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HOW DEMOGRAPHIC STOCHASTICITY CAN SLOW
BIOLOGICAL INVASIONS
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Abstract. Ecologists have traditionally neglected demographic stochasticity in describ-
ing the spread of an invading species. However, the region most critical in determining
wave speed is often the leading edge, precisely the point where demographic stochasticity
is most pronounced. In this paper, I analyze a common class of one-dimensional, single-
species invasion models and find that, for very general conditions, demographic stochasticity
slows biological invasions. Nonetheless, the slowing is not large enough to be noticeable
in most ecological time series. I also briefly discuss the role of transient dynamics and
rare, long-distance dispersal.
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INTRODUCTION

Over the last several decades, researchers have ex-
pended great effort to predict the speeds of biological
invasions. Traditionally, ecologists have predicted in-
vasion speed by representing the mean population
density as a function of position and time. They have
ignored population discreteness and the resulting fluc-
tuations in population levels (‘‘demographic stochas-
ticity’’). However, one might well wonder about the
effect of this omission. In the absence of an Allee
effect, the speed of an advancing population wave is
determined by what is happening in the leading edge,
where population density is very low—precisely
where demographic stochasticity is most evident. In-
deed, discreteness-induced fluctuations have been
shown to affect phenomena as diverse as the propa-
gation of chemical waves (Brunet and Derrida 1997,
2001, Kessler et al. 1998, Kessler and Levine 1998,
Pechenik and Levine 1999) diffusion-limited aggre-
gation (Brener et al. 1991), the emergence of mutant
strains (Kepler and Perelson 1995), and the evolution
of viral colonies toward greater mean fitness (Tsimr-
ing et al. 1996).

Modeling invasions into virgin territory with no Al-
lee effect, I have found that if the average per capita
number of births is density-dependent, demographic
stochasticity slows invasions. Transient dynamics are
often slow to vanish for invasion models because the
wave will not reach its asymptotic shape or speed until
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it has fully sampled the probability distribution that
governs dispersal distances (the dispersal kernel). If
population density can fluctuate to very high levels
(such as in the absence of density-dependence), pop-
ulation fluctuations in the form of rare, long-distance
dispersal can boost transient invasion speed somewhat,
but this is a relatively minor effect.

I outline a qualitative mathematical explanation of
how demographic stochasticity can slow invasion
speed (see Theory) and discuss the effects of rare,
long-distance dispersal and transient dynamics. I have
also demonstrated these effects with some simple
models of an invading population. I define my models
and present my results in the sections Models and
Results. To clarify the presentation and to use com-
puting power most efficiently, both the mathematical
explanation and the simulation models are presented
in one dimension. However, the qualitative results
should be unchanged in higher dimensions. I conclude
in the Discussion by speculating about the magnitude
of demographic stochasticity’s effects in higher di-
mensions and by discussing other effects that may be
present when the invader interacts with a resident spe-
cies.

THEORY

I have chosen a discrete time model both because
many populations have synchronized reproduction
and to avoid some oddities associated with using dis-
persal kernels in continuous time, such as the possi-
bility of moving a finite distance in infinitesimal time.
The population at x in the next generation is given by
the number of offspring produced at y times the prob-
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ability of dispersing from y to x, summed over all y.
Thus, the equation for expected population density
takes the form

`

n (x) 5 (expected number of offspringt11 E
2`

produced between positions y and

y 1 dy at time t)

3 (probability of dispersing from

y to x between times t and t 1 1) dy

(1)

where nt(x) is the expected population density at x at
time t. The probability of dispersing from y to x is
given by the dispersal kernel, k(x, y). I assume that this
probability depends only on the distance between x and
y, so that the dispersal kernel takes the form k(x 2 y).
Let N( y) denote the population density at location y at
time t for a given realization and let ^·& denote an ex-
pectation over an ensemble of realizations, so that nt(y)
5 ^Nt( y)&. If R, the average number of offspring per
individual (‘‘fecundity’’), is constant, then the expected
number of offspring produced at y is ^RN( y)& 5 R^N( y)&
5 Rn( y), and Eq. 1 becomes

`

n (x) 5 [Rn (y)]k(x 2 y) dy. (2)t11 E t
2`

The other possibility is that fecundity is not density-
independent but instead depends on the population den-
sity in some neighborhood about the potential parent.
Let N̂t( y) represent the local density about y in a given
realization, and let n̂t( y) represent the expectation of
the local density over an ensemble of realizations. If
fecundity is a function R[N̂( y)] of the local density,
then the expected number of offspring produced at y
is ^R[N̂( y)]N( y)&, rather than R^N( y)&. We can no longer
slip the fecundity out of the average, so the expected
number of offspring cannot be written simply as a func-
tion of the expected population density; i.e., Eq. 1 can-
not be written in closed form. However, we can make
an approximation that will let us see how the expected
population density depends on variance and other mo-
ments of the population distribution. We find that in
the leading edge of the wave, where the population is
small,

n (x) ø B(x) 2 V(x) 2 C(x)t11 (3)

where B(x) 5 DI(x) 2 DD(x), and V(x) and C(x) are
corrections for the effects of demographic stochasticity
to DI(x) and DD(x), respectively. I discuss the form of
each expression below; a derivation can be found in
Appendix A.

The first expression is

B(x) 5 DI(x) 2 DD(x)

`

5 R dy k(x 2 y)n (y)E t
2`

` y1D/2b
2 dy k(x 2 y)n (y) dz n (z) (4)E t E tD

2` y2D/2

where

2dn(n̂) R(R 2 1)
b 5 5 (5))dn̂ Kn̂50

for Beverton-Holt reproduction (defined in the Models
section), assuming R is small with respect to the car-
rying capacity, K. Here, b(n̂) is the fecundity as a func-
tion of local density, n̂, and I assume that the local
density at y is determined by averaging the population
in an interval of length D centered at y. This baseline
expression summarizes the dynamics in the absence of
fluctuations; if there were no demographic stochastic-
ity, this is all we would have. The first term simply
represents geometric growth. The number of offspring
produced at location y is Rnt( y), and these disperse
according to the dispersal kernel, k(x 2 y). The second
term approximates the effect of density-dependence.
The population at location y interacts with individuals
up to a distance D/2 away, and the integral dzy1D/2#y2D/2

nt(z) counts how many individuals there are in this
interaction zone. The strength of the density-depen-
dence, i.e., how much crowding reduces the fecundity,
is given by b. Note that for ordinary density-depen-
dence, in which births decrease with local density, b
is positive.

The effects of the population variance are contained
in the second expression,

`b
V(x) 5 dy k(x 2 y)n (y). (6)E tD

2`

(Appendix A shows that the population density vari-
ance equals the expected population density, nt( y).)
This has the same structure as the first term of our
baseline expression, DI(x). Putting them together, we
get (R 2 b/D) dy k(x 2 y)nt( y), and we see that`#2`

population variance, interacting with density-depen-
dence, effectively reduces R, the fecundity in an un-
crowded environment. This result seems counterintu-
itive but appears many times in ecology, perhaps most
famously in Lewontin and Cohen’s study of a geo-
metrically growing population in a varying environ-
ment (Lewontin and Cohen 1969). They found that
variance in the geometric growth rate subtracts from
the long run growth rate (the average of the logarithm
of the geometric growth rate).
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FIG. 1. Schematic of stochastic models. The
black circles represent individuals at a time t. The
arrows emanating from a circle represent the lo-
cations of that individual’s offspring at time
t 1 1. Each individual produces a Poisson-dis-
tributed number of offspring, whose dispersal
distances are drawn from a dispersal kernel.
Space is continuous and one-dimensional.

Population fluctuations results not only in variance but
also in covariance, which is taken into account by

` y1D/2b
C(x) 5 dy k(x 2 y) dz c (y, z) (7)E E tD

2` y2D/2

where the population density covariance, ct(x, y), is
defined as ^(Nt(x) 2 ^Nt(x)&)(Nt( y) 2 ^Nt( y)&)&. The sec-
ond term in the baseline expression, DD(x), assumes
that the populations at location y and its environs do
not fluctuate away from their expected values or that
if they do, they fluctuate independently of each other.
But this is false. Individuals who come from the same
parent or whose parents shared an ancestor will be
spatially correlated, since offspring tend to land near
their parent. Thus, if the population at y fluctuates
above or below its expected value, then nearby pop-
ulations are likely to fluctuate in the same direction;
that is, they will have a positive covariance. The ex-
pression C(x) corrects for this covariance.

What is important in the context of biological in-
vasions is that V(x) and C(x) are positive. (Recall that
the strength of density-dependence, b, and the covari-
ance, ct(y, z), are positive.) The fluctuation-dependent
expressions V(x) and C(x) therefore slow population
growth in the leading edge of the wave. (They subtract
from nt11(x).) The apparent forward motion of the wave
is caused by small populations in the edge of the wave
growing and becoming part of the bulk of the wave,
and so slowed growth translates into a slowed invasion
speed.

Fluctuations can also increase the transient invasion
speed by increasing the likelihood of rare, long-dis-
tance dispersers. The wave will not reach its asymptotic
shape and speed until it has fully sampled the tails of
the dispersal kernel, which represent rare, long-dis-
tance dispersal. If the population density in some part
of the wave briefly reaches a high level, there will be
more offspring produced there, and more chances that
one of those offspring will travel very far. The in-
creased likelihood of sampling the tails of the dispersal
kernel accelerates the rate at which the wave achieves
its asymptotic form, increasing the transient speed.
Note that sufficiently large fluctuations occur mostly
in the bulk of the wave. (While relative fluctuations
are greatest in the tip of the wave, the absolute mag-
nitude of fluctuations is greatest in the bulk of the wave,

where the greatest number of individuals are repro-
ducing.) Large fluctuations require large populations,
so this effect is most likely to be seen either with den-
sity-independent reproduction or in systems with a high
carrying capacity.

MODELS

To demonstrate the effects just discussed, I compare
speeds from a collection of related models. (I present
definitions of invasion speed and explain how I mea-
sured invasion speeds in the stochastic simulations in
Appendix B.) All use continuous, one-dimensional
space and discrete time and represent a situation in
which individuals reproduce at the beginning of a time
step and then each of the offspring disperses according
to a dispersal kernel (see Fig. 1). Parents die after re-
producing, and the population is censused after dis-
persal. I have in mind here a semelparous population
that reproduces in synchronized pulses, such as insects
or, better still, annual plants.

The models are characterized by their dispersal ker-
nel, which can be either a Laplacian or a ‘‘top hat’’
(defined below), and by whether reproduction is den-
sity-independent or density-dependent. Each model
then has up to three variants: deterministic, determin-
istic births but stochastic dispersal (‘‘stochastic dis-
persal’’ runs), or stochastic births and dispersal (‘‘fully
stochastic’’ runs). For the reasons I gave in the Theory
section, deterministic analogues are not possible for
models with density-dependence.

In the fully stochastic variants, the number of off-
spring for each individual is drawn from a Poisson
distribution. Under density-independent reproduction,
the mean number of offspring (fecundity) for all in-
dividuals is R. This model is the same as that used by
Lewis and Pacala (2000). In the density-dependent
case, each potential parent determines the local density,
n̂, in an interval of length D centered on itself. That
parent’s fecundity is then given by the Beverton-Holt
model: fecundity 5 R/(1 1 (R 2 1)n̂/K). I have chosen
D 5 1 for all the data presented here.

Each of the offspring then disperses to the left or
right, with the distance and direction drawn from a
dispersal kernel, either Laplacian (k(x) 5 (a/2)
exp(2azxz)) or top hat (k(x) 5 1/(2L) for zxz # L and
zero otherwise). Choosing a Laplacian kernel is equiv-
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alent to assuming that dispersers have a constant prob-
ability of settling per unit distance as they travel. This
might approximate light seeds settling out of an air
stream, for example. What is more important is that
the Laplacian kernel is leptokurtic; it has fewer inter-
mediate-range dispersers and more long-range dis-
persers than a Gaussian kernel. Most dispersal distri-
butions found in nature are believed to be leptokurtic
(Neubert et al. 1995). A top hat kernel is obviously not
realistic but it eliminates the possibility of rare, long-
distance dispersal, which will be helpful for teasing
apart different fluctuation-generated effects.

In the stochastic dispersal runs, the number of off-
spring is equal to the expected number of offspring,
rounded to the nearest integer if need be. I chose R to
be an integer (R 5 2, specifically) so that for the all-
important wave tip at least, where the dynamics are
approximately linear, the mean number of offspring per
individual would be the same for the stochastic dis-
persal runs and the fully stochastic runs. (The mean
number of offspring is the same everywhere in the
density-independent case.) Dispersal proceeds as in the
fully stochastic runs.

The deterministic variants are equations for expected
density. These are what is traditionally used to model
invasions. Fluctuations are ignored and population size
is not discrete.

For density-independent reproduction, the equation
governing the expected population density is

`

n (x) 5 R k(x 2 y)n (y) dy (8)t11 E t
2`

where nt(x) is the expected population density at point
x at time t and k(z) is the dispersal kernel. This equation
has been used as the standard in a number of studies
of invasion dynamics (Neubert et al. 1995, Kot et al.
1996, Clark 1998, Neubert et al. 2000), and it is easy
to find the corresponding asymptotic invasion speed
using the results in Kot et al. (1996). As discussed in
the Theory section, there is no way to write such an
equation for the density-dependent case in closed form
without making simplifying approximations. However,
Mollison states that the speeds of nonlinear stochastic
models in continuous time will be no greater than the
speeds of the equivalent linear models (Mollison 1991).
This result should hold in discrete time as well, since
in both cases the nonlinearities represent decreases in
per capita growth rates at higher densities and these
decreased growth rates can only reduce the invasion
speed. Thus, the expected speed for the linear models
should be an upper bound to the expected speed of the
nonlinear models.

By comparing the speeds of different model variants,
I am able to tease apart the effects of transient dynam-

ics, demographic stochasticity, and rare, long-distance
dispersal. The deterministic models give us asymptotic
speeds for the density-independent models and upper
bounds for the speeds of the density-dependent models.
The slowing effect of demographic stochasticity is
demonstrated in the density-dependent models. Both
the stochastic dispersal runs and the fully stochastic
runs experience population fluctuations due to demo-
graphic stochasticity, but the fluctuations are stronger
in the fully stochastic runs (variance and covariance
are larger), and the slowing should be greater there. In
order to pick out the effect of rare, long-distance dis-
persal, I compare models with density-independent and
density-dependent reproduction and Laplacian and top
hat dispersal. The Laplacian kernel permits rare, long-
distance dispersal while the top hat kernel does not.
Density-independent reproduction permits the large
fluctuations that make rare long-distance dispersal
more likely while density-dependent reproduction
(with a relatively low carrying capacity) discourages
such fluctuations. However, speed differences will be
complicated by transient effects and computer trun-
cation effects. I discuss these issues in the Results sec-
tion.

RESULTS

The results are summarized in Table 1. The speeds
listed in the ‘‘deterministic’’ column are asymptotic
speeds for the density-independent, stochastic model
variants. As predicted, the fully stochastic density-de-
pendent model variants were significantly slower than
their stochastic dispersal counterparts, due to the in-
creased levels of demographic stochasticity. On the
other hand, the differences between the speeds of the
fully stochastic and stochastic dispersal variants of the
density-independent model were not statistically sig-
nificant. Again, this is as predicted, because demo-
graphic stochasticity can only slow invasions through
its interactions with density-dependence. (These speeds
should also be statistically indistinguishable from their
deterministic counterparts but are not. This issue is
discussed below.)

Although the speeds are not all statistically distin-
guishable, it is striking that the mean speed of the fully
stochastic variant was higher than that of the stochastic
dispersal variant for a single case: the density-inde-
pendent model with Laplacian dispersal. I could not
run the density-independent models for very long due
to computer memory constraints. If with more data the
difference proved to be significant, I would suggest that
the higher (transient) speed is due to rare, long distance
dispersal. Large populations, such as those found with
density-independent growth, provide an opportunity
for large fluctuations when the number of offspring
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TABLE 1. Comparison of dispersal speeds for invasion models with different degrees of
stochasticity.

Kernel
Reproduction

(R 5 2) Mean
Stochastic
dispersal

Fully
stochastic

Laplacian

Top hat

dens.-ind.
dens.-dep.

dens.-ind.
dens.-dep.

3.80
#3.80

1.261
#1.261

3.37 6 0.11
2.97 6 0.03

1.198 6 0.007
1.037 6 0.003

3.52 6 0.13
2.56 6 0.03

1.184 6 0.009
0.872 6 0.005

Notes: Speeds in the column labeled ‘‘mean’’ are for the mean population density. Speeds
in the column labeled ‘‘stochastic dispersal’’ come from computer runs in which dispersal was
stochastic but the number of offspring per individual was deterministic. Speeds in the column
labeled ‘‘fully stochastic’’ come from computer runs in which both dispersal and the number
of offspring per individual were stochastic. ‘‘Dens.-ind.’’ and ‘‘dens.-dep.’’ refer to density-
independent and density-dependent (Beverton-Holt) reproduction, respectively. The Laplacian
kernel has a 5 0.5, and the top hat kernel has L 5 2, so that in both cases, the mean absolute
distance traveled (* dx k(x)zxz) is 2. Confidence intervals represent one standard error. Population
is not discrete in the equations for mean population density, and there is no demographic
stochasticity. Population is discrete for both the stochastic dispersal runs and the fully stochastic
runs, with greater levels of demographic stochasticity in the fully stochastic runs.

born is stochastic, and a Laplacian dispersal kernel
permits rare long-distance dispersal.

The observant reader will have noted that speeds for
the density-independent, stochastic model variants do
not quite reach their predicted asymptotes. All of the
stochastic speeds are a little slower than would be pre-
dicted because of long transients. Runs using a Lapla-
cian kernel may also be slowed by computer truncation
effects, since a computer cannot generate arbitrarily
small numbers, and thus we do not explore the most
extreme reaches of the kernel tails. However, this effect
should be the same for all runs using a Laplacian ker-
nel, and so comparisons within a model should still be
valid.

While the effects of demographic stochasticity are
clear in these models, no wave is slowed by .10%.

DISCUSSION

I have demonstrated that demographic stochasticity
causes realized invasion speeds to be slower than would
be predicted according to traditional methods. The pri-
mary effect of demographic stochasticity in the pres-
ence of density-dependent births is to slow the wave.
The nonlinear fecundity couples the dynamics of the
local mean population density to higher moments,
which, in the absence of an Allee effect, slows the
growth of the mean and hence slows the invasion. Tran-
sient dynamics are often slow to disappear for invasion
models because the leading tip of the wave must be
fully developed before the wave can reach its full
speed. If the population is sufficiently large, demo-
graphic stochasticity can also enhance rare, long-dis-
tance dispersal, which increases speeds in the transient
regime for both density-independent and density-de-
pendent models. However, this is a relatively minor
effect.

No wave in this study was slowed by . 10%, which
is reassuring for those trying to match models to data.
Given the noisiness and short duration of most eco-
logical time series, it seems safe to ignore demographic
stochasticity when formulating models.

Other researchers have investigated the velocity of
stochastic invasion processes. Mollison’s papers (1977,
1991) provide the most comprehensive review of early
results. To cite some specific studies, Mollison consid-
ers a different epidemic model on a one-dimensional
lattice and proves that, given some easily met condi-
tions, the expected front velocity is constant if and only
if the infection kernel (equivalent to the dispersal ker-
nel here) has finite variance (Mollison 1970). In sim-
ulations described in the same paper, Mollison notes
that when there is a limit to the number of infected
individuals at a site, equivalent to an extreme form of
density-dependence, the velocity of the stochastic mod-
el is less than that predicted by a naive deterministic
equivalent (i.e., without V(x) and C(x)). However, he
does not suggest any explanation for why this should
be so, and provides no mathematical analysis.

Bartlett (1960) was one of the first to consider how
population density covariance affects the spread of an
invasion. His work was corrected and extended by Dan-
iels (1977). More recently, Ellner and others (1998)
have modeled the spread of the contact process on a
two-dimensional lattice. There, the relevant covarianc-
es are nearest-neighbor correlations, which they esti-
mate using a pair approximation.

Lewis’s paper (2000) exploring the spread rate for a
particular nonlinear stochastic invasion model is clos-
est in spirit to the present work. He starts with an equa-
tion for the expected population density in terms of
expected density and covariance, as done here, and also
includes an equation for the covariance in terms of the
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same quantities. Lewis, however, directs his energies
toward finding a moment closure scheme (a way of
approximately writing the dynamics for the expected
density in closed form) for a specific model instead of
considering density-dependent dynamics generally, as
this paper does.

One question not fully addressed in this paper is how
demographic stochasticity affects invasion speed in
higher dimensions. Mollison (1991) has observed that
nonlinear stochastic invasions progress at different
speeds in different dimensions. The procedure de-
scribed in Appendix A can easily be generalized to
higher dimensions, and doing so results in a multidi-
mensional equivalent of the approximation obtained in
one dimension (Eqs. 3, 4, 6, 7), with integrals over dy
and dz becoming integrals over ddy and ddz, for ex-
ample, in d dimensions. We can make the same argu-
ments about the variance expression V(x) and the co-
variance expression C(x) subtracting from nt11(x), and
so demographic stochasticity should also slow inva-
sions in higher dimensions. What is less certain is
whether the slowing will be more than or less than the
slowing in one dimension. In general, spatial correla-
tions become weaker in higher dimensions because in-
dividuals interact with a larger number of neighbors
or, in this case, because the number of locations for
offspring to land that are ‘‘far’’ from their parents
grows faster than the number of ‘‘near’’ locations. (Re-
call that only correlations up to lag D/2 contribute to
C(x).) I therefore suspect that the effects of demo-
graphic stochasticity on invasion speed will be even
less noticeable in higher dimensions.

Demographic stochasticity can cause additional ef-
fects when the invading species interacts with a resi-
dent species. One traditionally models such systems by
assuming that individuals interact only in pairs, not in
clusters, and that population levels are always equal to
the local means (a ‘‘mean field’’ assumption). However,
if the wave front width narrows to the point that it is
comparable to the distance between individuals, then
population discreteness becomes unignorable and one
can no longer equate local densities with mean den-
sities. Likewise, if the wave front width becomes com-
parable with the distance within which individuals in-
teract, one can no longer assume interactions are re-
stricted to pairs. Mai et al. (1998) see both of these
effects in their simulations of chemical waves, and find
that for their system, wave speed increases as a result.

Population discreteness and demographic stochastic-
ity can have an additional effect if the invading species
must interact with the resident species to spread, e.g.,
predators moving into a region of prey, parasitoids
sweeping across a field of hosts, or a disease spreading
among new susceptibles. If there is no Allee effect, one
ordinarily finds the invasion speed by linearizing the

equations, since it is the wave tip that determines speed
and population density is low there. However, if in-
teraction rates are too high, then the area where line-
arized equations are valid may not contain both types
of individual, and nonlinear interactions become im-
portant. In a separate study of chemical reactions, Mai
et al. (2000) note this effect and find that it slows wave
speed.

This study has found that while demographic sto-
chasticity does slow wave fronts involving a single
species, the reduction in speed is small. It is unclear
how the speed would change in the presence of inter-
actions with other species, such as predation or com-
petition, and further investigations in this direction
would be useful.
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APPENDIX A

A description of the second-order expansion for mean density is available in ESA’s Electronic Data Archive: Ecological
Archives E084-029-A1

APPENDIX B

A description of the definitions and methods for invasion speeds is available in ESA’s Electronic Data Archive: Ecological
Archives E084-029-A2


