.503 3.478 0.025
2 1.699 1.689 0.010

0.1 0.500 0.521 −0.021

Table 10: Ex ante Payoffs if all agents are informed but a small number deviate

In Table 11 we present the difference in ex ante welfare for the different β types in

markets with different exogenous information structures. Notice, that the incremental value

to being informed is decreasing in the absolute value of β. For |β| = 0.1 there is little intrinsic
9In future drafts, the no–deviation payoff will be obtained from a model in which there are no deviators.
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benefit to trade. Thus, information is valuable to them as it allows them to expropriate

surplus from the extreme |β| types. Second, the benefit to information does not decrease

monotonically in |β|. Third, the more agents that are informed, the lower the benefit to

acquiring information for any agent.

β type All Informed |β| ∈ {0.1, 2} Informed |β| = 0.1 Informed All Uninformed
4 0.151 0.054 0.071 0.028
2 0.183 0.232 0.149 0.208

0.1 0.190 0.266 0.384 0.625

Table 11: Net Welfare gain to being informed

If agents incur a cost, c, to be informed, then agents acquire information if the differ-

ence in payoffs between being informed and uninformed in a specific information regimes is

greater than the cost. Or, if E[W (θ) | 1, Σ−θ] − E[W (θ) | 0, Σ−θ] > c. The net expected

utility takes into account the information acquisition cost, c, if agents choose to acquire

information. The cost can be interpreted as either the opportunity cost of acquiring infor-

mation, for example reading corporate reports etc., or the direct cost of subscribing to an

information service or newsletter.

Our derived demand for information differs from the literature on the value of infor-

mation to a Bayesian decision maker. Radner and Stiglitz (1984) demonstrated that the

marginal value of information for the uninformed is zero, resulting in a non–concavity. Their

result is derived in a different framework, however it broadly relies on the idea that if in-

formation does not cause an agent to change his actions, then it has no value.10 Chade

and Schlee (2000) generalize the Radner–Stiglitz result.11 They argue that non–concavity

of information is difficult to avoid in a model with generality. In our model, information

is always less valuable to the agents with extreme βs than to those with |β| = 0.1 as the

former do not change their trading strategies as much as the latter in response to having

information or the existence of different information acquisition strategies. However, as all

our traders are strategic, their strategies always change in response to different information

allocations.

5.2 The information acquisition game

Before entering the trading market, each agent decides on his information acquisition strat-

egy as a function of β. If he chooses to be informed, he pays a cost c. Every time he reenters
10They require that the set of states and signal realizations is finite, the optimal decision is continuous in

the information partition and invariant to signal at the uninformative partition.
11They show the importance of strict concavity of the utility function to generate a unique action given

beliefs and weak convergence of the posterior to the prior so that beliefs do not change too much with
changes in information to generative non–concavity.
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the market, he will be informed. We restrict attention to equilibria in which all β types

behave identically. We focus attention on subgame perfect equilibria.

The incentive to deviate from an information acquisition strategy is determined by the

demand for information. Across all our simulations, the incentive for |β| = 0.1 to acquire

information is highest.

Observation 1 If any agent acquires information, then |β| = 0.1 acquires information.

Different equilibria obtain depending on the cost of acquiring information. Further,

for the same cost, different equilibria are possible. This follows immediately from the fact

that the demands for information are not monotonic. We can determine equilibria up to a

numerical error. We ensure that both sides of the market do not deviate.

Observation 2 The following are subgame perfect equilibria in the information acquisition

game:

c ∈


[0, 0.15] everyone acquires information
[0.07, 0.22] |β| ∈ {0.1, 2} acquire information
[0.19, 0.34] |β| = 0.1 acquires information
[0.62,∞] no one acquires information

It is immediate that these ranges can be overlapping. Thus:

Observation 3 For c ∈ [0.07, 0.15] there are at least two equilibria

(i) |β| ∈ {0.1, 2} acquire information

(ii)All agents acquire information.

Further, for c ∈ [0.19, 0.22], there are at least two equilibria

(i)|β| ∈ {0.1, 2} acquire information

(ii)|β| = 0.1 acquires information.

Thus, when c ∈ [0.07, 0.15], no individual trader with |β| = 4 will deviate to being the

only |β| = 4 trader acquiring information, however when all of his type acquire information

then he will also do so.

The existence of multiple equilibria is important because agents behave differently in the

trading game depending on how many other informed agents they are competing against.

Thus, the speed with which information is incorporated into price differs.
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5.3 Welfare Ranking across different Equilibria

First, we consider overall surplus, or welfare improvement, generated across different market

regimes. We then examine how the gains to trade are split among agents with different

private values.

Consider a frictionless world with all agents present in the market at the same time.

Then, a price p∗ = v represents a competitive equilibrium, and the resulting allocation is

Pareto-optimal. This clearly provides an upper bound to the welfare any market mechanism

can generate. Let Wf be the surplus (or welfare improvement) per trader in a frictionless

market. The maximum surplus each investor can obtain when all trades are instantaneously

consummated at a price of v is |β|.
There are three frictions present in our model. First, traders arrive over time and waiting

is costly. Second, prices are discrete. Finally, traders have private information about type

and thus submit orders strategically.

It is straightforward to account for the frictions related to the timing of agent arrivals,

and to discrete prices. Ideally, a benchmark for welfare should also account for the friction

introduced by incentive compatibility. We know, for example, from Myerson and Sat-

terthwaite (1982) that, in a simple double auction setting, there is no efficient, incentive

compatible, budget-balanced mechanism that exhausts all gains from trade. At any one

point of time, there is a relatively small number of agents (approximately five) active in our

market.

Determining the optimal mechanism subject to incentive compatibility remains an open

question. Instead, we consider one mechanism that is incentive compatible, that works

according to a LIFO (last-in-first-out) rule. Suppose the planner executes all trade at a

price p∗ = v. However, the planner must respect the arrival times of agents, and discount

accordingly. A simple trading rule is as follows: all traders with β > 0 are buyers, and

those with β < 0 are sellers. As soon as at least one buyer and one seller are present, a

trade takes place, between the buyer and seller most recently arrived to the market.

Given a fixed arrival process, this mechanism is incentive compatible—no agent can

gain by misrevealing his β. The LIFO rule prevents excessive discounting (by comparison,

a FIFO allocation rule performs much worse). Let W� be the surplus generated per trader

by such a LIFO mechanism.

Both these measures are straightforward to compute given a particular arrival sequence

of traders. The frictionless benchmark can also be determined from the probability distri-

bution of β. Given this distribution, the expected value of Wf is

Wf = 0.2(4 + 2 − (−2 − 4)) + 0.1(0.1 − (−0.1)) = 2.42.
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We compute W� from the actual arrival of traders in the all-informed case. While this

measure will vary slightly from simulation to simulation, over a large number of trader

arrivals, it will be approximately the same.

Frictionless: LIFO: All |β| = {0.1, 2} |β| = 0.1 All
Wf W� Informed Informed Informed Uninformed
2.42 2.09 2.19 2.17 2.12 2.18

Table 12: Welfare per trader, and benchmarks

The welfare per trader in each market, and the benchmarks, are shown in Table 12. For

ease of comparison, we continue to report all surplus numbers gross of the cost of acquiring

information. As expected, in all cases the market performs worse than the frictionless

benchmark Wf . However, even in the worst case (when only agents with |β| = 0.1 are

informed), it recovers 87.6% of the surplus generated in the frictionless case. Further, the

market outperforms the LIFO benchmark in each case. That is, traders with extreme β

values have an incentive to submit aggressive orders, in order to improve their priority in

the queue. In equilibrium, this leads to a greater welfare improvement than a scheme that

does not fully account for traders private values.

Welfare does vary a little across the four markets we consider. The results suggest that

adverse selection is the important friction to consider, as opposed to a lack of information

itself. When all traders are uninformed about the latest common value, the surplus gener-

ated is approximately the same as when all are informed. However, it is lower when some

subset are informed—in these cases, the uninformed traders suffer from adverse selection,

resulting in a loss of welfare.

Next, we turn to the surplus acquired by each type of agent in our markets. For each

of the possible information acquisition strategies, in Table 13 we report the average gross

payoffs obtained as a percentage of the frictionless maximum.

β type All Informed |β| ∈ {2, 0.1} informed |β| = 0.1 informed None informed
4 86.95 85.28 85.1 87.43
2 84.45 85.75 79.9 84.25

0.1 521.00 584.00 711.00 510.00
Average 90.14 88.33 89.46 90.23

Table 13: Welfare accruing to each trader type as a percentage of theoretical
maximum

To determine if information helps traders in a market, we consider net payoffs; E[W (β) |
σβ, Σ−β ] − σβc. We report these in Table 14.

We compare these with the payoffs that agents receive if all agents are uninformed. We
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β All |β| ∈ {0.1, 2} |β| = 0.1 All
type Informed Informed Informed Uninformed

4 3.483 − c 3.388 3.388 3.469
2 1.694 − c 1.704 − c 1.582 1.676

0.1 0.518 − c 0.579 − c 0.689 − c 0.472

Table 14: Net Payoffs for different information acquisition equilibria

observe that there is an element of the prisoner’s dilemma to the information acquisition

game. For some possible cost ranges, all agents are strictly worse off if they acquire infor-

mation. From inspection of the net payoffs, it is immediate that any uninformed agent in

a market in which others have acquired information is worse off. Thus, any uninformed

agent strictly prefers the trading game in which all others are uninformed. However, given

a positive cost of information, it is possible for the agents who acquire information to be

worse off. Thus, for each equilibrium information acquisition strategy, we present the pos-

sible ranges of information cost which could support it as an equilibrium and we present

the minimum information price above which the informed agents would prefer to commit

ex ante to not knowing information. These are presented in Table 15.

Information Cost Rank Relative
Partition Range to All uninformed

All Informed c < 0.15 c > 0.01, 4 prefers uninformed
All others prefer uninformed

|β| ∈ {0.1, 2} Acquire information 0.07 < c < 0.22 c > 0.09, 0.1 better off uninformed
2 prefers uninformed

0.1 informed 0.19 < c < 0.34 c > 0.21, 0.1 prefers uninformed

Table 15: Equilibrium payoffs relative to uninformed equilibrium.

That information could hurt agents was first observed by Hirscheifer (1971) who showed

that risk averse agents who participated in risk sharing markets became worse off with more

information (i.e., about the realization of the state), a result extended by Schlee (2000).12

In such models, if payoffs depend on the state, and if the Nash equilibrium is not Pareto

efficient, then agents may be better off if do not know the realization and may reach the

Pareto efficient outcome. These papers observe that adverse selection can lead to possible

market breakdown. By contrast, in our model trades are still consummated. However, the

existence of informed traders changes trading strategies, leading to longer execution time

and thus reducing payoffs.13

12In any endowment economy where agents are weakly risk averse, some agents are risk neutral or there
exists a representative agent, more information is Pareto inferior.

13Bassan, Gossner, Scarsini and Zamir (2003) provide conditions under which all agents prefer more
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6 Conclusion

Watching the stock market and researching markets have become a national pastime, pre-

sumably because the cost of acquiring information and the cost of access to the market have

declined. Our results suggest that this might not be Pareto efficient: Too much information

might be collected in financial markets. Agents would be better off if they did not invest in

information, but given that others have done so, to acquire information is a best response.

Thus, agents are faced with the prisoner’s dilemma.

Who has acquired information affects agents trading strategies, and how the gains from

trade are split. This can be measured by the discount or premium agents pay over the

common value of the asset. Further, the speed with which transaction prices reflect infor-

mation depends on how many agent have acquired information. We demonstrate how the

decision to acquire information depends on agents’ beliefs about other agents’ information

acquisition strategies. Thus, for the same information cost, different groups of investors

may acquire information. As trading strategies are jointly determined by private gains to

trade and agents beliefs about the information others have, the information content of or-

ders differs by these unobservables. This suggests that econometric strategies that seek to

infer how information enters a market place are difficult to identify.

information. If a game with a particular information structure has a unique Pareto efficient equilibrium,
then in all coarser partitions more information is preferred.

32



References

[1] Admati, Anat, P. Pfleiderer (1986) “A Monoplist Market for Information,” Journal of

Economic Theory, 39, 400–438

[2] Admati, Anat, P. Pfleiderer (1987a), “Viable Allocations of Information in Financial

Markets,” Journal of Economic Theory 43 p 76-115.

[3] Admati, Anat, P. Pfleiderer (1987b), “Selling and Trading on Information in Financial

Markets,” American Economic Review Vol 78 no 2 Papers and Proceedings, p96–103.

[4] Admati, Anat R. and Paul Pfleiderer (1990), “Direct and Indirect Sale of Information,”

Econometrica Vol 58 No 4. 901-928.

[5] Back, Kerry, C. Henry Cao, Gregory A. Willard (2000), “Imperfect Competition among

informed traders,” Journal of Finance Vol 55, No 5, p 2117 –2155.

[6] Barlevy, Gadi and Pietro Veronesi (2000), “Information Acquisition in Financial Mar-

kets,” Review of Economic Studies.

[7] Baruch, Shmuel, (2003), “Who benefits from an Open Limit Order book?” Journal of

Business forthcoming.

[8] Bassan, Bruno, Olivier Gossner, M. Scarsini and S. Zamir (2003), “Positive value of

information in games,” International Journal of Game Theory 32 p 17–31.

[9] Bernardo, Antonio and Kenneth Judd, (1997) “Efficiency of Asset Markets with Asym-

metric Information,” CMS working paper #16-97

[10] Bernardo, Antionio and K. Judd (1997), “Efficiency of Asset Markets with Asymmetric

Information,” CMS working paper #16-97.

[11] Biais, Bruno (1993), “Price Formation and Equilibrium Liqudity in Fragemented and

Centralized Markets,” Journal of Finance Vol 48 No 1. p157–185.

[12] Bloomfield, Robert and M. O’Hara (1999): “ Market Transparency: Who wins and

who loses?” Review of Financial Studies 12(1) 5-35.

[13] Bloomfield, Robert and Maureen O’Hara (2000): “Can Transparent Markets Survive?”

Journal of Financial Economics 55, 425–59.

[14] Blume, Lawrence and David Easley (1991): “Implementation of Walrasian Expecta-

tions Equilibria,” Journal of Economic Theory 51: 207–227.

33



[15] Boehmer, Ekkehart, L. Yu and G. Saar (2004) “Lifting the Veil: An Analysis of Pre-

Trade Transparency at the NYSE,” Journal of Finance forthcoming.

[16] Chade, Hector and E. Schlee (2000),“Increasing returns in the Value of information,”

world congress contributed papers.

[17] den Haan, Wouter J., and Albert Marcet (1994), Accuracy in Simulations, Review of

Economic Studies, 61, 3–17.

[18] Foucault, Thierry, Eugene Kandel and Ohad Kadan (2002), The Limit Order Book as

a Market for Liquidity, HEC working paper.

[19] Foucault, Thierry, Sophie Moinas and Eric Thiessen (2003), “Does Anonymity Matter

in Electronic Limit Order Books?” working paper HEC Paris.

[20] Glosten, Larry and Paul Milgrom (1985), Bid, Ask, and Transaction Prices in a Spe-

cialist Market with Heterogenously Informed Traders, Journal of Financial Economics,

13, 71–100.

[21] Goettler, Ronald, Christine Parlour and Uday Rajan (2003), “Equilibrium in a Dy-

namic Limit Order Market,” working paper Carnegie Mellon University.

[22] Grossman, Sanford and Joseph Stiglitz (1980), “On the impossibility of Informationally

efficient markets,” American Economic Review Vol 70 p 393–408.

[23] Hakansson, Nils H., J. Gregory Kinkel and James A. Ohlson (1982), “Sufficient and

Necessary Conditions for Information to have Social Value in Pure Exchange,” Journal

of Finance Vol 37,No 5. P 1169–1181.

[24] Hirshleifer, Jack (1971), “American Economic Review Vol 61 No 4 p 561-574.

[25] Holden, Craig and A. Subrahmanyam (1992), “Long–lived Private information and

imperfect competition,” Journal of Finance, Vol 47, No 1 p 247–270.

[26] Kyle, Albert (1985), Continuous Auctions and Insider Trading, Econometrica 53 p

1315-1336.

[27] Leschinskii, Dima (2001), “Does it pay to volunarity disclose private information?”

HEC working paper.

[28] Mendelson, Haim and Tunay Tunca (2004), “Strategic Trading, Liquidity, and Infor-

mation Acquisition,” Review of Financial Studies Vol 17 No 2. p 295-337.

34



[29] Moscarini, Guiseppe and Lones Smith, “The Law of Large Demand for Information,”

Econometrica

[30] O’Hara, Maureen (1995), “Market Microstructure Theory,” Blackwell.

[31] Pagano, Marco and Ailso Roell (1996), “Transparency and Liquidity: A comparison of

Auction and Dealer Markets with informed trading,” Journal of Finance Vol 51 No2.

579-611.

[32] Pakes, Ariel, P. McGuire (2001), ‘Stochastic Algorithms, Symmetric Markov Perfect

Equilibium, and the ‘Curse’ of dimensionality,’ Econometrica Vol 69 No 5. 1261-1281.

[33] Rieder, U. (1979), Equilibrium Plans for Non-Zero-Sum Markov Games, in Game The-

ory and Related Topics, eds. O. Moeschlin and D. Pallaschke, North Holland Publishers,

91–101.

[34] Simonov, Andrei (1999), “Competition in Markets for Information,” Insead working

paper.

[35] Schlee, Edward, E., ‘The Value of Information in Efficient Risk Sharing Arrangements,

American Economic Review 91 (3) p501-524.

[36] Schlee, Edward E. and Hector Chade, “Another Look at the Radner–Stiglitz Non–

concavity in the Value of Information,” Journal of Economic Theory

[37] Spiegel, Matthew, Avanidhar Subrahmanyam (1992), “Informed Speculation and Hed-

gin in a Noncompetitive Securities Market,” Review of Financial Studies Vol 5., No 2.

307-329.

[38] Taub, Bart, D. Bernhardt and P. Seiler, (2004) “Cladistic Asset Pricing,” University

of Illinois working paper.

35


