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Abstract: Performance evaluation of any classification method is fundamental to

its acceptance in practice. Evaluation should consider the dependence of a clas-

sifier’s accuracy on relevant covariates in addition to its overall accuracy. When

developing a classifier with a continuous output that allocates units into one of

two groups, receiver operating characteristic (ROC) curve analysis is appropriate.

The partial area under the ROC curve (pAUC) is a summary measure of the ROC

curve used to make statistical inference when only a region of the ROC space is

of interest. We propose a new pAUC regression method to evaluate covariate ef-

fects on the diagnostic accuracy. We provide asymptotic distribution theory and

inference procedures that allow for correlated observations. Graphical methods and

goodness-of-fit statistics for model checking are also developed. Simulation stud-

ies demonstrate that the large-sample theory provides reasonable inference in small

samples and the new estimator is considerably more efficient than the estimator pro-

posed by Dodd and Pepe (2003a). Application to an analysis of prostate-specific

antigen (PSA), a biomarker for early detection of prostate cancer, demonstrates

the utility of the method in practice.

Key words and phrases: Diagnostic accuracy, generalized linear model, model check-

ing.

1. Introduction

Binary classification is a relevant undertaking in a wide variety of statis-

tical fields. Algorithms such as support vector machines and neural networks

have been applied, for example, to detect automobile insurance claim fraud

(Viaene et al. (2002)) or to predict peptide binding (Brusic et al. (1998)). In

the medical field, a multitude of medical tests, such as biomarkers and imaging

modalities have been developed to screen and diagnose disease, as well to predict

outcome and monitor response to therapy. Rigorous evaluation of any classifica-

tion method is a prerequisite to its wide-spread use. A method must be shown to

be accurate and factors influencing the accuracy of a method must be adequately

understood.

Accuracy may be summarized by the percent of correct classifications. How-

ever, a more refined analysis of accuracy considers the false positive error and the
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false negative error separately, as each has a unique associated cost. For a contin-
uous outcome variable, Y , let Y ≥ c denote a positive classification. Throughout,
the two states are referred to as “diseased” and “disease-free”, however more gen-
eral terminology could be used. Additionally, the term “test” refers generally to
the continuous output of a classifier, such as a biomarker or a neural network
result. The true positive rate (TPR) is defined as SD(c) ≡ P (Y ≥ c | diseased),
while the false positive rate (FPR) is defined as SD̄(c) ≡ P (Y ≥ c | disease-free).
The receiver operating characteristic (ROC) curve plots {(SD̄(c), SD(c)), c ∈
(−∞,∞)} or, equivalently, {(u,ROC(u)), u ∈ (0, 1)}. The curve describes the
inherent capacity of the test in discriminating the two states, without linking the
test to any specific positivity criterion.

A single summary index is useful as a descriptive of overall test performance
and for hypothesis testing. The most common summary index of the ROC curve
is the area under the curve (AUC) (Bamber (1975) and DeLong, DeLong and
Clarke-Pearson (1988)). The AUC can be interpreted as the probability that a
randomly selected case with disease will be regarded with greater suspicion than
a randomly selected disease-free case. Often, interest does not lie in the entire
range of FPRs and, consequently, only part of the area under the ROC curve is
relevant. For example, very low false positive rates such as FPR ≤ 0.05 have been
advocated in settings such as cancer screening (Baker and Pinsky (2001)) and
then analysis should be restricted to that portion of the curve. Alternatively, a
restricted region of TPRs may be of interest (Jiang, Metz and Nishikawa (1996)).
Noting that a definition with respect to TPRs is straightforward, we consider
the partial AUC (pAUC) for a range of FPRs, without loss of generality, say
FPR ∈ (0, u] for some u ≤ 1. The pAUC is given as pAUC(u) =

∫ u
0 ROC(u)du

(McClish (1989) and Thompson and Zucchini (1989)), which has a value of u
when a test is perfect, and of u2/2 when a test is uninformative. Another reason
to analyze the pAUC, rather than the entire AUC, is that a summary of the entire
ROC curve fails to consider the plot as a composite of different segments with
different diagnostic implications (Dwyer (1996)). This is particularly important
if prominent differences between ROC plots in specific regions are muted or
reversed when the total area is considered.

Methods for estimating and comparing pAUCs are available (McClish (1989),
Wieand et al. (1989), Zhang et al. (2002), Pepe (2003) and Dodd and Pepe
(2003a)). Generalizations of these methods to regression modeling assists with
further characterization of a classifier. As an example, consider PSA, a biomarker
for prostate cancer. Since a biomarker that detects cancer prior to the onset of
clinical symptoms is of clinical interest, a model of PSA accuracy with a covariate
representing the time prior to clinical diagnosis is of interest. This will provide
information about by how much PSA advances diagnosis. In addition, if there
is a relationship between PSA accuracy and age, a model that includes age as a
covariate might identify ages for targeting PSA screening programs.
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Two approaches to the pAUC regression analysis have been proposed
(Thompson and Zucchini (1989) and Dodd and Pepe (2003a)). The method pro-
posed by Thompson and Zucchini (1989) does not accommodate continuous co-
variates and is not applicable to many types of data. Dodd and Pepe (2003a)
present a more flexible pAUC regression method; however, they do not provide
theoretical justification for their estimator and rely on the bootstrap to estimate
the variance. Furthermore, when the covariates are continuous, their methods
require making unnecessary assumptions. Specifically, similar to Dodd and Pepe
(2003b), they model the pAUC by comparing test results of diseased subjects,
YD, with covariate Z1 to test results of disease-free, YD̄, with covariate Z0 as

pAUCZ1,Z0
(u) = η{β0 + βT

1Z1 + βT

2(Z1 − Z0)} (1)

for a given link function η : (−∞,∞) → [0, u]. This formulation requires mod-
eling the effect of Z1 − Z0, the difference between the covariate levels in the
two populations in addition to the quantity of interest, βT

1Z1. However, when
assessing the test accuracy adjusting for covariates, the interest only lies in com-
paring the distribution of YD and YD̄ among subjects when Z0 = Z1. Thus β2 is
not of scientific interest and (1) imposes unnecessary modelling. Although this
assumption be may relaxed by only including comparisons between YD and YD̄

if the covariate level Z1 is close to the covariate level Z0, one may improve the
robustness of the model by making such comparisons only when Z0 = Z1.

In this article, we propose to model the covariate specific pAUC assuming
(1) only when Z0 = Z1. Our estimation approach is based on the concept of
placement values (Hanely and Hajian-Tilaki (1997) and Pepe and Cai (2004)),
defined as particular standardizations of the raw measurements relative to the
reference populations. In Section 2, we introduce placement values and illustrate
how they can be used to estimate the pAUC when there is no covariate. In
Section 3, we propose a marginal regression model for the pAUC and derive
inference procedures for the regression parameters allowing for clustered data.
Simulation studies in Section 4 suggest that the new approach performs well.
Furthermore the new estimator, while being more robust, is considerably more
efficient that the Dodd and Pepe (2003a) estimator. To examine whether the
specified regression model is appropriate for the data, in Section 5 we present both
graphical procedures and goodness of fit testing statistics for model checking.
Section 6 gives results from the application of the proposed method to a PSA
dataset. Some discussion is provided in Section 7.

2. Placement Values and pAUC Estimation

As in Pepe and Cai (2004), we choose the disease-free population as the
reference population and define the placement value for YD as UD ≡ SD̄(YD). Then
UD quantifies the degree of separation between the two populations. Moreover,

P (UD ≤ u) = P{SD̄(YD) ≤ u} = P{YD ≥ S−1
D̄

(u)} = ROC(u),
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and

E(UD) =

∫ 1

0
u d ROC(u) = 1 −

∫ 1

0
ROC(u)du = 1 − AUC.

DeLong, DeLong and Clarke-Pearson (1988) and Hanely and Hajian-Tilaki (1997)

interpreted the nonparametric estimate of the AUC as one minus the sample

mean of the empirically estimated placement values. Placement values have been

used recently to make inference about ROC regression models (Pepe and Cai

(2004) and Cai (2004)). Here, we propose to make inference about the pAUC

based on truncated placement values.

We first illustrate our proposal by constructing a non-parametric estimator

for the pAUC in the absence of covariates. Suppose we have ND =
∑nD

i=1 Ki data

records for nD diseased subjects, {Y
Dik, k = 1, . . . ,Ki, i = 1, . . . , nD}, and ND̄ =∑nD+nD̄

j=nD+1 Kj data records for nD̄ disease-free subjects, {Y
D̄jl, l = 1, . . . ,Kj , j =

nD+1, . . . , nD +nD̄}. We assume that Ki and Kj are relatively small with respect

to nD and nD̄. Observations from the same subject may be correlated but are

independent between subjects, with SD̄(y) ≡ P (Y
D̄jl ≥ y) = P (Y

D̄j′l′ ≥ y) and

SD(y) ≡ P (Y
Dik ≥ y) = P (Y

Di′k′ ≥ y).

Let U
(u)
Dik ≡ min(U

Dik, u) denote the truncated placement value and Û
(u)
Dik ≡

min(Û
Dik, u) be the empirical estimator of U

(u)
Dik, where U

Dik ≡ SD̄(Y
Dik), Û

Dik =

ŜD̄(Y
Dik) and

ŜD̄(y) = N−1
D̄

nD+nD̄∑

j=nD+1

Kj∑

l=1

I(Y
D̄jl ≥ y).

Using integration by parts, we find that the marginal mean of the truncated

placement values relates to the pAUC through

E(U
(u)
Dik) =

∫ u

0
{1 − ROC(v)}dv = u − pAUC(u).

This motivates us to estimate the pAUC(u) with

p̂AUC(u) = u −
1

ND

nD∑

i=1

Ki∑

k=1

Û
(u)
Dik =

1

ND

nD∑

i=1

Ki∑

k=1

V̂
(u)

Dik ,

where V̂
(u)

Dik = u − Û
(u)
Dik. When Ki = Kj = 1, this estimator is equivalent

to the non-parametric estimate proposed by Dodd and Pepe (2003a). Since

Dodd and Pepe (2003a) did not provide large sample theory for p̂AUC(u), we

show in appendix A the consistency of p̂AUC(u), and that the distribution of

n
1/2
D {p̂AUC(u)−pAUC(u)} is approximately N(0, σ̂2) accounting for within clus-

ter correlation, where σ̂2 = n−1
D

∑nD

i=1 P̂
2
Di + n−1

D̄

∑nD+nD̄

j=nD+1 P̂
2
D̄j, P̂Di = nDN−1

D

∑
k
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V̂
(u)

Dik − p̂AUC(u), and P̂D̄j = (nD/nD̄)1/2N−1
D

∑
l

∑
i,k I(Û

Dik ≤ u){Û
Dik−I(Y

D̄jl ≥

Y
Dik)}.

3. Partial AUC Regression

Next, we use truncated placement values to develop estimating equations for

pAUC regression models. Let Xik = (Z
Dik,Zik) denote the covariates associated

with Y
Dik, and Zjl be the covariates associated with Y

D̄jl. Covariates denoted

by Z are relevant to both diseased and disease-free subjects. Examples include

the subject’s age or the type of biomarker represented by Y (Pepe (2003, Chap.

6)). Covariates denoted by ZD are specific to diseased subjects, but not applica-

ble to disease-free subjects. Examples include severity of disease and timing of

biomarker measurement prior to disease onset. In the presence of ZD, one would

be interested in comparing the distribution of Y among those diseased subjects

with covariates X = (Z,ZD) to the distribution of Y among those disease-free

subjects with covariates Z.

We assume a marginal model for the covariate specific pAUC:
∫ u

0
ROCXik

(v)dv ≡ pAUCXik
(u) = η(βT

0
~Xik) , (2)

where ROCX(v) = P{YD ≥ S−1
D̄,Z(v) | X = (ZD,Z)}, SD̄,Z(y) = P (Y

D̄jl ≥ y | Zjl =

Z), and ~Xik = (1,Xik). To estimate β0, we define the placement value for the

test result Y
Dik with covariate Xik as U

Dik ≡ SD̄,Zik
(Y

Dik). It is straightforward

to show that E{V
(u)

Dik | Xik} =
∫ u
0 {ROCXik

(v)}dv = pAUCXik
(u), where V

(u)
Dik =

u − min(U
Dik, u). If SD̄,Z(·) is known, then one can easily estimate the effect of

X = (Z,ZD) on pAUC by solving

1

ND

nD∑

i=1

Ki∑

k=1

w(~Xik)~Xik

{
V

(u)
Dik − η(βT ~Xik)

}
= 0,

where w(·) is a given positive weight function. However, SD̄,Z(·) is unknown in

general and thus V
(u)

Dik needs to be estimated in order to make inference about

β0. If the covariates Z are discrete, SD̄,Z(y) can be estimated non-parametrically

within covariate specific subsets. When continuous covariates are included, we

recommend semi-parametric regression models for SD̄,Z(y). For example, one

could assume a flexible semi-parametric location-scale model (Pepe (1998)

and Heagerty and Pepe (1999)). Other types of semi-parametric models, such

as linear transformation models (Han (1987) and Cai, Wei and Wilcox (2000)),

could also be considered. We do not assume any specific model for SD̄,Z(y), but

require that the resulting estimator of SD̄,Z(y) be n
−1/2
D̄

-consistent. We note that
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the Dodd and Pepe estimator also requires semi-parametric regression models

for the conditional quantile of YD̄ (Dodd and Pepe (2003a, p.620)). With SD̄,Z(·)

estimated by ŜD̄,Z(·), we propose to estimate β0 by solving

1

ND

nD∑

i=1

Ki∑

k=1

w(~Xik)~Xik

{
V̂

(u)
Dik − η(βT ~Xik)

}
= 0, (3)

where V̂
(u)

Dik = u − min(Û
Dik, u), Û

Dik = ŜD̄,Zik
(Y

Dik).

Let β̂ denote the solution to (3). We show in appendix B that, β̂ is unique

and consistent. To obtain interval estimates of specific components of β0, we

also show in appendix B that, accounting for the correlation within each subject,

n
1/2
D (β̂−β0) is asymptotically equivalent to a sum of independent terms indexed

by subjects:

n
1

2

D (β̂ − β0) ≈ A−1

{
n
− 1

2

D

nD∑

i=1

BDi + n
− 1

2

D̄

nD+nD̄∑

j=nD+1

BD̄j

}
,

where A = E{η̇(βT

0
~Xik)~X

⊗2
ik }, η̇(x) = dη(x)/dx, BDi = K−1

D

∑Ki

k=1 w(Xik)~Xik

{V
(u)

Dik − η(βT

0
~Xik)}, BD̄j is the limit of (p

1/2
10 /ND)

∑nD

i=1

∑Ki

k=1 w(Xik)~Xik

∫ u
0 ID̄j

(v;Zik)dROCXik
(v), and ID̄j(v,Z) is defined in appendix B. It follows from the

Multivariate Central Limit Theorem that the distribution of n
1/2
D (β̂−β0) can be

approximated by N(0,Σ). Σ can be consistently estimated by

Â−1

{
n−1

D

nD∑

i=1

B̂DiB̂
T

Di + n−1
D̄

nD+nD̄∑

j=nD+1

B̂D̄jB̂
T

D̄j

}
Â−1,

where Â = 1
ND

∑nD

i=1

∑Ki

k=1 η̇(β̂
T ~Xik)~Xik

~XT

ik, B̂Di = K−1
D

∑Ki

k=1 w(Xik)~Xik{V
(u)

Dik −

η(β̂
T ~Xik)}, B̂D̄j = (p

1/2
10 /ND)

∑nD

i=1

∑Ki

k=1 w(Xik)~XikI(Û
Dik ≤ u)ÎD̄j(ÛDik;Zik),

and ÎD̄j(v,Z) is obtained by replacing all the theoretical quantities in ID̄j(v,Z)

by their empirical counterparts.

4. Model Checking Procedures

The proposed inference procedures require the specification of a link function

η(·). Here, we present a graphical method, as well as statistical tests, to assess

whether model (2) with a given link function η(·) is appropriate for the data.

Noting that pAUCXik
(u) is the conditional mean of V

(u)
Dik , we define the residuals

for fitting (2) as êik = V̂
(u)

Dik − η(β̂
T ~Xik). To examine the appropriateness of (2),

we first check the functional form for each component of the covariate X. For
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q = 1, . . . , p, we consider the following moving sum of the êik’s over the X
(q)
ik :

W̄q(x; b) =
1

ND

nD∑

i=1

Ki∑

k=1

I(x − b < X
(q)
ik ≤ x)êik (4)

for a pre-specified positive block size b, where X
(q)
ik is the qth element of Xik.

Moving sums of residuals were proposed by Lin, Wei and Ying (2002) to test the

goodness of fit for generalized linear models. When b = ∞, (4) corresponds to

the partial residual process considered by Su and Wei (1991).

Under H0 that model (2) holds, W̄q(x; b) is expected to fluctuate around 0.

To obtain its large sample distribution, let L = (L1, . . . ,LnD+nD̄
) be a random

sample from the standard normal distribution, independent of the data. Define

n
1

2
DŴq(x; b) = n

1

2
D

nD∑

i=1

ŴDqi(x)Li + n
1

2

D̄

nD+nD̄∑

j=nD+1

ŴD̄qj(x)Lj ,

ŴqDi
(x; b) = K−1

D

Ki∑

k=1

I(x − b < X
(q)
ik ≤ x)

{
V̂

(u)
Dik − η(β̂

T ~Xik)
}

+R̂q(x; b)TÂ(β̂)−1
B̂Di ,

ŴqD̄j
(x; b) =

p
1

2

10

ND

nD∑

i=1

Ki∑

k=1

I(x − b < X
(q)
ik ≤ x)I(Û

Dik ≤ u)ÎD̄j(ÛDik,Zik)

+R̂q(x; b)TÂ−1
B̂D̄j ,

and R̂q(x; b) = (1/ND)
∑

i,k I(x−b < X
(q)
ik ≤ x)η̇(β̂

T

0
~Xik)~Xik. In Appendix C we

show that, under H0, the conditional distribution of n
1/2
D Ŵq(x; b) given the data

is the same in the limit as the unconditional distribution of n
1/2
D W̄q(x; b). To ap-

proximate the null distribution of Wq(x; b), we simulate a number of realizations

from n
1/2
D Ŵq(x; b) by repeatedly generating the normal samples of L while fixing

the data at their observed values. To assess how unusual the observed process

W̄q(x; b) is under H0, one may plot W̄q(x; b) along with a few realizations from

Ŵq(x; b), and supplement the graphical display with an estimated p-value from a

supremum-type test statistic Sq = supx |W̄q(x; b)|. An unusually large observed

value sq would suggest improper specification of the functional form of Xq. In

practice, the p-value, P (Sq ≥ sq), can be approximated by P (Ŝq ≥ sq), where

Ŝq = supx |Ŵq(x; b)|. We estimate P (Ŝq ≥ sq) by generating a large number J ,

say J = 5, 000, of realizations from Ŵq(·; b).

To assess the linearity of the model given in (2), and more generally the link
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function η(·), we consider the moving sum of residuals over the fitted values:

W̄η(x; b) = n
1

2

D

nD∑

i=1

Ki∑

k=1

I(x − b < β̂
T ~Xik < x)êik.

The null distribution of W̄η(x; b) can be approximated by the conditional distribu-

tion of Ŵη(x; b), which is obtained from Ŵq(x; b) by replacing I(x−b < X
(q)
ik ≤ x)

with I(x − b < β̂
T ~Xik ≤ x). As noted in Lin, Wei and Ying (2002), although

Sη is referred to as the link function test, anomalies in W̄η may reflect mis-
specification of the link function, of the functional form of the response variable,
or of the linear predictor.

5. Simulation Studies

5.1. Asymptotic inference in finite samples

To evaluate the finite sample performance of the method, we first examine
the variance estimator for p̂AUC(u) when there is no covariate. We simulate YD

from N(10, 1.52) and YD̄ from N(9, 1). The induced ROC curve has a partial
area of 0.0726 for FPR ≤ 0.2. The results, summarized in Table 1, show that the
standard error estimates based on large sample approximation are close to the
true sampling standard errors. In addition, for confidence intervals the empirical
coverage probabilities are close to their nominal counterparts.

Next, we examine the validity of the large sample approximations in the
regression setting for making inference in finite sample sizes. We simulate data
from the following models:

YDi = 10 + 1.3Zi − ǫDi, for i = 1, . . . , nD, (5)

YD̄j = 9 + 0.5Zj − ǫD̄j , for j = 1, . . . , nD̄, (6)

where Z is generated from Uniform(0, C). We first set C = 1 and generate
ǫDi ∼ N(0, 1.52) and ǫD̄j ∼ N(0, 1). The induced pAUC model is

pAUCz(u) = ηu(1 + 0.8z) , where ηu =

∫ u

0
Φ

{x + Φ−1(v)

1.5

}
dv .

Table 1. The Bias, sampling standard error (SSE), sample average of the es-
timated standard errors (ESE), and empirical coverage probability (CovP) of

the 95% confidence interval for p̂AUC. Results are based on 1,000 simulated

datasets.

nD̄ = 100 nD̄ = 200

Bias SSE ESE CovP Bias SSE ESE CovP

nD = 100 0.0005 0.011 0.011 0.946 0.0005 0.010 0.010 0.945

nD = 200 0.0007 0.010 0.010 0.940 0.0002 0.008 0.008 0.944
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Table 2. The Bias, sampling standard error (SSE), average of the estimated

standard error estimator (ESE), and the coverage probability (CovP) of the

95% confidence interval. Each entry is based on 1,000 simulation samples.

(a) N(0, 1) versus N(0, 1.52)

β0 β1

(nD̄, nD) Bias SSE ESE CovP Bias SSE ESE CovP

(100, 100) 0.008 0.430 0.431 0.950 0.044 0.714 0.724 0.960
(100, 200) 0.023 0.332 0.347 0.960 0.000 0.551 0.576 0.957

(200, 100) 0.021 0.376 0.389 0.963 -0.009 0.643 0.663 0.959

(400, 100) -0.002 0.369 0.367 0.949 0.020 0.635 0.632 0.955

(b) Extreme Value versus Extreme Value

β0 β1
(nD̄, nD) Bias SSE ESE CovP Bias SSE ESE CovP

(100, 100) 0.031 0.453 0.472 0.950 0.007 0.323 0.349 0.967
(100, 200) 0.020 0.408 0.419 0.947 0.011 0.290 0.304 0.963
(200, 100) 0.002 0.385 0.391 0.955 0.008 0.277 0.294 0.966
(400, 100) -0.010 0.334 0.343 0.951 0.017 0.257 0.263 0.954

We refer to this as the normal-normal model. We choose u = 0.2 and fit the data

with pAUCz(u) = ηu(β0 + β1z). To estimate the FPR conditional on covariates,
we use a semi-parametric location model (Heagerty and Pepe (1999)): SD,Z(y) =
S0(y − γZ), where γ and S0 are unspecified. In Table 2(a), we present the bias,

the sampling standard error, average of the standard error estimates, and the
coverage probability of the 95% confidence intervals for β0 and β1. The standard
error estimates are close to the true sampling standard errors. In addition, the

empirical coverage probabilities are close to their nominal counterparts.

In another study, we also use models (5) and (6), but simulate ǫDi and ǫD̄j

from extreme value distributions and Z from Uniform(0, 2). The corresponding

link function ηu is then

ηu(x) = u −
1 − exp{−(1 − u)1+exp(x)}

1 + exp(x)
.

The results for u = 0.2, summarized in Table 2(b), also show that the asymptotic
approximations behave reasonably in finite samples.

5.2. Comparison with existing method

To compare the proposed method to the Dodd and Pepe (2003a) approach,
we simulate data from models (5) and (6) with ǫDi and ǫD̄j generated from zero-

mean normal distributions and extreme value distributions. For each simulated
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Table 3. Estimates of β0 and β1 compared with their respective actual values
β0 = 1 and β1 = 0.8, based on the Dodd and Pepe approach (D&P) and on

the new approach (New). Results are based on 1,000 simulated datasets.

(a) N(0, 1) versus N(0, 1.52)

Bias Mean Squared Error
(nD̄, nD)

βNew
0 βD&P

0 βNew
1 βD&P

1 βNew
0 βD&P

0 βNew
1 βD&P

1

(100, 100) 0.008 −0.004 0.044 0.028 0.185 0.623 0.512 2.182

(100, 200) 0.023 0.015 0.000 −0.017 0.111 0.559 0.304 1.994

(200, 100) 9.021 0.004 −0.009 −0.010 0.148 0.327 0.414 1.103

(400, 100) −0.002 −0.002 0.020 0.013 0.136 0.237 0.404 0.787

(b) Extreme Value versus Extreme Value

Bias Mean Squared Error
(nD̄, nD)

βNew
0 βD&P

0 βNew
1 βD&P

1 βNew
0 βD&P

0 βNew
1 βD&P

1

(100, 100) 0.031 −0.045 0.007 0.064 0.206 0.678 0.104 0.542

(100, 200) 0.020 −0.010 0.011 0.023 0.167 0.540 0.084 0.435
(200, 100) 0.002 −0.002 0.008 0.010 0.148 0.342 0.077 0.251

(400, 100) −0.010 −0.032 0.017 0.029 0.111 0.217 0.066 0.153

data, we obtain point estimates of β0 and β1 with the proposed approach by

fitting pAUCz(u) = ηu(β0 + β1z), and with Dodd and Pepe (2003a) by fitting

pAUCzD,zD̄
(u) = ηu{β0+β1zD+β2(zD−zD̄)}. The results in Table 3 show that even

though the new approach uses a more robust model, the new estimator is more

efficient than the Dodd and Pepe (2003a) estimator. At sample sizes of nD̄ = 400

and nD = 100, the empirical efficiency of the Dodd and Pepe (2003a) method

relative to the new method is 57% for β0 and 51% for β1 when ǫD̄ ∼ N(0, 1)

and ǫD ∼ N(0, 1.52). When ǫD and ǫD̄ are generated from the extreme value

distribution, the relative efficiency is 51% for β0 and 43% for β1.

5.3. Mis-specified link function

To examine the properties of the estimator under a mis-specified link func-

tion, we simulate data from models (5) and (6) with Z ∼ Uniform(0, 12), and fit

the data to the model

pAUCz(u) = uΦ(β0 + β1z) . (7)

We generate ǫD̄ from a standard normal. For ǫD we consider two scenarios: (1)

N(0, 1.52), and (2), a mixture of N(2, 32) with probability 0.3 and N(7, 1) with

probability 0.7. To explore how far from (7) the true underlying link functions
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Figure 1. Plot of function Φ−1{ηu(x)/u} for u = 0.2.

Table 4. Bias and mean squared error (MSE) of the predicted pAUC. For
each dataset, we fit with two models: pAUC

z
(0.2) = 0.2Φ(β0+β1z) (Linear)

and pAUC
z
(0.2) = 0.2Φ{β0 + βT

1R(z)} (Spline). The results are based on

1,000 simulated datasets with sample size nD = nD̄ = 200.

ǫD ∼ N(0, 1.52) ǫD ∼ Normal Mixture

True Bias MSE Bias MSE

z pAUCz(0.2) Linear Spline Linear Spline Linear Spline Linear Spline

2 2.4E-2 5.1E-4 −8.8E-4 1.1E-4 2.4E-4 −9.8E-3 1.5E-4 1.3E-4 1.3E-4

4 3.6E-2 9.1E-5 3.5E-4 1.6E-5 3.5E-5 −3.0E-3 −3.1E-4 7.0E-5 1.3E-4

6 4.8E-2 −1.1E-4 −8.2E-4 6.8E-7 1.3E-5 1.7E-2 −6.0E-4 3.6E-4 1.3E-4

8 8.0E-2 4.2E-5 8.1E-5 1.3E-8 1.0E-8 2.6E-2 1.9E-3 7.5E-4 2.3E-4

10 1.6E-1 7.3E-5 8.0E-5 5.7E-7 6.1E-5 −1.3E-2 1.6E-4 2.4E-4 2.0E-4

are, we examine the linearity of Φ−1{ηu(x)/u} in x, where ηu is the true link

function. In Figure 1, we can see that (7) is a fair approximation for the first

setting, especially for x ≤ 8, but not so for the second setting.

As shown in Table 4, the predicted pAUC based on the linear model in (7)

has little bias in the first setting, but the bias is substantial in the second setting.

To improve the approximation, we instead fit a quadratic spline model for the

covariate effect:

pAUCz(u) = uΦ
{
β0 + β1z + β2z

2 +

K∑

k=1

bk(z − κk)
2
+

}
, (8)

where x+ ≡ max(0, x) and κ1, . . . , κK are the pre-specified knots. In this study,

we use three knots at 3, 6, and 9. The results, also presented in in Table 4, suggest

that the spline model (8) is rather robust with respect to the mis-specification of

the link function.
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6. Example: Early detection of prostate cancer with PSA

PSA levels in serum are used to screen men for prostate cancer. How-

ever, considerable controversy exists as to its value. A longitudinal case-control

study of PSA as a screening marker for prostate cancer was nested within the

Beta-Carotene and Retinol Efficacy Trial, in an effort to evaluate the accu-

racy of PSA, prior to onset of clinical symptoms, in diagnosing prostate cancer

(Thornquist et al. (1993) and Etzioni et al. (1999)). As part of the protocol,

serum was drawn periodically from study participants, and stored. 88 subjects

developed prostate cancer during the study and their serum samples were ana-

lyzed for PSA levels. An age-matched set of 88 control subjects also had their

stored serum samples analyzed for PSA levels. The median number of PSA mea-

surements per subject is 4 and the median time interval between two consecutive

measurements is 1 year.

Among subjects that develop cancer it is likely that PSA measured closer

to the time of onset of clinical symptoms is more predictive of disease than

measures taken earlier in time. Additionally, increasing age is associated with

increasing serum PSA level and could affect the discriminatory capacity of PSA.

To understand the time and age effect on PSA accuracy, we consider a pAUC

model with a covariate T , defined as the time (in years) between the onset of

symptoms and the time at which the serum sample was drawn, and an additional

covariate z = age at the time of measurement (in years). We choose the upper

bound of FPR as 0.02, considered in Baker (2000) for PSA screening, and fit the

model

pAUCz,T (0.02) = 0.02Φ(β0 + βzz + βtT ), (9)

to the data. Using our approach, the estimate of βt is −0.091 (s.e.= 0.053)

per year and the coefficient for age, βz, is estimated as 0.0053 (s.e.= 0.020) per

year of age . The negative coefficient for T implies that discrimination improves

as T decreases, i.e., when PSA is measured closer to diagnosis. The coefficient

for age is almost 0 (p-value= 0.79) suggesting that discrimination is about the

same in younger men as in older men. We also fit the model using the Dodd

and Pepe method where the comparison between a diseased subject and a non-

diseased subject is only included if the age difference is no greater than 2 years.

The estimated coefficients are −0.11 (s.e.= 0.14) for the time lag and 0.075

(s.e.= 0.18) for age.

To examine whether model (9) is appropriate for the data, we consider W̄z

and W̄T for checking the linearity in specific covariate effects, and W̄η for checking

the link function. Figures 2(a)−(c) display the observed processes W̄z, W̄T , W̄η

along with realizations of Ŵz, ŴT and Ŵη. The p-values based on the sup-

statistics with J = 5, 000 are 0.38 for the linearity in age, 0.0085 for the linearity
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(a) p-value= 0.38 (b) p-value= 0.0085 (c) p-value= 0.026

(a)−(c) : Linear covariate effect model
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(d) p-value= 0.42 (e) p-value= 0.52 (f) p-value= 0.50

(d)−(f) : Cubic time effect and linear age effect model

Figure 2. Plot of moving sums of residuals: (a) and (d) for testing linear

age effect with b = 10 (interquartile range of age); (b) and (e) for testing

linear time effect with b = 3; (c) and (f) for testing the linearity of the model

with b = 1; the observed pattern is shown by the thick solid curve, and 10

simulated realizations under the null are shown by the dotted curve.

in T , and 0.026 for the link function. Thus, the linearity assumption in the time

effect is problematic. This motivates us to consider the model

pAUCz,T (0.02) = 0.02Φ(β0 + βzz + βT T + βT2T 2 + βT3T 3) (10)

to allow for a non-linear time effect. The resulting estimate of the age effect is

β̂z = 0.0047 (s.e. = 0.021). The estimated time effects in model (10) are β̂T =

−0.59 (s.e. = 0.14), β̂T2 = −0.10 (s.e.= 0.032) and β̂T3 = −0.0053 (s.e.= 0.0022).

We apply the model checking procedure again for model (10). The residual plots,

shown in Figure 2(d)−(f), along with the p-values (0.42 for Sz, 0.52 for ST and

0.50 for Sη), indicate that the revised model is reasonable.
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Figure 3. Predicted pAUC for PSA as a biomarker of prostate cancer in 60
year X5,5 = x, old men. Shown also are their 95% confidence intervals.

Figure 3 displays the estimated pAUCs and their 95% confidence bands

for patients who are 60 years old at different times before clinical diagnosis.

For example, when T = 2 years, the estimated pAUC(0.02) is 0.0071 (s.e. =

0.0014). Therefore, if we define the restricted reference population to be all

60-year old disease-free men with PSA value exceeding its corresponding 98th

percentile, there is a 0.0071/0.02 = 36% chance that a randomly selected 60-year

old man with cancer whose PSA is measured at 2 years prior to diagnosis is higher

than that of a man randomly selected from the restricted reference population.

This probability can also be viewed as the average TPR over the range of FPR

≤ 0.02. Thus the average TPR fluctuates around 30% when T ≥ 3 years, then

improves quickly to 57% when T decreases to 6 months. This indicates that PSA

may not be accurate for early detection of prostate cancer. To fully understand

the predictive accuracy of PSA, one needs to further evaluate the positive and

negative predictive values of PSA assessed through prospective studies.

7. Remarks

This paper provides an alternative pAUC regression method to Dodd and

Pepe (2003a). Advantages of the proposed method include large-sample theory,

improved efficiency, and model checking procedures. When u = 1, the proposed

estimator provides an alternative to the AUC regression approach developed

by Dodd and Pepe (2003b). The proposed inference procedure also accounts

for possible within-cluster correlation. It is important to note that both the
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proposed method and the Dodd and Pepe (2003a) method require modelling of

the conditional distribution of YD̄ when there are continuous covariates. Existing

model checking procedures (e.g., Lin, Wei and Ying (2002) and Cai and Zheng

(2007)) may be used to examine the adequacy of the proposed model for YD̄.

The model checking procedures for the proposed pAUC model are based on a

simulation technique that has a minimal computational burden relative to other

re-sampling methods such as the bootstrap. This offers a formal goodness of fit

method that is not available with existing AUC and pAUC regression methods.

Additional simulation studies indicated that the proposed tests have proper sizes

at least when min(nD̄, nD) ≥ 200. The power of the tests would depend on

the degree of the model mis-specification and this remains to be investigated.

When applied to the PSA example, the procedure indicated an important non-

linearity, which resulted in a revised and better-fitting model. The validity of the

proposed inference procedure also requires the correct specification of the FPR

model. Goodness of fit for typical FPR models, such as the semi-parametric

location scale model, may be examined based on existing methods such as those

proposed in Lin, Wei and Ying (2002) and Cai and Zheng (2007).

Although the focus here is on a general regression model, the method is easily

adapted to compare the accuracies of two tests, as considered by Wieand et al.

(1989). It is straightforward to extend our procedures to make inference about

the difference of two pAUCs for both paired and unpaired data. With a single

covariate indicating test type, one can create a model based on (2) to examine

the difference in the accuracy of two tests. The resulting estimator is equivalent

to the estimator proposed by Wieand et al. (1989) when KD̄j = KDi = 1.

Appendix

A. Large Sample Properties of p̂AUC(u)

For technical reasons, we assume that potentially every diseased subject has

K = max(K1, . . . ,KnD
) records, and that the nD sets of random vectors {ȲDi}, or

{(YDi, X̄i)} with covariates, are independent and identically distributed, where

ȲDi = (YDi1, . . . , YDiKD
) and X̄i = (Xi1, . . . ,XiKD

). Although not every subject

with disease has K records, the presence or absence of individual records in a

cluster does not depend on the observations. Similar assumptions are made for

many marginal method based estimators, for example in Lee, Wei and Amato

(1992) and Cai, Wei and Wilcox (2000). Corresponding assumptions are made

for observations from disease-free subjects.

We assume that ROCX(·) is continuously differentiable. The uniform consis-

tency of ŜD̄(·) and the Uniform Law of Large Numbers (Pollard (1990)) ensure the

consistency of p̂AUC(u). It remains to determine the large sample distribution of
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p̂AUC(u). To this end, let ÎD̄(u) = SD̄(Ŝ−1
D̄

(u)) and p̃AUC(u) = 1/ND

∑
i,k V

(u)
Dik .

We note that

n
1

2
D

{
p̂AUC(u) − pAUC(u)

}

= n
1

2

D

{
p̃AUC(ÎD̄(u)) − p̃AUC(u)

}
+ n

1

2

D

{
p̃AUC(u) − pAUC(u)

}

+
n

1

2

D

ND

∑

i,k

I(U
Dik ≤ ÎD̄(u))

{
u − ÎD̄(u) − Û

Dik + U
Dik

}
.

It has been shown that supu |ÎD̄(u)−u| → 0 and n
1/2
D̄

{ÎD̄(u)−u} is asymptotically

equivalent to n
−1/2
D̄

∑nD+nD̄

j=nD+1 ID̄j(u), where ID̄j(u) =
∑Kj

l=1{u−I(Y
D̄jl ≥ S−1

D̄
(u))}

(Cai and Pepe (2002)). This, coupled with the equicontinuity of the process

n
1/2
D {p̃AUC(u) − pAUC(u)}, ensures that

n
1

2

D

{
p̂AUC(u) − pAUC(u)

}

≈ n
1

2

D

{
pAUC(ÎD̄(u)) − pAUC(u)

}
+ n

1

2

D

{
p̃AUC(u) − pAUC(u)

}

+
n

1

2

D

ND

∑

i,k

I(U
Dik ≤ ÎD̄(u))

{
u − ÎD̄(u) − Û

Dik + U
Dik

}
.

It follows from a Taylor series expansion that 1/ND

∑
i,k I(U

Dik ≤ u) → ROC(u),

and from the equicontinuity of the process n
1/2
D {ÎD̄(u) − u} that

n
1

2
D

{
p̂AUC(u) − pAUC(u)

}

≈ n
1

2
DROC(u)

{
ÎD̄(u) − u

}
+ n

1

2
D

{
p̃AUC(u) − pAUC(u)

}

−p
1

2

10

∫ u

0
n

1

2

D̄

{
Î−1

D̄
(v) − v

}
dROC(v) − n

1

2

DROC(u)
{
ÎD̄(u) − u

}

≈ n
− 1

2

D

nD∑

i=1

PDi + n
− 1

2

D̄

nD+nD̄∑

j=nD+1

PD̄j ,

where PDi = K−1
D

∑Ki

k=1 V
(u)

Dik − pAUC(u), PD̄j = p
1/2
10

∫ u
0 ID̄j(v)dROC(v) and

KD is the limit of ND/nD. It follows from the Central Limit Theorem that

n
1/2
D {p̂AUC(u)−pAUC(u)} converges in distribution to a zero-mean normal with

variance σ2, where σ2 is the limit of n−1
D

∑nD

i=1 P
2
Di + n−1

D̄

∑nD+nD̄

j=nD+1 P
2
D̄j. A con-

sistent estimate of σ2 is σ̂2 which is obtained by replacing all the theoretical

quantities in n−1
D

∑nD

i=1 P
2
Di + n−1

D̄

∑nD+nD̄

j=nD+1 P
2
D̄j by their empirical counterparts.
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B. Large Sample Properties of β̂

To show the existence and uniqueness of β̂, we assume that the covariates
X = (Z,ZD) are bounded, the estimators of SD̄,Z(y) are uniformly consistent,

and n
1/2
D̄

{ŜD̄,Z(y) − SD̄,Z(y)} converges weakly to a Gaussian process uniformly

in y and Z. Without loss of generality, we also assume that n
1/2
D̄

{ÎD̄,Z(u) − u}
can be approximated by a sum of independent terms:

sup
u,Z

∣∣∣∣n
1

2

D̄

{
ÎD̄,Z(u) − u

}
− n

− 1

2

D̄

nD+nD̄∑

j=nD+1

ID̄j(u,Z)

∣∣∣∣ → 0 (11)

in probability, where ÎD̄,Z(u) = SD̄(Ŝ−1
D̄,Z(u)). Let V̄(β) denote the left hand side

of (3). It is easy to see that (∂V̄(β))/(∂β) = Â(β), where Â(β) = 1/ND

∑
i,k

η̇(βT ~Xik)~X
⊗2
ik is nonnegative definite. Furthermore, Â(β0) → A. When ~Xik is

non-degenerate, A is positive definite. Now, since V̄(β0) → 0, by the Inverse
Function Theorem, there exists a unique solution β̂ to the equation V̄(β) in a
neighborhood of β0. This, coupled with the nonnegativity of Â(β), ensures the
uniqueness of the root of V̄(β) = 0 in the entire domain of β, asymptotically.
The above proof also implies that β̂ is strongly consistent.

By the consistency of β̂ and a Taylor series expansion of V̄(β̂) around β0,
we obtain

n
1

2

D (β̂ − β) ≈ A−1n
1

2

D V̄(β0) . (12)

Define V
(u)

Dik = u − min(u,U
Dik), eik = V

(u)
Dik − pAUCXik

(u), Ṽ(u) = 1/ND

∑
i,k

w(Xik)~Xikeik and V̄1 = 1/ND

∑
i,k w(Xik)~Xik(V̂

(u)
Dik − V

(u)
Dik ). Then V̄(β0) =

Ṽ(u)+ V̄1. We first show the large sample approximation for n
1/2
D V̄1. Note that

n
1

2
D V̄1 =

n
1

2

D

ND

∑

i,k

w(Xik)~Xik

[
I(U

Dik ≤ ÎD̄,Zik
(u))

{
ÎD̄,Zik

(u) − U
Dik

}
− V

(u)
Dik

]

+
n

1

2

D

ND

∑

i,k

w(Xik)~XikI(U
Dik ≤ ÎD̄,Zik

(u))
{

u − ÎD̄,Zik
(u) − Û

Dik + U
Dik

}
.

It follows from the equicontinuity of n
1/2
D Ṽ(·) and the uniform consistency of

ŜD̄,Z(·) that

n
1

2

D V̄1 ≈
n

1

2

D

ND

∑

i,k

w(Xik)~Xik

{
ROCXik

(u) − I(U
Dik ≤ u)

}{
ÎD̄,Zik

(u) − u
}

−
n

1

2

D

ND

∑

i,k

w(Xik)~XikI(U
Dik ≤ u)(Û

Dik − U
Dik). (13)
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Since n
1/2
D̄

{ÎD̄,Z(u)−u} converges weakly to a Gaussian process, using the Strong

Law of Large Numbers and the Strong Representation Theorem (Pollard (1990)),

one can show that (13) → 0 in probability. Therefore,

n
1

2

D V̄1 ≈
n

1

2
D

ND

∑

i,k

w(Xik)~Xik

∫ u

0

{
ÎD̄,Zik

(u) − u
}

dROCXik
(u) .

This, coupled with (11) and (12), implies that n
1/2
D (β̂ − β0) ≈ A−1{n

−1/2
D

∑nD

i=1

BDi + n
−1/2
D̄

∑nD+nD̄

j=nD+1 BD̄j}.

C. Large Sample Distribution of W̄ (x) Under Model (2)

Let I
(q)
ik (x; b) denote I(x − b < X

(q)
ik ≤ x). By the consistency of β̂ and the

Taylor series expansion, uniformly in x, we have

n
1

2

DW̄q(x; b) ≈
n

1

2
D

ND

∑

i,k

I
(q)
ik (x; b)(V̂

(u)
Dik − V

(u)
Dik ) +

n
1

2
D

ND

∑

i,k

I
(q)
ik (x; b)eik

−R̂q(x; b)T(β̂ − β0).

Furthermore, the Uniform Law of Large Numbers (Pollard (1990)) implies that

R̂q(x) converges, uniformly in x, to a non-random function, Rq(x). Using argu-

ments similar to those given in Appendix B and the large sample properties of

n
1/2
D (β̂ − β0), one can show that

n
1

2

DW̄q(x; b) ≈ n
1

2

D

nD∑

i=1

{
WqD1i

(x; b) + WqD2i
(x; b)

}

+n
− 1

2

D̄

nD+nD̄∑

j=nD+1

{
WqD̄1j

(x; b) + WqD̄2j
(x; b)

}
,

where WqD1i
(x; b) = K−1

D

∑Ki

k=1 I
(q)
ik (x; b)eik, WqD2i

(x; b) = Rq(x; b)TA−1
BDi,

WqD̄1j
(x; b) is the limit of (p

1/2
10 )/ND

∑
i,k I

(q)
ik (x; b)

∫ u
0 ID̄j(v,Zik)dROCXik

(v), and

WqD̄2j
(x; b) = Rq(x; b)TA−1

BD̄j.

For fixed x, n
−1/2
D

∑nD

i=1{WqDi
(x; b)+WqD2

(x; b)} and n
−1/2
D̄

∑nD+nD̄

j=nD+1{WqD̄1j

(x; b) + WqD̄2j
(x; b)} are essentially sums of independent and identically dis-

tributed zero-mean random variables. It follows from the Multivariate Central

Limit Theorem that Wq(x; b) converges in finite dimensional distributions to a

zero-mean Gaussian process. Since Rq(x; b)TA−1 is non-random and n
−1/2
D

∑nD

i=1

BDi + n
−1/2
D̄

∑nD+nD̄

j=nD+1 BD̄j does not involve x, n
−1/2
D

∑nD

i=1 WqD2i
(x; b) + n

−1/2
D̄
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∑nD+nD̄

j=nD+1 WqD̄2j
(x; b) is tight. Now, both WqD1i

(x) and WqD̄1j
(x; b) are uniformly

bounded monotone functions, which are clearly manageable (Pollard (1990, p.38)).

It follows from the Functional Central Limit Theorem (Pollard (1990, p.53)) that

n
−1/2
D

∑nD

i=1 WqD1i
(x; b)+n

−1/2
D̄

∑nD+nD̄

j=nD+1 WqD̄1j
(x; b) is tight. Hence, Wq(x; b) con-

verges weakly to a zero-mean Gaussian process. Appealing to arguments similar

to those given in Su and Wei (1991), we have that, conditional on the data, the

process n
1/2
D Ŵq(x; b) converges weakly to the same limiting Gaussian process as

that of n
1/2
D W̄q(x; b).
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