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Local magnetic properties of antiferromagnetic FeBr2
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The antiferromagnet FeBr2 has been studied by Mossbauer spectroscopy in external fields both in the

metamagnetic region below the multicritical temperature TM&p and in the second-order transition region above.
The local magnetization shows that the metamagnetic transition occurs by spin flips, as in simple models.
However, in the second-order transition region, the local magnetization of the sublattice oriented antiparallel to
the external field varies continuously but remains parallel to the c axis. This can only be understood if the

external magnetic field induces strong transversal spin precession of the moments on the antiparallel sublattice.
This shows that the anomalous maxima in the imaginary part y" recently found in the ac susceptibility [M.M.
Pereira de Azevedo et a/. , J. Magn. Magn. Mater. 140-144, 1557 (1995)] and denoted H below the critical
field Hc(T), and H+ above, can be understood as being caused by noncritical transversal spin fiuctuations.

I. INTRODUCTION

Compounds of transition metal halogens have been inten-
sively studied as model systems for antiferromagnets (AF)
with strong uniaxial anisotropy. Both FeC12 and FeBr2 have
attracted special attention. The AF magnetic order in these
two compounds can be described as an antiferromagnetic
stacking of ferromagnetic (FM) layers. They show a first-
order metamagnetic phase transition at low temperature in
external magnetic field parallel to the c-axis. Above a certain
multicritical point, the transition becomes continuous, and
second-order. In the past, the chloride compound has at-
tracted more interest because of the lower external fields re-
quired for the metamagnetic transition. In this work, we con-
centrate on the metamagnet FeBr2, which shows
qualitatively similar behavior as FeC12, but with large quan-
titative differences. The most important difference is an un-
usual form of the second-order critical field
H~ —temperature T phase line above the multicritical point
(MCP) with TMcp=4. 64 K. ' The critical behavior in the
neighborhood of TM&p has not been explained as yet. It has
been shown that because of the unusual form of the phase
line, this probably ends in a critical endpoint (CEP), and not
in a more usual tricritical point (TCP). The critical behavior
in the neighborhood of external field H =0, and T about
equal to the Neel temperature Tz= 14.2 K is unusual. Here,
the measured specific heat is much larger than that which
would be predicted from the critical exponent n, where in
zero field 1,32» u» 1.56. It should be mentioned in this con-
text that recent neutron-diffraction studies have shown that
the intraplane correlation length ( does not diverge at T~.
The properties of the spin waves have received much atten-
tion in FeBr2. The spin wave dispersion curves have been
studied by several groups ' in order to determine the differ-
ent exchange and anisotropy interactions important in this
system.

Recently the ac susceptibility has been studied both for
the first-order metamagnetic transition below TMt-p, and the

second-order continuous transition above TM&p but below
Tz. It was found that in the continuous transition region the
real part y' has a maximum at the critical line in field,
Hc(T), but not the imaginary part y". Instead, the imaginary
part shows a local minimum, and maxima both below and
above this field, denoted as H and H+, respectively. In
addition, the derivative of the total magnetization M with
respect to the temperature T, dM/dT, at constant field, and
with respect to field dM!dH at constant T, was also found to
display maxima below the critical line Hc(T) at H . Figure
1 shows the phase diagram of FeBr2 taken from Ref. 7. The
lines in the figure separate the different phase regions: AF,
(saturated) paramagnetic (PM), and the mixed phase region
(AF+PM). These are taken from M(H, ) at constant T and

M(T) at constant H, as well as dM(T)/dT measurements.
The second-order continuous critical field line Hz separates
the AF and PM regions above TM&p=4. 64 K. The other
points, given by y' and y" as a function of T and H„yield
H below H&, and H+ above. The bars around these points
denote the regimes of strong noncritical fluctuations. It can
be seen from this figure that both these regimes, that within
the ordered phase with maximum at H, and the other in the
PM phase with maximum at H+ seem to merge at the mul-
ticritical point HL(TMcp).

The anomalies in the ac and total magnetization of
FeBr2 were originally attributed to the competing interac-
tions along the in-plane axes of the triangular Fe lattice
planes. Recent Monte Carlo simulations reinforce this
view. Moreover, they revealed that the large number of
equivalent superexchange paths between adjacent Fe + lay-
ers is crucial to fully explain the anomalies. Interestingly, the
same result has recently been found within the framework of
an infinite-dimensional Hubbard model using quantum-
Monte-Carlo techniques. The presence of these anomalies,
and the vanishing of the imaginary part of the ac susceptibil-
ity at the critical line leads to the hypothesis that there are
transverse in addition to the longitudinal fluctuations in-
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FEG. 1. The magnetic phase diagram H, (T) of FeBrz where

H, is the applied field (taken from Ref. 7). The eye-guiding lines
separate the different phase regions: antiferromagnetic (AF), (satu-
rated) paramagnetic (PM), and the mixed phase region (AF+PM)
as given by the M(H, ) at constant T and M(T) at constant H, as
well as dM(T)ldT measurements. The second-order continuous
critical-field line Hz separates the AF and PM regions above

TMcp =4.64 K. The other points, given by y
' and y" as a function

of T and H, are discussed in the text, and yield H below Hz, and

H+ above. The bars around these points represent the width of the
maxima, and not error bars.

volved in this transition. For this reason, we have made an
extensive Fe Mossbauer study of the magnetic transitions
in temperature and field using a part of the same single crys-
tal as was used by Pereira de Azevedo et al. Our goal was to
obtain better understanding of the local magnetization in the
continuous transition range. Our results show clearly that the
metamagnetic transition proceeds by spin fIips of 180' in a
mixed phase region. Along the second-order critical line, the
transition is different. There is a continuous change in the
local moments of mainly the antiparallel sublattice. They

gllp'~ +gllp'~ continuously, remaining parallel to
the c axis (gl=g factor parallel to c axis; pii = Bohr mag-
neton). This variation is over a field range that agrees well
with the characteristic fields H and H+ as derived from the
ac susceptibility and total magnetization. This variation is a
direct consequence of the transverse noncritical fIuctuations
on the antiparallel sublattice induced by the external field in
the presence of the competing exchange interactions.

This paper is divided in the following way. The crystal-
field and spin-orbit coupling are discussed in Sec. II with
respect to the magnetic phase diagram. Hyperfine effects are
discussed in Sec. III. The experimental studies using Fe
Mossbauer spectroscopy are presented in Sec. IV. The review
presented in Secs. II and III is necessary for the discussion of
these results presented in Sec. V.

II. CRYSTAL-FIELD AND MAGNETIC PROPERTIES
OF FeBrz

A. Crystal-field and spin-orbit coupling in FeBrz

It is instructive to discuss the details of the crystal-field
splitting in the iron halides in more detail. The magnetic
properties of the iron halide crystals FeH2 (H= Cl,Br,l) have
been extensively studied due to their very interesting prop-
erties, and these are strongly infIuenced by the crystal-field
splitting. FeBr2 is an ionic crystal with CdI2 structure, space
group D 3d (see Ref. 10). The lattice is hexagonal, with one
molecular unit per unit cell. The structure can be described
as Fe layers that are separated by two Br layers, and
stacked along the c axis, with lattice constants a=3.74 A,
c = 6.17 A. The magnetic properties have been studied by
Wilkinson et al. ,

"and are similar to that of FeC12. The elec-
tronic state of the free high-spin Fe + ion is D with an
electronic configuration of 3d: the total orbital quantum
number L' = 2, and spin quantum number 5' =2 (see Ref.
12). The local symmetry is cubic with a small trigonal defor-
mation. There are strong ferromagnetic exchange interac-
tions Ji between the Zi=6 nearest-neighbor (NN) Fe ions
within the plane, and much smaller antiferromagnetic super-
exchange interactions J' between neighboring planes. It was
originally assumed that the number of J' interactions is two
corresponding to the shortest interlayer distances. However,
it was recently observed that there are Z'=20 equivalent
paths for the 1' superexchange interactions. Since the prod-
uct Z'J' is determined experimentally, the magnitude of J'
previously reported must be rescaled. In several different
studies, the importance of interactions with next- and third-
next-nearest neighbor (NNN and NNNN) within the plane
has been indicated. The phonon and magnon spectra of
FeC12 and FeBr2 have been extensively studied using both
inelastic neutron diffusion ' ' and Raman scattering' and
far-infrared absorption spectroscopy. ' The appropriate
crystal-field Hamiltonian has been extensively discussed by
Balucani and Stasch. ' Here we summarize their results.
There are strong hybridization effects between the magnetic
excitations (magnons) and the lattice excitations (phonons)
due to the crystal-field splitting. This leads to anomalies in
the phonon spectra as well. The crystal-field effects in Fe
compounds with respect to Mossbauer spectroscopy have
been extensively discussed by Price and Varret. '

The Fe + ground-state triplet in the cubic term of the
crystal field leads to the possibility to characterize it as hav-

ing an effective L= 1 orbital momentum. This is done con-
ventionally by matching matrix elements of the crystal-field
Hamiltonian for the real and for the effective spin operators
and is described in Refs. 12 and 16. In the case of the spin-
orbit term, this leads to the following replacement:
AL' S~XL S where the effective spin-orbit coupling con-
stant X= —A= 100 cm ' is often taken, and the effective
L=1 is opposite in sense to the real L'=2. As before,
5' = 2. The trigonal distortion can also be written in terms of
this effective L as WY~„;s= —8(L,) to within an unimportant
constant, and 8' is proportional to the trigonal distortion.
There are now (2L+ 1)(2S'+ 1)= 15 total states to con-
sider, which, however, group into three manifolds centered
near the energies of 0, 2X, and 5X from the spin-orbit cou-
pling. This allows a description in terms of the effective total
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angular momentum J=L+ S' or quantum number J= 1, 2,
or 3. Since 2X is about 200 cm '=200 K, for our purposes
here, we can restrict ourselves to the 1= 1 state, sometimes
written as the effective spin 5= 1. This state is triply degen-
erate (ms= —1,0,+ 1). The effect of the trigonal distortion
on this state leads to a lifting of the degeneracy. The state
~S= I,ms=0) lies above the ~S= I,ms= 1) states by the
splitting

Ref.
Jq /kq

(K)
J2/k~
(K)

J3/kq
(K)

D/kp
(K)

5

4, 6
9.3
6.2

—3.1
—0.14

not determined —0.37
—1.3 —0.37

10.7
12

TABLE I. Exchange interactions in FeBr2. The interaction J' has
been corrected for the number of interactions Z' =20 (taken from
Ref. 20 ).

6' 9 6'

10 100K '

The single-ion Hamiltonian must also include the Zeeman
effect. In terms of the real angular momentum operators L'

and S', this is written as Mz= —pIiB. (L'+ S'). When this
is expressed in terms of the effective spin operators given
above, we obtain the anisotropic g factors that are approxi-
mately

7 9 8'

2+20 P,
(2a)

7 9 6
2 40k (2b)

B. Magnetic phase diagram of FeBr2

Below Tz, there is long-range AF order in zero field. The
Fe + ions are ordered ferromagnetically within the layers,
and stacked antiferromagnetically along the c axis. There is a
first-order phase transition in external magnetic field parallel
to the c axis for temperatures below the multicritical point at
TMCP= 4.64 K and a critical internal field HMCP

=Hc(TMcp) which is 2.26 MA/m. The high-field state can
be described as a saturated paramagnetic (SPM) phase with a
ferromagnetic spin texture due to the external field. The
phase transition is continuous and of second order for tem-
peratures above TMCP as given in Ref. 1. The boundary point
between the first-order metamagnetic and the second-order
continuous transition lines was termed a tricritical point by
Griffiths and Wheeler. ' Early models within the mean-field
approximation (MFA) have been reviewed by Stryjewski and
Giordano. ' (See as well Kincaid and Cohen, incorrectly
referenced in Ref. 19.) The strong uniaxial anisotropy con-
strains the spins along the c axis and prevents the occurrence
of a spin-Aop phase. The first-order metamagnetic transition

If we estimate that 8'/X=1, then g~I=3.9 and g~=3.3, not
too far away from the values reported by Johnstone, Lock-
wood, and Mischler' To linear order in 6/k, the ratio of
gi /g~~=1 —(27/140)8/k is equal to about 0.8 for 8/X= 1.
The Hamiltonian for the exchange terms is written as
Mz= —2X;,J;,S,

'
S,

' . In the space of the effective spin op-
erator S, this is replaced by a sum over —J;J[A

~~

S', S'
+A~S," S ].The constants A~~ and A~ expressing the asym-
metry in the effective exchange constants are given by

Al-2 [I+(I/10)8/k], and Ai --', [I—(1/20)8/)t. ]. In the

same limit as above, Ai /A~~= 1 —(3/20) 8/k or about 0.85
for 8'/k=1. The J-mixing term 8/k thus leads to effective
Zeeman and exchange terms that are anisotropic. This con-
tributes to the gap in the magnon spectrum.

at finite temperatures is possible (within MFA) only in the
presence of different exchange interactions acting within and
between the magnetic sublattices. To first approximation in
FeBr2, these are the J& intralayer FM and J' interlayer AF
interactions. Within the MFA, the ratio M= Z]J] /Z' J' de-
termines the main features of the magnetic phase diagram.
Zi (Z') is the number of FM Ji (AF J') interactions (note
the differences in notation as well as AF/FM sign convention
from the paper by Stryjewski and Giordano' ). For
M( —3/5, the line of low-temperature first-order transitions
ends where it meets the line of second-order transitions at a
tricritical point (TTcp). At this point, there is no change in

slope. Within the MFA, the ratio (TTcp/T~) t

=1+ I/(3M) (where M(0). It is known that the MFA leads
to a predicted transition temperature kiiT~™A}=(2/3)S(5
+1)(ZiJi —Z'J') (where J'(0) which is too high. The
values of the exchange interactions (discussed later) lead to
predictions for M~= —5 and (TTcp/T&) " =0.9. This lat-
ter is much larger than the experimental TMcp/T~ 0.33. An
Ising-spin model was proposed by Harbus and Stanley ' for
the case of antiferromatically coupled ferromagnetic sublat-
tice structures. In this model, it is the existence of the intra-
sublattice FM interactions which leads to the tricritical be-
havior, and the predicted ratio TMcp/T~ is only somewhat
smaller than the MFA estimation. Both Monte Carlo and
random-phase approximations lead to predicted ratios that
are also larger than the experimental one (but smaller than
the MFA). The calculations presented are based on the domi-
nating exchange interactions J] and J . It is not clear if
agreement would be better if further interplane interactions
(J2 and J3) were also included. In addition, the dipole ener-
gies are mostly neglected in these theories, which may not be
justifiable in view of the large moments and low transition
temperatures. We must conclude that the experimental
TMcp/T~ in FeBr2 has never been correctly explained in the

simple theories presented. The most remarkable feature of
the phase line in FeBr2, not present in FeC12, is that above

TMcp the critical phase line Hc( T) starts with a positive
slope so there is break in slope (kink point) in the phase line
at the MCP. This also means that starting at internal fields
just above Hz at TMcp and heating will lead to first a tran-
sition from the SPM, to the AF, and then back to the SPM
states. Within the MFA, such a behavior can be predicted for
—3/5~, %~0. The first estimation of A~ by Jacobs and
Lawrence was about —0.28 based on Tz and Hc(T=O).
However, such a small value for M is difficult to justify. The
values for the exchange constants discussed below and given
in Table I lead to M= —5. In a series of papers, Onyszk-
iewicz has tried to explain this feature of the transition in
FeBr2 on the basis of a Heisenberg-type spin Hamiltonian
including four-spin anisotropy interactions. However, a
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proof of the existence of such four-spin anisotropy interac-
tions has never been presented. Only very recently, the pe-
culiar shape of the FeBr2 phase diagram has been realisti-
cally mimicked within a Hubbard model of highly correlated
electrons. The MCP seems to be the critical endpoint (CE) of
the second-order phase line, whereas the first-order line ex-
tends up to a bicritical point (BCE). Hence, a new phase
boundary between CE and BCE seems to separate two dif-
ferent antiferromagnetic phases just along the ridge of non-
critical fluctuations observed experimentally (see Fig. 1).
The very existence of a real phase boundary remains to be
shown. But the predicted Tzz/T~=0. 28 is rather close to the
experimental TMpp/T g 0.33.

The magnon dispersion relations in FeBr2 have received
extensive experimental ' and theoretical' ' ' treatments
in the literature. There is evidence of strong magnon-magnon
as well as magnon-phonon interactions. In an early paper,
Yelon and Vettier have derived the magnetic excitations and
have found two propagating modes in which the spins are
precessing around the c axis. One of these modes is disper-
sionless and has zero weight at T= 0 K, but begins to inter-
act with the other, classical spin wave mode, at finite tem-
perature. There is mixing of the modes where they cross in
reciprocal space, leading to mode repulsion. Unfortunately
here as in the other studies of the spin wave spectrum in
FeBr2, no results are presented for the two sublattices indi-
vidually.

Birgeneau et al. using inelastic neutron scattering to
study the magnon dispersion relations have shown that in the
case of FeC12, three types of exchange integrals are needed
to describe the magnetic excitations. These are denoted as

J&, the NN FM and J2, the NNN AF intraplane interactions
and J', the AF interplane interaction. Yelon et al. ' have
studied FeBrz, and used a similar scheme. In order to study
the low-temperature excitations of the magnetic system, it is
not sufficient to use the molecular-field approximation, as it
is well known that this approximation misses the spin waves,
only considering single spin excitations. The appropriate
transformation to Bose spin operators has been given in
Balucani and Stasch. ' The excitation spectrum contains a
zero-field gap 6coo that depends on the exchange and anisot-
ropy constants. The gap can be measured by far-infrared ab-
sorption spectroscopy as well as directly by inelastic neutron
scattering. Using the former method, Petitgrand and Meyer'
have given A, coo= 17.09(6) cm '= 2.1 meV. Recently, the

gap was measured directly, and a value of about 2 meV was
also found.

Recent polarized neutron dispersion studies using other
crystallographic directions have shown that there is in addi-
tion an AF exchange interaction between in-plane third
neighbors (NNNN) 13 as discussed above. The value of this
fourth exchange interaction is small. However the increased
frustration helps to destabilize the structure of the FM
planes, leading to the possibility of new types of magnetic
excitations. These will be discussed below with respect to the
results. It must also be realized that this will change the
estimates for the ratio 8'/X from the magnetic properties.
Table I shows a summary of the results for the exchange and
anisotropy interactions proposed in the literature. The inter-
plane interaction J' has been corrected for the number of
effective interactions Z' = 20.

~&hg —gup NBhf ' 1~ (3)

where Bz& is the hyperfine field at the nucleus, gz is the
nuclear g factor, p,~ is the nuclear magneton, and I is the
nuclear spin operator. It is convention to report this field as a
flux density B rather as a magnetic field H (where
B= p, oH) since what is measured is an energy splitting in the
nucleus and not a macroscopic field. The major contributions
to B&& can be written

Bpg —Bc+Bg+ Bo (4)

where B, is the Fermi contact field, Bz the intraionic dipolar
field, and B the effective orbital field. B, is proportional to
the magnetic polarization m(0) of the s electrons within a
Thompson radius of the nucleus, which in turn is created by
the polarization of the s electrons by the moment of (mainly)

the d shell: B,=(8m/3)prim(0). In general, both core s
electrons and the valence 4s electrons must be included in
this term, and it is common to separate these into core con-
tributions due to the local moment, and transferred hyperfine
contributions due to the matrix magnetization. The resulting
B, is negative: B, is antiparallel to the atomic d-shell mag-
netic moment because m(0) of the s electrons is antiparallel
to the moment p, F, of the d electrons. Bz is due to the dipolar
interaction between the spin part of the atomic magnetic

moment and the nucleus. It is B„=—2p, s(I 3r(S. r)
rS]lr ). Here, r den—otes the electron position and S is the

electron spin operator. The angular brackets denote an aver-
age over the occupied atomic orbitals. For Ising spins, the
dipolar term can also be written as Bz= paqs(S, )/2 where

q, is proportional to the electric field gradient at the nucleus

q, =((3cos 0" —1)/r ). The intraionic orbital contribution is
proportional to the (unquenched) orbital moment. It can be

written as B,= —2p, ii(L/r ) where L is the orbital angular
momentum operator. Both Bz and B are positive contribu-
tions: they have the same direction as the atomic moment.
The sign of the resulting effective internal field (in zero ex-
ternal field) depends on the relative magnitudes of B, and

Bz+B, . In metals, the intra- and interionic dipolar fields are
usually small (but not negligible). In the case of Fe +, the
orbital contribution is large, resulting in a positive hyperfine
constant along the c axis between the field B&& and the iron
moment p, F, as reported by Simkin. In noncubic environ-
ments, the hyperfine constant may not be a scalar even
within the static-field approximation. In this case, the hyper-
fine constant Ah& is a tensor and can be written

Bpg—Ahf' ppe.

III. HYPERFINK EFFECTS

A. Hyperfine magnetic field

In this section we consider the origin of the different con-
tributions to the hyperfine magnetic field (see for example
Price and Varret in Ref. 16, or Ref. 29). The magnetic inter-
action of the nucleus with the local electronic structure can
be written in the static effective-field approximation as the
hyperfine Hamiltonian:
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Due to the hexagonal symmetry we can restrict ourselves to
two-dimensional vectors Bhf and p,F, with components per-
pendicular (J ) and parallel (~~) to the c axis. This is known
to be strictly true for the dipole field, ' and should be ad-
equate for the other quantities here. Then in component form
we have:

Bhfz
Bhf (6a)

aha(
A

0

0 )

ahf|j j
(6b)

i g~sinO„
PFe PB

I g cos(~) (6c)

Beff Bjnt+ Bext

The internal field is composed of the hyperfine field defined
in Eq. (4) and the interionic dipole field:

Bint Bhf+ BD .

In the case of a finite homogeneously magnetized sample, it
is usual to write the interionic dipole field BD in terms of the

demagnetizing field B&, the Lorenz field B2, and a remain-
ing dipole fiel B~ (for example, see Ref. 35):

B =B,+B,+8, . (9)

Bi and B2 are given by the magnetization M while B3 is
given by an infinite sum over dipole fields:

The magnetic moments pF, make an angle O„with the c
axis. The anisotropy of the hyperfine coupling constant is
mainly created by the dipolar Bd and orbital B, contributions
since they reAect the deviation from spherical symmetry of
the atomic orbitals. Thus the resulting hyperfine field is no
longer parallel to the direction of the magnetic moments ex-
cept in the case of alignment along the c axis, or in the a-b
plane. In this case we must determine two components of
ahf in order to calculate moment directions. This effect is
known to be present in several Auosilicates, but there is no
experimental determination of ahf~ in FeBr2. Mishra eI; al.
have studied numerically the isomer shift and hyperfine field
for molecular FeC12 and FeBr2. The predicted hyperfine
fields are very anisotropic, depending on the direction of the
magnetic moment with respect to the molecular axis, and this
effect is mainly due to changes in the dipolar contributions.
Similar effects may occur in the solids. However, they pre-
dict negative hyperfine constants for the molecules, while it
is known for FeBr2, parallel to the c axis, that it is positive.
Unfortunately they were not aware of the work of Simkin (or
of Fujita, Ito, and Ono ) on the solids.

In addition, we must include the effect of the applied ex-
ternal magnetic field H =B,„,/p, o [p,o=4m/10 T/(MA/m))
as well as the interionic dipole fields BD leading to the ef-
fective field B,ff at the angle O,ff that we can also divide into
an internal Bint and an external field B«t

B]= —NDp, oM, (1oa)

B2= +—p, oM,3
(lob)

po 3(p, ; r)r; r; p—;,
2' rl

(loc)

(12a)

(B„
3 B(i

( p, o N ( g sin8~'~

4m V —2g cosH~'~

In this expression, the ion is assumed to be on the sublattice
parallel to the positive direction of the c axis (direction of the
external field for the parallel field case). The contribution
from the "+"planes [(i)=(+) and so from the same sub-
lattice] is given by Et+~=+4.63; from the "—"planes
[(i)=(-): the other sublattice], Kt i= —1.46. The constant
(p, o/47r) psN/V =0.1559 T for the experimental Fe number
density N/ V. The saturation moment of Fe + is
p, Fe= gulp, &= 3.95p,~ parallel to the c axis. We have used the
experimental c/a = 1.650 in this calculation. From the above,
we see that B3=B3+ +B3 can be nonparallel to M, if M
has both parallel and perpendicular components. The macro-
scopic field B]+B2 can be written in terms of the perpen-
dicular and parallel components of the moments on the "+"
and "—"sublattices which will be useful later for calcula-
tions. For our samples (the component of ND is 0 for the
perpendicular, and 1 for the parallel component) this is

1 N gi (sin8 + sinO )B +B
6 V

~

—2g (cosO + + cos8 l)
p p

(»)
(The coefficients 1 and —2 in the components above are the
result of the assumed layerlike sample shape and not the
hexagonal layer structure as is the case for B3.) The dipole
field BD will be reduced by the effects of bond covalence

p, ; is the ith Fe moment at position r; . The effect of a finite

sample with nonspherical shape is given by 8&+B2. For the
sample geometry considered here (fiat disk with normal par-
allel to the crystallographic c axis), the demagnetizing tensor
ND in the idealized case has a value of 1 for magnetization

M parallel to the c axis, and zero for M in the a-b plane:

(o 0~
N

~0 1

The dipole sum in B3 is nonzero for noncubic lattices. In
calculating B3, it is important to include successive spherical
shells of ions up to an upper radius, and then check conver-
gence for large radius. Here we can divide B3 into parts due
to the magnetization of the two sublattices individually. The
lattice sums involved in B3 have been recalculated in the
point charge approximation. In terms of the in-plane (J ) and
c-axis (~~) components of the Fe moment, B3 is given by
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(see for example Owen and Thornley ). This covalence is at
the same time responsible for the magnetic exchange inter-
actions present here.

Simkin has studied the magnetic hyperfine properties of
FeBr2 at T=4.2 K in external magnetic field parallel to the c
axis. In this study, he showed that the resulting hyperfine
fields on the two sublattices change linearly in B, , up to the
(external) spin-fiip field B,t of 3.17 T, one with an increasing,
and one with a decreasing effective field. Above this, there
was only one subspectrum detected, with the larger effective
field, showing that the hyperfine constant is positive. At
fields above B,f, the effective fi.eld at the nucleus varied
again linearly, but now with an offset towards smaller values.
Simkin related this offset to the change in the interionic di-
pole terms between the case of antiferromagnetic alignment
before spin Aip, to the ferromagnetic alignment after and
estimated this change as —0.67 T (at T=4.2 K). Simkin
gives the results of a lattice sum over dipole fields that he
says yields a prediction of —0.68 T for this change. We have
recalculated this and obtain different results, which will be
presented below.

1
2AE0= —e q„Q (14)

The q„ is the largest component in magnitude of the EFG
tensor (given by q«= V«/e) and the anisotropy effect r/ is
defined in the usual way (for example, see Srivastava et al.
in Ref. 16).The total EFG is usually divided into a lattice (l)
and an ionic valence (v) contribution q;J=(1 —y )q,,
+(I —R)qI'i. Both the d shell and the neighboring ions
distort the core states, leading to the effective Sternheimer
shielding factors y and R. Literature values for Fe + ions
are 7 = —10 and R=0.3 (see Srivastava et al. in Ref. 16).
Using the electronic occupation for high-spin Fe + and the
evaluation of qt', i for 3d states (see for example Price and
Varret in Ref. 16), we obtain +(4/7)(r )3„along the c
axis, and asymmetry parameter y=0. The relationship be-
tween the lattice contribution and the ionic one is simple
only in the case of point charge models. In the case of cova-
lent bonding, no general rules apply.

In an extensive study of the temperature dependence of
the EFG AE& and the central line shift 8(T), Fujita et al.
showed that AE0 is very dependent on the temperature (as is
also the case in FeClz and FeI2). They were able to estimate
the crystal-field and spin-orbit parameters from this tempera-
ture dependence, using the method proposed by Ingalls. In
this method, the electric quadrupole effect is reduced with
increasing temperature due to the thermal population of

B. Electric field gradient (EFG)

In this section, we discuss the effects of the crystal field
and spin-orbit levels on the measured electric field gradient
(EFG). Generally the EFG is separated into two parts: the
intraionic and the lattice (or ligand) contributions. Here we
mainly discuss the interionic contribution since this should
dominate in the case of Fe in noncubic crystals. The quad-
rupole splitting AF& in the absence of magnetic ordering is
given by the EFG and the quadrupole moment Q of the 3/2
nuclear state:

higher crystal-field states. The zero-temperature limit is
given by the maximum splitting given by AF

&
=(2/7)e Q(1 —R)(r ) where Q is the nuclear quadrupole
moment. The temperature dependence of the EFG is given
by AE&(T) =5 E& F(b, 'x', 2Jz, T) Th. e reduction factor F
is a function of the crystal-field parameter 5 (due to the
trigonal distortion), the effective spin-orbit coupling )i. , the
magnetic interactions 2ZJ (Z = number of neighbors), and
the temperature T. They found for FeBr2, 5 = 125 K,
X' = 125 K, and 2ZJ =4.5 K. In this calculation, 2ZJ repre-
sents the combined effect of the J& and J' interactions. The
calculation was performed in the mean-field approximation
and 2ZJ was chosen to reproduce a T~ which was thought to
be 11 K at that time (FeBrz). Despite these rather strong
simplifications, the resulting theoretical curve very accu-
rately refiects the measured b, E&(T) over a temperature
range extending from well below Tz up to over 300 K.
However, this approach has several difficulties. The effective
spin-orbit coupling parameter k' depends on the free-ion
spin-orbit parameter P o as X' = a Xo, where n is a cova-
lence factor strongly infiuencing the value of (r ). In the
case of n-FeSO4, it has been possible to apply molecular-
orbital calculations including all of the iron valence and the
ligand orbitals as a basis set. The effect of an external field
on the AF& value has been calculated by Zimmermann
et al. from first principles by adding the Zeeman term to
the electronic Hamiltonian. The change in AFQ is with a
positive slope: with increasing field, the EFG effect in-
creases. This is because of the fact that in a large external
field, only one electronic state will be populated. Unfortu-
nately, it has not yet been possible to combine this method
with the effects of the magnetic order present at low tem-
perature so that there are strong deviations at low tempera-
ture. However, it is still possible to use the same molecular
field approximation as in the method of Ingalls. This was
also shown by Zimmermann, Trautwein, and Harris. These
results are also discussed at length in Ref. 39.

IV. EXPERIMENTAL RESULTS

A. Samples and experiments

Samples of FeBr2 platelets thin enough for Mossbauer
spectroscopy have been prepared from the same single crys-
tals reported on previously for the ac-susceptibility studies.
They were prepared by pulling off the surface of the crystal
on the a-b plane using adhesive tape. The platelets were
prepared under inert atmosphere, and sealed in small Plexi-
glass holders. Spectra have been taken from the single-
crystal films. The samples were cooled only once in a mag-
net cryostat and all measurements taken without returning
the sample back to room temperature (zero-field measure-
ments as well). In this way, the samples could be retained
without water uptake for long periods in the cryostat. The
y ray was always parallel to the c axis which is the direction
of alignment of the moments in the AF phase. For this rea-
son, the nuclear Am =0 lines are not seen in zero field. The
external magnetic field was either parallel or perpendicular to
the y ray, as noted below. For the experiments in perpendicu-
lar field, it was only necessary to rotate the sample in the
cryostat.
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FIG. 2. Mossbauer spectra for increasing temperature in zero
external field. Shown are the two-subspectra fits in the neighbor-
hood of T~ as explained in the text.

The Mossbauer spectra were evaluated using a full diago-
nalization of the ground and excited state static Hamiltonian,
and so they include all eight nuclear transitions present for
mixed hyperfine effects. All fits have been performed using
this type of algorithm. In certain cases, an accurate transmis-
sion integral formalism was used for the spectral area but the
samples studied here were both well within the thin-absorber
approximation, the main problem being the strong absorption
of the y rays by bromine.

I ' I ' I ' I ' I ' I ' I ' I '
I

~ 4
TMCP (a) .

Beff a
Beff,b

0 cBhg~

hyperfine field B„,defined above, and O',„—=O'. Figures 3(a)
and 3(b) show in detail the variation of B,rt(T) and

AE&(T) = e q«(T) Q/2 (where r/=0). Both the multicritical

TMcp and Neel Tz temperatures are shown. In the neighbor-
hood of T&, average values are shown as open symbols. A
careful observation of the spectra shown in Fig. 2 shows that
just below T~ in a very small temperature interval, two dis-
tinct subspectra are visible, one with larger, and one with
smaller B,z and AE& values. This is shown in detail in Figs.
4(a) and 4(b) in the neighborhood of Tz. These values,
weighed with the respective subspectra areas, were used for
the open symbols in Figs. 3(a) and 3(b). This unexpected
behavior will be discussed in Sec. VI. In this temperature
region, special care was taken to ensure that the temperature
regulation during the measurements was stable to much bet-
ter than ~0.03'. Absolute temperature control was to about
~0.1 . The temperature variation of AE& has previously
been given by Fujita, Ito, and Ono. There is a variation
even in the absence of the magnetic order appearing at Tz.
This variation is strongest in the region of T=D= 8'/10 [see
Eq. (1)], due to the thermal population into the atomic
m&=0 state as discussed above. There is an additional in-
crease in AE& at decreasing temperatures due to the effect of
the magnetic order. The resulting exchange field on the ion
lifts the degeneracy of the mz= ~1 level and leads to a
singlet ground state. It is seen from the discussion above on
the EFG splitting that a singlet state leads to the largest
AE0, as has been discussed by Price and Varret in Ref. 16.
In Table II, the results for the zero-field spectra are sumrna-
rized.

B. Mossbauer results I . I ~ I ~ I

I I

TN
V

1. Results for zero field: T=4.2 E to above Tv

The spectra in zero external field are shown in Fig. 2 for
temperatures from 4.2 to 16 K, well above the Tz= 14.2 K.
The line-area asymmetry for the spectra from the paramag-
netic phase (PM), T) T~ shows that the nuclear excited state

m, = ~ 3/2 lies above the m, = ~ 1/2 so that the EFG is posi-
tive, q«)0, as given above for the ionic contribution, and as
determined before. ' Below T~, the magnetic order is seen
as an additional Zeeman splitting, that of the excited state
m, = ~3/2 being three times faster than that of the other,
leading to the apparent three-line spectra. The hyperfine field
B,rr at T=4.2 K is 2.99(l) T, in agreement with previous
results. ' (The number in parentheses indicates the uncer-
tainty of the last digit. ) For consistency, we will denote the
measured hyperfine field by B,&&, at the angle O,z with re-
spect to the c axis (also y-ray direction). Even in zero field,
B,«must be corrected for the dipole field to arrive at the

1.1
CO

1.0-

0.9
0

~ MQ, a
~Q,b

Q cAFQP

I I I I

4 8 12
T {K)

4

20

FIG. 3. Results for (a) hyperfine fields B,rr (T) and (b) AF & (T)
in zero external field. The multicritical TMcp and Neel Tz tempera-
tures are shown. The open symbols near Tz are for average values
from the two subspectra. The results for the two-subspectra fits near

T~ are shown in Fig. 4 in greater detail. Lines are guides for the
eye.
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FIG. 4. Results for (a) hyperfine fields B,fr (T) and (b) AE& (T)
in zero external field. The multicritical TMcp and Neel TN tempera-
tures are shown. The open symbols near T~ are for average values
from the two subspectra weighted by the relative areas. Lines are
guides for the eye.

FIG. 5. Mossbauer spectra for T=4.2 K, increasing parallel
field. Shown are the two-subspectra fits: the measured B,ff in-

creases with B,„„while the measured B,ffb decreases. This is in-

terpreted as a negative initial value, shifting to positive values with

increasing B„,.

2. Results for T=4.2 Ein parallel external field:
Metamagnetic transition

Typical spectra for T=4.2 K in increasing external mag-
netic field parallel to the c axis are shown in Fig. 5. It is clear
that in external field two subspectra are distinguishable, and
that the effective hyperfine field B,rr increases for one [de-
noted (a)], and decreases for the other subspectrum [denoted
(b)j as seen before. These are shown in Fig. 6(a), starting at
B,rr(4 2K,O T)=2.99. T. B,«, increases with B,„,: in Fig.

6(a), this is compared with the line B,=B,tr, (4.2 K,O T)
+B„,. The results for B,ff $ decrease at first with increasing
B„„:these starting values are also shown as negative values,
compared with the line Bb=B,frb (4.2 K,O T)+B,„,. The
zero-field result is shown as two equal-area subspectra de-
noted (a) and (b), one with B,rf, =+2.99 T, and one with

B,ffb= —2.99 T. It is known that the sign of the hyperfine
field constant along the c axis is positive, consistent with the
angular momentum contribution dominant in Fe + [see Eq.

TABLE II. Results from zero external field, increasing temperature. In the neighborhood of Tz, the division into two subspectra (a) and

(b) is given. I' is the linewidth (full width at half maximum), 8 the center shift (isomer shift: with respect to a-Fe at room temperature).
Errors are given in parentheses [(0) denotes fixed value].

T (K)

4.2
7.0
10.1
11.0
12.0
13.1
13.5
13.63
13.72
14.0
14.2
15.0
15.5
16

I (mm/s)

0.260(5)
0.259(7)
0.294(6)
0.281(5)
0.275(5)
0.304(6)
0.319(8)
0.279(6)
0.296(23)
0.34(3)
0.34(6)
0.244(7)
0.249(7)
0.258(3)

8 (mm/s)

1.185(3)
1.187(4)
1.187(4)
1.195(4)
1.191(3)
1.191(3)
1.203(4)
1.186(2)
1.190(4)
1.186(2)
1.084(3)
1.190(4)
1.190(3)
1.191(1)

AE/2, (mm/s)

1.109(6)
1.101(6)
1.077(8)
1.060(7)
1.047(5)
1.024(6)
1.007(8)
1.004(5)
1.015(9)
1.022(12)
1.035(40)
0.971(8)
0.963(8)
0.970(3)

B.ft,. (T)

2.95(1)
2.94(1)
2.80(1)
2.66(2)
2.53(1)
2.13(1)
1.83(2)
1.84(2)
1.81(6)
1.65(9)

1.800(0)
0.0(0)
0.0(0)
0.0(0)

A, (%)

100(0)
100(0)
100(0)
100(0)
100(0)
100(0)
100(0)
72(8)
62(8)
28(8)
17(10)
100(0)
100(0)
100(0)

AEg b (mm/s)

0.96(1)
0.95(1)
0.974(4)
0.961(5)

B,~b(T),

0.70(5)
0.64(8)
0.32(2)

0(0)

Ab (%)

0(0)
0(0)
o(o)
0(0)
o(o)
0(0)
o(o)

28(8)
38(8)
72(8)
83(10)
0(0)
0(0)
o(o)
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FIG. 6. Results for the spectra for T=4.2 K, parallel field. (a)
The effective hyperfine fields B,ff, and B,ff Q, the lines B =B,ff,
(4.2 K, 0 T) +B„,and BI,=B,«t, (4.2 K, 0 T) +B„,are shown.

The starting field B~& and ending field Bc& of the metamagnetic
transition from Ref. 7 are shown as well. (b) The areas A, and

Ai, . (c) The EFG AE&, and /iF& „are shown. (d) The bulk

@0M from Ref. 7 is compared with the local magnetization
8 ff,A, +B,ff $A $ . Lines are guides for the eye.

(4)]. This is confirmed by the high-field results above the
metamagnetic transition where only one subspectrum can be
observed, and B,ff increases with increasing B„,. Thus at
lower fields, 8,«„(0 corresponds to the antiparallel (de-
noted —) magnetic sublattice (as long as the subspectra areas
remain equal, which they do at lower fields, see below). This
metamagnetic transition is seen in Fig. 6(b), which shows the
relative areas of the (a) and (b) subspectra, A, and A&

(where A, +Ai, = 1).Below 8„,= 3 T, these remain equal to
0.5. Above B„,=3 T, A, increases from 0.5 to 1.0, while

AI, decreases from 0.5 to 0. At the same time, the hyperfine
fields shown in Fig. 6(a) show only a very small change.
This is consistent with the mixed phase region of the meta-
magnetic transition: both AF- and FM-oriented regions coex-
ist in the sample. Due to the sample shape (fiat disk in a field
parallel to the disk axis), the first-order metamagnetic transi-
tion at the critical field Hz is spread out over a range of
(external) fields from Bc, to Bcq. The values given in Fig. 6
are taken from Ref. 7 and agree with a simple model of the
metamagnetic transition: pp /M(8 p cBci)= 1/ND (ND is
the effective demagnetizing coefficient), and the critical (ex-
ternal) field is Bc=Bc& (Hc= Hci NUM =Hc, ). The-
small deviations in B,&, and B,ffI, from B and B& in this
region can be explained by the changes in the dipolar fields
in the (however unknown) domain structure. The changes in
area given in Fig. 6(b) show that the transition is discontinu-
ous and occurs by spin-Aip reorientations of 180 . No spin-
fIop reorientations of 90' were found. The effective angle as

determined from the spectra, 0,&&, was always fixed at zero
for the fits presented, but could be easily distinguished from
90' (note that 0' and 180' orientations are distinguishable in

the Mossbauer spectra only by the value of B,&&, otherwise
0' and 180 —8 yield the same line intensities).

The variation in the quadrupole splitting AE& (4.2 K,
8„,) are shown in Fig. 6(c). Below the start of the metamag-
netic transition both subspectra (a) and (b) yield essentially
the same value of AE0. Above the end of the transition,

only one subspectrum is seen. Only within the mixed-phase
region of the metamagnetic transition do we observe differ-

ent values, with AF& I,~AF.0 „.In addition, there is also a
clear tendency for the AF& to decrease between the zero-
field AF and high-field SPM states.

The metamagnetic transition is complete at B„,=3.5 T
[Fig. 6(a)]. Above this field, the magnetic state is described
as saturated paramagnetic (SPM). From Fig. 6(a) we see that
just above this field, the (single) 8,« lies just below the ex-
trapolation 8,=8,«, (4.2 K, 0 T) +8„,. This has been
seen previously by Simkin. It was explained as being due
to the change in the dipole fields in the FM-oriented SPM
state with finite magnetization M. The appropriate total di-

pole field is given by Bo= —(2/3) p, pM+ 83. This has been
estimated by Simkin as a change of —0.67 T between the AF
and FM orientations, and agrees with the results just at the

upper end of the metamagnetic transition. However, for
larger external fields (not measured by Simkin), B,«rej i osn

8, , as seen in Fig. 6(a). This result was completely unex-
pected, and prompted us to redo the calculation of the total
dipole field given above. Using the experimental values for
the lattice constants a and c, and g~~=3.95, we obtain the
saturation magnetization in the SPM (or hypothetical ferro-
magnetic) state of Ms=0.490 MA/m, or /LpMs=0. 616 T.
This value is consistent with the measured magnetization at
T=4.2 K, for B„,~ 6 T, far above the metamagnetic
transition. ' For the AF state, we find —(2/3) p, pM =0 T,
and Bt& "~= —0.595 T. For the FM state (SPM), we find
—(2/3) p, pM( i = —0.411 T, and Bt3" i ———0.310 T. This re-

sults in dipole fields BD" = —0.595 T, and BD = —0.721
T, or a difference in the metamagnetic transition of —0.126
T, rather than the value given by Simkin of —0.68 T. It
seems that one of the terms was forgotten in the work of
Simkin. Our result shows that the dipole field is a small
effect in the metamagnetic transition when comparing the
starting and ending homogeneously magnetized AF and FM
states. We find at the highest external fields available to us a
difference between B,«(4.2 K, 5.5 T) and the extrapolation
B, of about 0.2 T, in good agreement with the above predic-
tion. It must also be understood that the predictions for the
dipole fields depend as well on the point charge calculations.

The local magnetization can be calculated from the hyper-
fine fields and relative areas for the two subspectra (a) and

(b). In Fig. 6(d) we compare the weighted average of the
internal field (8;„,) = B,«,A, + B,«&A&

—8„, (where
A, +A&=1, and B,«I,(0) with the magnetization M mea-
sured in a similar sample (demagnetization constant =1).
The average (8;„,) is, neglecting the (small) dipole effect,
proportional to the average local magnetization. It is clear
that the agreement between these two measures of the mag-
netization is very good. Thus we are able to reproduce the
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TABLE III. Results for T=4.2 K, external magnetic field B„tparallel to the c axis. Errors are given in
parentheses [(0) denotes fixed value].

0.00
1.00
2.00
2.85
3.10
3.20
3.30
3.40
3.50
4.50
5.50

EEO, (mm/s)

1.12(1)
1.12(1)
1.12(1)
1.08(1)
1.13(1)
1.13(1)
1.13(1)
1.14(1)
1.08(1)
1.07(1)
1.06(1)

B,A, (T)

2.99(1)
3.84(1)
5.08(1)
6.05(1)
6.05(1)
5.97(1)
5.83(1)
5.76(1)
5.87(1)
7.18(1)
8.30(1)

A, (%)

50(1)
50(1)
51(1)
52(1)
58(1)
70(1)
77(1)
80(1)
100(0)
100(0)
100(0)

DER b (mm/s)

1.12(1)
1.11(1)
1.09(1)
1.04(1)
1.08(1)
1.06(1)
1.04(1)
1.10(1)

—2.99(1)
—1.87(1)
—0.60(1)
—0.36(1)
0.85(1)
0.78(1)
0.72(1)
0.92(1)

Ab (%)

50(1)
50(1)
49(1)
48(1)
42(1)
30(1)
23(1)
20(1)
0(0)
0(0)
0(0)

3. Results for T=4.2 and 7.0 E in perpendicular external field:
Magnetic and hyperfine anisotropy

The spectra taken in external magnetic field perpendicular
to the c axis are shown in Figs. 7(a) for T=4.2 K, and 7(b)
for T=7.0 K. For this case there is no distinction between
the two sublattices. In addition to the effective hyperfine field
B ff we now evaluate the spectra for the angle 0",«. The
geometry is shown in Fig. 8. Dipole fields are calculated
with respect to the positive (+) sublattice, shown schemati-
cally in Fig. 8(a). The results up to B,„,= 5.5 T do not show
complete saturation, as O,ff(90, so that we must extrapo-
late to find the hyperfine constant in the perpendicular case.
We must relate the measured B,ff and O,ff, the known

B,„„the calculated dipole correction BD, and the resulting
direction and magnitude of the magnetic moments p, F, and
0" . In the case of anisotropy in the hyperfine constant,
p, F, and the resulting internal hyperfine field Bhf will no
longer be parallel. We want to determine the anisotropy of
the hyperfine tensor Ahf for parallel and perpendicular orien-
tations. Because of the anisotropy of the g factor given
above, Eq. (2a), the Fe moment p, F, depends on 0'~ (see Fig.
8). We assume the expression given above for the angular
dependence of the magnetic moments. In addition, we use
the value g~ /g

ll

= 0.830 and g ll

= 3.95 for 8'/X = 1 from Eq.
(2a) and the saturation magnetization in the SPM state of
M&=0.490 MA/m. The parallel hyperfine constant ahfll can
be obtained from the results for T=4.2 K in zero field:
B,tt(T, O) =2.99 T=B„t(T,O)+BD(T,O). The dipole field es-
timated from Eq. (9) is B~~ "I=—0.595 T. This results in

aha ~

=B&&/g
~
piI = + 0.91(1) T/ piI . The positive sign indi-

cates that for the parallel component, the hyperfine field is
parallel rather than antiparallel to the moment.

The conversion from the measured quantities B,ff at angle
O,ff to the desired Bhf at angle Ohf and p, F, at angle 0'„ is
given by (see Fig. 8)

B,tn —B,„, B;„LI Bha +BDi lt

Beffll 4 Bintll ~ Bhfll+ Boll
(15)

macroscopic properties of the transition, justifying our as-
sumption in the fits that the sublattice (subspectrum) magne-
tization is parallel to the c axis. The results for the metamag-
netic transition in parallel field are summarized in Table III. WOL ~ 'L. t~j'

&t t etr t~ ttt t tt

-I B.„,=o

ttAvettt t y4cttt t tt
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FIG. 7. Mossbauer spectra for external magnetic field perpen-
dicular to the c axis: (a) T= 4.2 K; (b) T= 7.0 K. Due to symmetry,
there can only be one subspectrum. The rotation of B,ff with in-

creasing B,„, is demonstrated by the increasing line intensitiy espe-
cially near about 1.7 mm/s.
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FIG. 8. Geometry of the magnetic-field vector relationships for

B„,perpendicular to the c axis: (a) schematic of the (+) and ( —)
sublattices, defined with respect to the positive c-axis direction; (b)
vector relationships B,«= B;„,+ B„„andB,„,=Bh,+ Bz&, (c) due to
the asymmetry of the hyperfine tensor, the hyperfine field Bhf can be
noncollinear to the magnetic moments p„, [shown is a moment
from the (+) sublattice].

I I r
I I I

-0 F--

Sext

c-axis

The hyperfine field vector is given by the product of the
hyperfine tensor and the moment vector [see Eq. (5)]:

Bhf~ a~ g~ sinO~

Bh~~ ~ a~~g~~cosO
(16)

We now express the resulting magnetization M for the spin
texture given in Fig. 8: 0 =180 —0 =0'„, and obtain

for the macroscopic fields Bi+B2.

1 W ~ g~sinC)
B j +B2= POPg 0Vi

(17)

The component 83 is given by

1 N ~ 3.17g~sinO
47r 1/ i

—12.18glcosO'~~
(18)

B ~~(Tm, B„,)
B,ff(T,O)

(19)

We now consider the parallel components
B,@~=B,„,~~=Bhq~+BD~~. The latter two both involve the
same factor of cosO~. The prefactors are the zero-external-
field values B„t(T,O) and Bo(T,O) where Bhr(T, O)

+BD(T,O) =B,rr(T, O), giving an expression from which we
can determine 0

Beff
+lnt
Bgf
P'e
~exf

FIG. 9. Polar diagram for the hyperfine fields in the perpendicu-
lar orientation: (a) T=4 2K; (b) T=7..0 K. These show the rotation
of the hyperfine field Bhz in the opposite direction to p, F, .

From this, the perpendicular components BD~ and BhfJ have
been calculated. The hyperfine constants are given by
a

htI~
= Bhtl /( ping ~cosO„) and ahri =B„,~ /( psgi sinO~). The

resulting values are given in Table IV for T= 4.2 K. Surpris-
ingly, we obtain a negative coefficient for the perpendicular
component aha

—0.86(4) T/p, ii. This difference in sign
from the parallel component ahtI~=+0. 91(1) T/p, s results
from the negative values for the perpendicular components
of the internal field B;„,and is due to changes induced in the
(negative) dipole Bd and orbital B, contributions in this ori-
entation. This also means that the hyperfine field turns in the
opposite direction than the magnetic moments in field. This
is summarized in a polar diagram given in Fig. 9(a) for the
results at T=4 2K and Fig. 9.(b) for T=7 OK, showing that.
the hyperfine field rotates in the opposite sense to that of the
moments. It is important to realize that this result shows the
sensitivity of the experiment to static moments noncollinear

TABLE IV. Results for T=4.2 K, external magnetic field B„tperpendicular to the c axis. Errors are given
in parentheses [(0) denotes fixed value].

B„,(T)

0.00
3.00
4.50
5.50

b Fa (mm/s)

1.11(1)
1.10(1)
1.04(2)
1.07(1)

B,n (T)

2.99(1)
3.39(5)
3.97(10)
4.71(7)

O,rr (deg)

0(0)
34(2)
49(2)
57(1)

8~ (deg)

0(0)
19.8
30.0
31.0

Ohf (deg)

0(0)
—19.4
—29.2
—29.5

ahtt (T/p, s)

—0.91
—0.83
—0.86
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FIG. 10. Mossbauer spectra for T= 7.0 K, external field parallel
to c axis showing the two-subspectra fits.

with the c axis, and thus it is possible to determine the spin
structure by this method.

4. Results for T=7.0 and 10.1 E in parallel external field:
The continuous second-order transition

The goal that we set for the Mossbauer studies was the
detection of possible spin structures noncollinear with the c
axis in the regions of strong noncritical fluctuations. The
spectra at T= 7.0 K are shown in Fig. 10 for different exter-
nal fields parallel to the c axis. This temperature is above the
MCP temperature discussed above, and the transition in field
should be of second order and continuous from the AF to the
SPM states at a field HC=2.6 MA/m (an external field of
B=3.2 T). The upper two spectra show qualitatively similar
results as at T=4.2 K: the single spectrum splits into two
subspectra of equal area and effective hyperfine fields shifted

by the external field. For larger external fields, there are
strong changes. This is best seen in Fig. 11(a) for the result-

ing effective hyperfine fields B,z, and B,~b (where as be-
fore the first is positive and the second negative for sma11

fields). The figure also shows the branches B,=B,&,(7 K, 0
T) +B,„, and Bb=B,&b(7 K, 0 T) +B,„, where B,&b is

negative, and the branches represent simply the shifts caused
by an external field collinear with the internal field B;„,[par-
allel for subspectrum (a), antiparallel for (b)]. Above an

external field of B„,of about 2 to 2.5 T, there is now a
continuous evolution of B,z b towards positive values, while

B,z remains on the line B, . This is qualitatively different
than the case in the metamagnetic transition, and proves the
continuous nature of the transition in this region.

The variation of the subspectra relative areas A, and Ab
are shown in Fig. 11(b). In contrast to the case for the meta-
magnetic transition, here the variation from equal areas of

FIG. 11. Results for the spectra for T=7.0 K, parallel field. (a)
The effective hyperfine fields B,z, and B,z b .'the lines B„=B,z
(7 K, OT) +B,„, and Bb=B,&b (7 K, 0T) +B,„, are shown. The
lower field B and upper field B+ denoting the maxima in the

imaginary component of the ac susceptibility from Ref. 7 as dis-
cussed in the text are shown as well. (b) The areas A, and Ab. (c)
The EFG AE&, and DE~ b are shown. (d) The bulk poM from
Ref. 7 is compared with the local magnetization B,z,A

+B,z bA b . Lines are guides for the eye.

0.5 starts at a higher field than the transition itself. In the

range where the B,«b starts to change, 2 to 2.5 T, both the

relative areas A„and Ab remain constant at 0.5. In this case,
it is mainly the change in the subspectrum effective hyper-
fine field which indicates the transition. In the spectra taken
in this region, we have never been able to find line intensities
indicating a nonaxial effective hyperfine field: 0,& is either
0' or 180' for both subspectra to within our accuracy
(~ 15') and time scale. (The appropriate time scale is given

by the Larmor precession time of the ground-state nucleus in
the total field, and this is on the order of MHz. ) Although the
results for the anisotropy of the hyperfine tensor given above
are very unusual, it does show that perpendicular compo-
nents of the magnetic moment can be measured. If we as-
sume on the contrary a static Fe moment that changes mainly
in direction 0", and minor changes in length only due to

g~ /g~I, then we can relate this rotation to a possible B,ffb
and O,zb. In this case, B,zb can also vary continuously
from the negative to the positive branch with, however, es-
sentially fixed moment magnitude. However, the effective
angle 0,ff b must then go through 90, and such large angles
can definitely be ruled out from the spectra. We must then

conclude that the hyperfine field Bgfb varies also in a con-
tinuous way from negative to positive values, but remains
collinear with the c axis. There is even a small region where

B,ff b is positive, but smaller than B,ff „.
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The variation in the quadrupole splitting AE0(7.0 K,
B„,) for the two subspectra are shown in Fig. 11(c).Below
the start of the continuous transition both subspectra (a) and

(b) yield essentially the same value of b, E0 as was the case
for T=4.2 K. Above the end of the transition, only one sub-
spectrum is seen. Only within the mixed-phase region of the
transition do we observe different values, with

AE0 b(AE& „.This effect is of about 0.06/1. 1 or about 6%.
In addition, there is also a clear tendency for the AE& to
decrease between the zero-field AF and high-field SPM
states of about 0.04/1. 1 or 4%, between B, ,= 0 and 5.5 T. In
the region where B,rr of subspectrum (b) approaches that of
(a), there seems to be in addition, an effect on the field of
the parallel subspectrum (a), which decreases slightly, be-
fore the fields both approach the extension to the first line
along B,tr (7 K, 0 T) +B„,. As was the case for the meta-
magnetic transition, there is no offset at this point.

The local magnetization can be calculated from the hyper-
fine fields and relative areas for the two subspectra as in the
case of the metamagnetic transition. In Fig. 11(d) we com-
pare (B;„,) = B,tr,A, +B,rr bAb B„, (where A—,+A„= 1,
and B,ff $(0) with the magnetization measured in a similar
sample (same sample as for T=4 2K reported o.n in Ref. 7).
It is clear that the agreement is again very good.

The spectra for T= 10.1 K (shown in Fig. 12) lead to the
same conclusions as for T=7.0 K. The resulting fields and
areas are given in Figs. 13(a) through 13(d). This shows the
properties given above are characteristic of the continuous
transition. The results for the continuous transition for
T=7.0 K are given in Table V.

V. DISCUSSION OF RESULTS

The spectra at zero field at increasing temperature show
the expected decrease in the effective hyperfine field
B,rt( T) (Figs. 2 and 3). Near the Neel temperature

FIG. 13. Results for the spectra for T= 10.1 K, parallel field. (a)
The effective hyperfine fields B,„„and B,z b . the lines

B,=B,tt, (10.1 K, 0 T) +B, , and Bb=B,ttb (10.1 K, 0 T) +B,„,
are shown. The lower field B and upper field B+ denoting the
maxima in the imaginary component of the ac susceptibility from
Ref. 7 as discussed in the text are shown as well. (b) The areas
A, and Az . (c) The EFG LEO, and AE& b are shown. (d) The bulk

p, oM from Ref. 7 is compared with the local magnetization

B,&,A, +B,z& bA b . Lines are guides for the eye.

Tz= 14.2 K, they show in addition the superposition of two
different subspectra with very different values of B,&t(T) and
EFG effect AE0(T) It is known fr. om the studies of Fujita,
Ito, and Ono that the ground-state splitting D between
mz= ~ 1 and m&= 0 is about 13 K, so that in the range from
TMcp=4. 64 K to T&, the thermal population in the upper
state increases and the EFG splitting will be influenced by
thermal fIuctuations. If the relaxation time is slow enough,
we should see this m&=0 as a separate state. Thus we would
expect to see two states, one with the maximum values of
B,&&

and AE0, and one with B,&=0, and AE& equal to the
nonmagnetic value (just above Tv). This is not exactly what
is observed, but it is in the correct direction. Actually, if the
relaxation time of the ftuctuations is near to that of the Lar-
mor precession time of the ground-state nucleus, we should
see a relaxation-type spectrum. This might be a more accu-
rate characterization of the spectra for T= T~. In zero exter-
nal field, these fIuctuations are symmetric on the two sublat-
tices. This will no longer be the case in field, where the
antiparallel sublattice will be destabilized. The magnetization
process induced by the field is different for T(TMcp and
T~ TMcp ~

The metamagnetic phase transition in field and tricritical
point have received extensive treatment in the literature, but
studies of the separate sublattice magnetization have not of-
ten been reported. We have seen that the field-induced mag-
netization can be calculated from the results for the hyperfine
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TABLE V. Results for T=7.0 K, external magnetic field B„tparallel to the c axis. Errors are given in
parentheses [(0) denotes fixed value].

B..t (T)

0.0
0.5
1.0
1.5
2.0
2.5
2.85
3.0
3.1

3.3
3.4
3.5
4.0
4.5
5.0
5.0
5.5

EEa, (mm/s)

1.10(1)
1.10(1)
1.11(1)
1.10(1)
1.1 1(1)
1.07(1)
1.09(1)
1.06(1)
1.09(1)
1.10(1)
1.10(1)
1.08(1)
1.09(1)
1.06(1)
1.06(1)
1.05(1)
1.06(1)

B.n;. (T)

2.94(1)
3.39(1)
4.18(1)
4.43(1)
5.05(1)
5.66(1)
5.91(1)
5.95(1)
6.02(1)
5.83(1)
5.49(1)
5.77(1)
6.25(1)
7.48(1)
7.79(1)
7.77(1)
8.28(1)

A, (%)

50(0)
55(5)
50(1)
51(1)
49(1)
49(1)
54(1)
54(1)
52(1)
58(1)
69(1)
68(1)
100(0)
100(0)
100(0)
100.(0)
100.(0)

AEr/b (mm/s)

1.10(1)
1.10(1)
1.10(1)
1.09(1)
1.06(1)
1.04(1)
1.03(1)
1.03(1)
1.04(1)
1.03(1)
1.08(1)
1.06(1)

B,~b(T, )

—2.94(1)
—2.35(1)
—1.54(1)
—1.15(1)
—0.62(1)

0.32(1)
1.30(1)
2.14(1)
2.63(1)
3.59(1)
4.95(1)
4.91(1)

Ab (%)

50(0)
45(5)
50(1)
49(1)
51(1)
51(1)
46(1)
46(1)
48(1)
42(1)
31(1)
32(1)
0(0)
0(0)
0(0)
0.(0)
0.(0)

fields and areas of the two subspectra seen in external field.
This is shown both in the metamagnetic region (Fig. 6) and
the continuous transition region (Figs. 10 and 11). In addi-
tion, we now have a microscopic picture of the magnetiza-
tion process, given by the effective hyperfine fields B,ff, and

B,ff b, The (a) and (b) subspectra can be identified with the
parallel and antiparallel sublattices, as long as the subspec-
trum areas remains equal.

In the metamagnetic mixed phase region, the sample mag-
netization breaks up into regions of AF and FM orientation.
This is seen in the resulting change in the relative areas of
the two subspectra, with at the same time almost no change
in the effective hyperfine fields. The small changes seen in
Figs. 3(a) and 4(a) are understandable as changes induced in
the dipole-field contribution B& due to the changing domain
structure. From Eq. (9), the contribution B, to the dipole
field can change by about 0.5 T for a changing domain struc-
ture (the maximum change in the effective demagnetization
factor is 1). In the high-field region above the transition, we
have seen that the resulting dipole field is small, contrary to
the results reported earlier. It seems that Simkin has ne-
glected terms in the total dipole field. This transition is
spread over a range of external fields only because of the
finite demagnetizing effects.

The results for the continuous second-order transition for
T~ TMcp are very different. In this case, there is a strong but
continuous variation of the effective hyperfine field B,«b of
the antiparallel sublattice [Figs. 11(a) for T= 7.0 K and 13(a)
for T= 10.1 K].At the same time, no transversal components
are found in the spectra. We must conclude that the smaller
effective hyperfine fields are a result of the precession of the
local moments around the c axis. Due to the finite time win-
dow of the measurement process, only the static component
parallel to the c axis is observed. A surprising result is that
this component is continuous from a maximum negative, to
almost maximum positive value while at the same time being
distinct from the first subspectrum (a). This means that there

is a field region in which we observe two different effective
hyperfine fields, and thus effective moments, and in a small
region, both are positive. They join together at an effective
hyperfine field slightly smaller than the linear extrapolation
for the parallel subspectrum. At high external fields, the now
single effective hyperfine field rejoins this extrapolation.

It is significant that the characteristic fields that we have
found for the magnetizing process in the continuous region
agree well with the fields characterizing the longitudinal
fluctuations found in the ac susceptibility. These have been
denoted H for the lower limit and H+ for the upper. We
have given in Figs. 11(a) and 13(a) the (external) fields
B = p pH and B+= p pH+, which compare well with the
starting and ending points of the variation of B,ffb. At the
same time, B,ff „changes much less. It was found from the
ac susceptibility that there is a strong decrease in the longi-
tudinal noncritical fIuctuations for B ~B„,~B+ as seen by
a local minimum in y" at Bz and maxima at B and B+ .
These properties of B,rt(T, B,„,) for the two subspectra are
the result of the magnetic fluctuations induced by the exter-
nal field. These fIuctuations are seen at first as a precession
of the whole antiparallel sublattice, because the relative area
at first does not change but B,ffb deviates from the line
Bb. This also shows that at first, the fIuctuations are concen-
trated on this sublattice. With increasing field, B,ff j) indicates
a moment parallel rather than antiparallel to the external
field. At the same time, the relative area of this subspectrum
decreases slightly from 0.5 and the effective field on the
"+" sublattice, B,ff „, deviates slightly below B, . This
means that the fluctuations include also part of the first sub-
lattice, but not all of it. These fluctuations persist even into
the region where all the moments are at least nominally in
the field direction. These results from Mossbauer spectros-
copy allow a possible explanation for the novel behavior of
the longitudinal spin susceptibility. In this field region, a new

type of AF phase develops with canting fluctuations. This
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canted but precessing structure contains m&=0 spin compo-
nents leading to an increase in the transversal components of
the noncritical fluctuations, and a concomitant decrease in
the longitudinal components. This is seen as a decrease in the
imaginary component of the ac susceptibility y" in the re-
gion around the critical field B&. These results qualitatively
agree with recent quantum-Monte-Carlo data, which predict
an anomalous decrease of the staggered magnetization within
H ~H~Hc. Between the CE (at TMCP=4. 64 K) and the
8CE (at T=5.7 K) even a first-order transition is
conjectured, which, however, remains to be evidenced by
future investigations.

VI. CONCLUSIONS

ac susceptibility studies of the second-order continuous
transition above the multicrtitical temperature TMcp but be-
low Tz have shown that in the continuous transition region
the real part y' has a maximum at the critical line in field
Hc(T). The results for the imaginary part y" as a function of
T and H, yield characteristic fields H below Hz, and

H+ above which denote regimes of strong noncritical Auc-
tuations. The anomalies in the ac and total magnetization of
FeBr2 have been attributed to the competing interactions

along the in-plane axes of the triangular Fe lattice planes. '

The presence of these anomalies, and the vanishing of the
imaginary part of the ac susceptibility at the critical line sug-
gest that there are transverse in addition to the longitudinal
fluctuations involved in this transition. The Mossbauer stud-
ies presented here confirm this view. Along the second-order
critical line, the transition from the AF to the saturated PM
states proceeds by a continuous change in the local moments
of mainly the antiparallel sublattice, which vary from polar-
ized in the negative to the positive directions but remaining
parallel to the c axis. This variation is over a field range that
agrees well with the characteristic fields H and H+ as de-
rived from the ac susceptibility and total magnetization and
from quantum-Monte-Carlo calculations. It is a direct con-
sequence of the transverse noncritical fluctuations —spin
precessions —on the antiparallel sublattice induced by the
external field in the presence of the competing exchange in-
teractions.

ACKNOWLEDGMENTS

This work was supported by the SFB 166 and by the
D.A.A.D.

'A.R. Fert, P. Carrara, M.C. Lanusse, G. Mischler, and J.P. Re-
doules, J. Phys. Chem. Solids 34, 223 (1973).

J.M. Kincaid and E.G.D. Cohen, Phys. Rep. 22, 57 (1975).
M.C. Lanusse, P. Carrara, A.R. Fert, G. Mischler, and J.P. Re-

doules, J. Phys. (Paris) 33, 429 (1972).
S. Pouget, Ph, D. thesis, University of Toulouse, 1994.
W.B. Yelon and C. Vettier, J. Phys. C S, 2760 (1975).
D. Bertrand (unpublished).
M.M. Pereira de Azevedo, Ch. Binek, J. Kushauer, W. Kleemann,

and D. Bertrand, J. Magn. Magn. Mater. 140-144, 1557 (1995).
W Selke and S. Dasgupta, J. Magn. Magn. Mater. 147, L245

(1995).
K. Held, M. Ulmke, and D. Vollhardt (unpublished).

' G. Mischler, P. Carrara, and Y. Merle d'Aubigne, Phys. Rev. B 15,
1568 (1977).

' M.K. Wilkinson, J.W. Cable, E.O. Wollan, and W, C. Koehler,
Phys. Rev. 113, 497 (1959).

' U. Balucani and A. Stasch, Phys. Rev. B 32, 182 (1985).
' W.B.Yelon and C. Vettier, Solid State Commun. 15, 391 (1974).
"D.J. Lockwood, in Light Scattering in Solids, edited by M. Car-

dona and G. Giintherodt (Springer-Verlag, Berlin, 1982), Vol.
III.

D. Petitgrand and P. Meyer, J. Phys. Paris 37, 1417 (1976).
Advances in Mossbauer Spectroscopy, edited by B.V. Thosar and

P.K. Iyengar (Elsevier, Amsterdam, 1983).
I.W. Johnstone, D.J. Lockwood, and G. Mischler, J. Phys. C 11,

2147 (1978).
' R.B. Griffiths and J.C. Wheeler, Phys. Rev. A 2, 1047 (1970).
' E. Stryjewski and N. Giordano, Adv. Phys. 26, 487 (1977).

J.M. Kincaid and E.G.D. Cohen, Phys. Rep. 22, 57 (1975).

F. Harbus and H.E. Stanley, Phys. Rev. S, 1141 (1973); S, 1156
(1973).

L. Hernandez, H.T. Diep, and D. Bertrand, Europhys. Lett. 21,
711 (1993).

I.S. Jacobs and P.E. Lawrence, J. Appl. Phys. 35, 996 (1964).
Z. Onyszkiewicz, Physica 103A, 226 (1980); 103A, 274 (1980);

Phys. Status Solidi B 99, K151 (1980); 122, 543 (1984).
E. Rastelli and A. Tassi, J. Phys. C 16, 4663 (1983); J. Magn.

Magn. Mater. 34, 1041 (1983).
G.C. Psaltakis, G. Mischler, D.J. Lookwood, M.G. Cottam, A.

Zwick, and S. Legrand, J. Phys. C 17, 1735 (1984).
X.H. Qu and P.D. Loly, J. Phys. Condens. Matter 4, 5419 (1992).
R.J. Birgeneau, W.B. Yelon, E. Cohen, and J. Makovsky, Phys.

Rev. B 5, 2607 (1972).
R.E. Watson and A.J. Freeman, Phys. Rev. 123, 2027 (1961).
D.J. Simkin, Phys. Rev. 177, 1008 (1969).

'E.F. Bertaut, in Magnetism III, edited by G.T. Rado and H. Suhl
(Academic, New York, 1963), p. 149.

F. Varret, J. Phys. Chem. Sohds 37, 265 (1976).
K.C. Mishra, K.J. Duff, P. Kelires, S.K. Mishra, and T.P. Das,

Phys. Rev. B 32, 58 (1985).
T. Fujita, A. Ito, and K. Ono, J. Phys. Soc. Jpn. 27, 1143 (1969).
C. Kittel, Introduction to Solid State Physics (Wiley, New York,

1956).
J. Owen and J.M.H. Thornley, Rep. Prog. Phys. 29, Pt. 2, 675

(1966).
R. Ingalls, Phys. Rev. 133, 787 (1964).
R. Zimmermann, A. Trautwein, and F.E. Harris, Phys. Rev. B 12,

3902 (1975).
P. Giitlich, R. Link, and A. Trautwein, Mossbauer Spectroscopy

and Transition Metal Chemistry (Springer-Verlag, Berlin, 1978).


