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Abstract— A general stability result for force-reflecting tele-
operator systems with projection-based force reflection algo-
rithms is established. It is shown that the closed-loop system’s
gain can be assigned arbitrarily by an appropriate choice of
certain weighting function of the projection-based force reflec-
tion algorithm. In particular, this allows to achieve stability
of the force-reflecting teleoperator system in presence of time-
varying irregular delays for arbitrarily large force-reflecting
gain and arbitrarily low damping and stiffness of the master.
The proposed approach solves, to some extent, the trade-off be-
tween stability, manoeuvrability, and high force reflection gain
in force-reflecting teleoperator system with network-induced
communication constraints.

I. INTRODUCTION

Design of high performance teleoperator systems often
involves trade-offs between conflicting design objectives.
One such a trade-off that arises in force-reflecting teleop-
erators is between overall stability and high force reflecting
gain. Higher force reflecting gain generally implies improved
haptic perception of the remote object, however, it also
increases the closed-loop gain which leads to instability.
The mechanism of such an instability is analyzed in great
details in [1]. According to this work, the instability can be
explained in terms of so called induced master motion. The
induced master motion is an unintentional from the human
point of view movement of the master manipulator which is
created by the force reflection signal from the slave side.
Since the master trajectory is then used as the reference
trajectory for the slave manipulator, the induced master
motion in turn creates similar reaction of the slave subsystem,
etc. Essentially, such an interaction forms a control loop, and
the corresponding closed-loop gain is directly proportional to
the force feedback gain; as a result, high force feedback gain
leads to instability of the teleoperator system.

Some earlier approaches that address the above men-
tioned trade-off include increasing damping and stiffness of
the master manipulator [2], low-pass filtering of the slave
reference trajectory [3], low-pass filtering of the reflected
force [4]. All these approaches generally lead to different
forms of transparency/performance deterioration. The model-
based cancelling of the induced master motion from the
slave reference trajectory is proposed in [1]. This approach
also has some shortcomings, in particular, the fact that
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the human physiological reaction to the force disturbances
normally includes changes in mechanical parameters (in
particular, increased stiffness [5]) of the human hand is
not taken into account. On the other hand, projection-based
force reflection (FR) algorithms were introduced in [6], [7].
These algorithms uses the fact that the human perception
of an external force depends critically on the direction and
the magnitude of her/his own forces applied to the master
manipulator (which in this case simultaneously plays a role
of a haptic display). The idea behind the projection-based FR
algorithms, therefore, is to alternate the force reflection signal
depending on the forces applied by the human operator; it
can be done in such a way that the human does not feel
this alteration, however, the resulting induced master motion
can be eliminated or reduced to an appropriate level. The
improvement to stability properties brought in by such force-
reflecting algorithms are demonstrated in [6], [7] for some
particular force-reflecting teleoperator schemes in presence
of time delays.

In this paper, general stability results for force reflecting
teleoperator systems with projection-based force reflection
algorithms are presented. More precisely, we identify a broad
class of force reflection algorithms, and prove stability results
for a general force-reflecting teleoperator system with a
FR algorithm from this class in the situation where the
communication between the master and the slave is subject
to time-varying discontinuous possibly unbounded commu-
nication delays, occasional packet losses are admitted, and
the human force measurement/estimation process is possibly
corrupted. To prove these stability results, we utilize a new
version of the small gain theorem for multichannel systems
with multiple communication delays presented in [8]. The
important advantage of the small-gain approach over more
traditional one that is based on passivity and scattering/wave
variables formalism [9]–[11] is that the small-gain approach
does not impose any “phase” restrictions on the subsystems
(in particular, on the communication channels between the
master and the slave), which makes it highly suitable in deal-
ing with time-varying irregular communication delays (which
are typical if the communication is performed over the
Internet). On the contrary, the passivity based approach can
hardly be extended to the case of irregular communication
delays because in this case the passivity can be lost due to
signal distortion (although some partial extensions are avail-
able, [12]–[14]). However, when applied directly, the small
gain approach leads to conservative results; in particular, high
damping and stiffness of the master robot are required for
the overall stability. One of the most interesting properties
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of the projection-based force reflecting algorithms is that,
formally speaking, they allow to disconnect in some sense the
closed loop with respect to the force reflection signal (more
precisely, the gain between the force reflection signal and the
corresponding induced master motion can be made arbitrarily
low), which results in significant (theoretically, arbitrary)
improvement of the admissible force reflection gain without
increasing the damping and the stiffness of the master. Thus,
the projection based force reflection algorithms solve, to
some extent, the trade-off between stability, manueurability,
and high force reflection gain in bilateral teleoperation with
communication delay.

The paper is organized as follows. The projection-based
approach to force reflection in bilateral teleoperation is
presented in section II. In section III, the general stability
results for teleoperator systems with projection-based force
reflection algorithms are presented together with all the
necessary preliminaries. Simulation results are discussed
in section IV and, finally, some conclusions are given in
section V.

Notation. R+ := [0,+∞). A function α : R+ → R+

belongs to class G (α ∈ G) if and only if α(0) = 0 and
is nondecreasing. A function α belongs to class K (α ∈ K)
if and only if α ∈ G and strictly increasing. Also, α ∈ K∞ if
and only if α ∈ K and unbounded (lims→+∞ α(s) = +∞).
Finally, β : R+×R+ → R+ belongs to class KL if and only
if β(a, b) is a K∞-class function in a, strictly decreasing in
b, and limb→+∞ β(a, b) = 0 for each a ∈ R+.

II. PROJECTION-BASED FORCE REFLECTION

ALGORITHMS

The idea behind the projection-based force reflection al-
gorithm is based on the following simple observation: the
human operator feels the external force if and only if she/he
pushes against it. Moreover, the amount of force that is felt
by the human operator is exactly equal to the amount of force
exerted by a human hand against the external force. On the
other hand, the induced motion of the master manipulator is
created where the force-reflecting term is not compensated
by the human counter-force; in this situation, however, the
force reflection is useless from the point of view of human
perception, since the human does not feel it. This observation
leads to the following idea: the force reflection term may
be altered depending on the forces applied by the human
operator. More precisely, since the human operator feels
the forces that are directed against her/his own, and the
magnitude of the forces felt is not greater than the magnitude
of the human forces applied to the master, this implies that
all external forces outside these direction and magnitude
constraints can be, roughly speaking, filtered out without
any impairment of the human force perception. Through
such an alternation, however, the potentially harmful induced
master motion may be eliminated or, at least, limited to an
appropriate level.

Below, we address a force reflection scheme where the
force signal applied to the motors of the master f̂r is

described by the following formula

f̂r := α
(
f̂env

)
+ [I − α]

(
φ̂env

)
. (1)

Here, f̂env is the force signal that is arrived directly from
the slave subsystem, φ̂env is the signal generated by the
projection-based force reflection algorithm described below,
and α ∈ G is the corresponding weighting function; the last
should be chosen to satisfy [I − α] ∈ G, where I : R+ → R+

is the identity function, I (r) = r for all r ≥ 0. The signal
φ̂env can be obtained using the force reflection algorithm, as
follows

φ̂env := Sat
[0,1]

{
f̂T

env f̄h

max{|f̄h|2, ε1}
}

f̄h, (2)

where f̄h is a measurement/estimate of the human force
applied to the master manipulator, ε1 > 0 is a sufficiently
small constant, and Sat

[a,b]
{x} := min{max{a, x}, b}.

The algorithm (2) can be given the following explanation.
Assuming

∣∣f̄h

∣∣2 ≥ ε1 and 0 ≤ f̂T
env f̄h/

∣∣f̄h

∣∣2 ≤ 1 (i.e., the
saturation in (2) is not achieved), it is easy to see that φ̂env

is the projection of f̂env onto the direction of f̄h. By placing
the lower saturation limit at 0, one guarantees that −φ̂env

and f̄h are directed against each other; on the other hand, the
upper saturation limit at 1 implies that |φ̂env| does not exceed
|f̄h| (i.e., |φ̂env| ≤ |f̄h|). Finally, sufficiently small ε1 > 0
removes the singularity at f̄h = 0. Thus, the algorithm (2)
calculates the component of the environmental force that is
directed against the human force, and makes its magnitude
bounded by the magnitude of the human force. Therefore,
according to the considerations presented above, substitution
of φ̂env for f̂env in the force reflection scheme would not
make a difference in terms of the human force perception;
however, contrary to the latter, the former does not generate
the induced master motion.

The above presented algorithm calculates φ̂env as the
projection of f̂env onto the subspace spanned by the human
force estimate f̄h; as a result, φ̂env is always collinear to
f̄h. It is possible to construct another similar force reflection
algorithm, where the resulting vector φ̂env would preserve
the direction of the environmental force f̂env , however, its
magnitude would depend on the magnitude of the projection
of f̄h onto the subspace spanned by f̂env . Such an algorithm
is described by the formula

φ̂env := Sat
[0,1]

{
f̂T

env f̄h

max{|f̂env|2, ε1}

}
f̂env. (3)

Note that algorithms (2) and (3) give the same result if
f̂env is collinear to f̄h. It is also possible to use any convex
combination of the algorithms (2) and (3).

Remark 1. It can be easily checked that φ̂env generated
by any of the algorithms (2), (3), satisfies the inequality∣∣∣f̄h − φ̂env

∣∣∣ ≤ ∣∣f̄h

∣∣ . (4)

This property will be utilized below, where we formulate
and prove stability results for systems with force-reflecting
algorithms that satisfy an inequality more general that (4). •
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III. STABILITY RESULTS

In this section, we address stability properties of bilat-
eral teleoperator system with force reflection algorithms
described above. More precisely, we define a class of force
reflection algorithms that, in particular, includes algorithms
(2) and (3), and prove general stability result for teleoperator
system with any force reflection algorithm from that class.

We assume that the closed-loop “master manipulator plus
local master controller” subsystem is described as a general
nonlinear system of the form

ẋm = Fm (xm, um) ,
ym = Gm (xm, um) ,

(5)

where xm is the state of the master subsystem, and um is the
master input. We impose general regularity assumptions on
Fm and the output map Gm; namely, it is assumed that both
Fm(·, ·), Gm(·, ·) are locally Lipschitz in their arguments.
The input of the master subsystem is the external force input

um = fh − fr, (6)

where fh is the force/torque applied by the human operator,
and fr is the force/torque reflection signal. The output ym

of the master subsystem contains an arbitrary set of signals
that are to be transmitted to the slave side, these may consist
of master positions, velocities, forces/torques, as well as
arbitrary combinations of them. During the transmission, the
output ym is subject to time-varying communication delay
τf : R+ → R+; the transmitted version of the master output
is then applied to the input of the slave subsystem, as follows

us(t) := ym (t − τf (t)) . (7)

The closed loop “slave plus environment plus local slave
controller” subsystem is also described as a nonlinear system
of the form similar to (5), i.e.,

ẋs = Fs (xs, us) ,
ys = Gs (xs, us) ,

(8)

where xs is a state of the slave+environment interconnection,
us is the input, and ys is the output of the slave subsystem.
Again, both Fs and Gs are assumed to be locally Lipschitz
functions of xs, us. The output ys of the slave subsystem
is again an arbitrary force signal which is to be transmitted
to the master subsystem. This force signal may contain in-
formation about contact forces due to environment, position
errors, velocity errors, or any other signals that depend on
the state of the slave+environment subsystem or its inputs.
Last but not least, these signals can be multiplied by arbitrary
coefficients, which, in particular, corresponds to an arbitrary
force reflection gain. The transmission of ys to the master
side is also a subject to time-varying communication delay
τb : R+ → R+, according to the formula

f̂env(t) := ys (t − τb(t)) (9)

Based on f̂env , the force reflection signal fr in (6) is then
generated according to the formula (1), where φ̂env is the
outcome of a projection-based force reflection algorithm
(such as (2) or (3)).

To formulate our stability results, let us first recall the
notion of the input-to-state stability (ISS [15]).

Definition 1. A system of the form ẋ = F (x, u) is said
to be input-to-state stable if there exists β ∈ KL, and γ ∈
K such that |x(t)| ≤ max

{
β (|x(0)|, t) , γ

(
sup

s∈[0,t)

|u(s)|
)}

holds for all t ≥ 0. •
Our first assumption is the input-to-state stability of both

the master and the slave subsystems.
Assumption 1. Both the master (5) and the slave (8)

subsystems are input-to-state stable. •
Remark 2. Due to regularity (local Lipschitzness) assump-

tion imposed on Gm, Gs, the input-to-state stability (ISS)
also implies the input-to-output stability (IOS [15]) of both
the master and the slave subsystems. Note, however, that
neither ISS nor IOS gains are specified in Assumption 1;
only the existence of these gains is assumed. As a result, such
an assumption allows significant flexibility in design of local
controllers for both the master and the slave subsystems; in
particular, the ISS property (with possibly high ISS gain)
of the master subsystem can be achieved, for example, by
using local PD controller with arbitrarily low damping and
stiffness coefficients [16]. •

The next assumption, borrowed from [8], is imposed on
the communication process between the master and the slave.

Assumption 2. The communication delays τf , τb : R+ →
R+ are Lebesgue measured functions with the following
properties:

i) there exist τ∗ > 0 and a piecewise continuous func-
tion τ∗ : R → R+ satisfying τ∗ (t2) − τ∗ (t1) ≤ t2 −
t1, such that the inequalities τ∗ ≤ min {τf (t), τb(t)} ≤
max {τf (t), τb(t)} ≤ τ∗ (t) hold for all t ≥ 0;

ii) t − max {τf (t), τb(t)} → +∞ as t → +∞. •
Remark 3. Assumption 2 is a technical one; it does

not impose any significant restriction on communication
process. In particular, it is interesting to note that fulfillment
of this assumption does not depend on the characteristics
of communication channel (such as bandwidth, packet loss
percentage, etc.) On the contrary, this assumption can always
be satisfied for any communication channel by implementing
standard features such as packet numbering and/or time
stamping, unless the communication is totally lost on a semi-
infinite time interval. For more details, see [8]. •

Our third assumption describes the class of the force
reflecting algorithms. The assumption is a generalization of
the property described above in Remark 1.

Assumption 3. There exists η ∈ K such that φ̂env in (1)
satisfies the inequality∣∣f̄h − φ̂env

∣∣ ≤ η
(∣∣f̄h

∣∣) . • (10)

Note that, according to Remark 1, both the projection-
based force reflection algorithms (2) and (3) satisfy Assump-
tion 3 with η(·) ≡ I(·).

Our fourth assumption is related to the force measure-
ment/estimation process on the master side. In the results
presented below, we do not restrict our consideration to
the situation where the human force/torque is perfectly
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measured. On the contrary, we consider the human force
measurement/estimation as a process whose accuracy may
depend on a values of the human force and its derivatives as
well as on disturbance level. More precisely, a sort of input-
to-state stability assumption is imposed on the human force
measurement/estimation process, as follows.

Assumption 4. Human force (torque) measure-
ment/estimation process satisfies the following estimate

∣∣fh(t) − f̄h(t)
∣∣ ≤ max




β
(∣∣fh(0) − f̄h(0)

∣∣ , t
)
,

γ
{0}
f

(
sup

s∈[0,t)

|fh(s)|
)
, . . . ,

γ
{r}
f

(
sup

s∈[0,t)

|f{r}
h (s)|

)
,

γw

(
sup

s∈[0,t)

|w(s)|
)




(11)

for all t ≥ 0, where fh is the human force applied to
the master, f

{i}
h is its i-th derivative, w are the external

disturbances that affect the measurement process, βm ∈ KL,
γ
{0}
f , . . . ,{r} , γw ∈ K. •
Remark 4. Assumption 4 allows to address schemes

where the direct input force measurement is performed in
presence of sensor noise as well as a wide range of schemes
that utilize different input estimation techniques [17]. In
particular, the specific form of inequality (11) is motivated
by the fact that the accuracy of estimates provided by input
observers normally depends on derivatives of input (first
derivative in the cases of high-gain and sliding mode input
observers, second derivative for “dirty-derivative” filters,
etc.) •

Consider now the closed-loop teleoperator system (5)-(9).
Since this system involves communication delays (7), (9),
it can appropriately be described by a system of functional
differential equations (FDEs) rather than ordinary differential
equations. To introduce the stability notion that should be
satisfied for the closed-loop teleoperator system, consider a
system of FDEs of a general form

ẋ = F (xd, ud) , (12)

where xd(t) = {x(t − s) : 0 ≤ s ≤ td(t)}, ud(t) =
{u(t − s) : 0 ≤ s ≤ td(t)}, and td(·) is a nonnegative func-
tion defined on R+. Analogously to Definition 1, the input-
to-state stability property for (12) can be defined as follows.

Definition 2. The system (12) is said to be input-to-state
stable (with td(0) ≥ 0) if there exists β ∈ KL, and γ ∈ K
such that

|xd(t)| ≤ max
{

β (|xd(0)|, t) , γ
(

sup
s∈[−td(0),t)

|u(s)|
)}

. •

Our main stability result can be formulated as follows.
Theorem 1. Consider the closed-loop force reflecting

teleoperator system (5)–(9) with force reflection algorithm
(1). Suppose Assumptions 1-4 are satisfied. Then there
exists α∗ ∈ K∞ such that if α(·) ∈ G in (1) satisfies
α(s) ≤ α∗(s) for all s ≥ 0 then the closed-loop force
reflecting teleoperator system with state xd = (xT

m, xT
s )T

d and
input u = (fT

h , . . . , (f{r}
h )T , wT )T is input-to-state stable in

the sense of Definition 2 with td(0) = τ∗(0). •

Proof of Theorem 1 is based on a version of a small-gain
theorem for systems with delays presented in [8]. Essentially,
it can be verified that the small-gain stability condition for
the system under consideration has a form γm ◦ γs ◦α(s) <
I(s) for all s > 0, where γm, γs ∈ K are IOS gains of the
master and the slave subsystems, respectively, and α ∈ G
is the weighting function from the formula (1). The above
condition can always be met, for example, by choosing the
upper bound α∗ ∈ K∞ as follows α−1

∗ (s) := γm ◦γs(s)+s.
All details, however, are omitted due to space limitations. •

One of the most interesting features of the result presented
in the above Theorem 1 is that it does not impose any
restrictions on the ISS (IOS) gains of the master and slave
subsystem. Instead, given the master and the slave gains, the
overall stability can always be achieved by an appropriate
choice of the weighting function α(·) ∈ G in (1). As one
can see from the formula (1), α(·) ∈ G and [I − α] (·) ∈ G
determine the relative weights of the terms f̂env and φ̂env,
respectively, in the force reflection signal f̂r. Both these
terms provide the haptic feedback to the operator; however,
the difference between them is that, contrary to f̂env , the
term φ̂env does not create the induced master motion that can
potentially destabilize the overall teleoperator system. Thus,
the choice of α(·) determines the gain between the force
reflection signal and the resulting induced master motion. In
particular, if α(·) ≡ 0 in (1), the induced master motion is
eliminated completely; in this case, the stability is guaranteed
simultaneously for all gains as long as both the master and
the slave subsystems are stable. Thus, the design of stable
force reflecting teleoperator system with communication
delay is essentially reduced to the design of two stable
subsystems. Theoretically, the choice α(·) ≡ 0 disconnects
the feedback loop in terms of induced master motion; i.e.,
the corresponding closed loop gain becomes equal to zero.
In particular, this allows to achieve stability for arbitrarily
low damping and stiffness of the master manipulator and
in presence of arbitrarily high force reflection gain, which
has numerous advantages in terms of better operability and
transparency. On the other hand, a nonzero α(·) implies that
the force reflection term may create some induced motion of
the master manipulator; however, the amount of this motion
is not sufficient to destroy the overall stability as long as
α(·) is small enough. It seems conceivable that certain small
enough amount of the induced master motion may be useful
in some teleoperation tasks; for example, it may impel the
otherwise inactive human operator to apply forces against it.
From the simulation results presented below, it can also be
noticed that a small amount of the induced master motion
may improve force regulation.

IV. SIMULATIONS

In this section, we present simulation results that illustrate
the improvement to the stability properties of the force
reflecting teleoperator system brought in by the projection
based force reflecting algorithms. Specifically, we address
the question of how the stability of the teleoperator system
depends on the force reflection gain, and show that the force
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reflection gain can be substantially increased in presence
of force reflection algorithms (1), (3) without loosing the
overall stability (in the case of algorithm (1), (2), very similar
results are obtained which are omitted here because of the
space constraints). We simulate a force-reflecting master-
slave teleoperator system that consists of two identical 2-
DOF planar manipulators, master (i = m) and slave (i = s),
whose are described by Euler-Lagrange equations of the form
Hi (qi) q̈i + Ci (qi, q̇i) q̇i = τi, where

Hi(q) =

[
(2l1 cos q2 + l2)l2m2

+l21(m1 + m2)
l22m2

+l1l2m2 cos q2

l22m2 + l1l2m2 cos q2 l22m2

]
,

Ci(q, q̇) =
[

−l1l2m2 sin(q2)q̇2 −l1l2m2 sin(q2)(q̇1 + q̇2)

l1l2m2 sin(q2)q̇1 0

]
,

and the parameters are m1 = 10 kg, and m2 = 5 kg,
l1 = 0.7m, l2 = 0.5m. On the master side, τm =
um+JT

m (qm, q̇m) fh−JT
m (qm, q̇m) f̂r, where um is the local

master control law, fh is the force imposed by the human op-
erator, f̂r is the force reflection term, and Jm (qm, q̇m) is the
(spatial) Jacobian of the master manipulator. The local master
controller consists of a damping term um = −Dmq̇m, where
the damping coefficient Dm = 50N ·m·sec/rad. The human
operator tries to move the end-effector of the master from its
initial location at x0 = 0 m, y0 = 1.2 m (which corresponds
to q1 = π/2, q2 = 0) to the final point xend = 0.783 m,
yend = 0.8562 m, along the straight line between these
two points. On the slave side, τs = us − JT

s (qs, q̇s) fenv ,
where us is the local slave control law, fenv is the contact
force due to environment, and Js is the slave Jacobian. The
controller has a form us = Ks (ξ1 − qs) + Ds (ξ2 − q̇s),
where ξ1, ξ2 are estimates of the delayed master position
q̂m and its derivative, respectively, both provided by a dirty-
derivative filter. The parameters are Ks = 500N · m/rad
and Ds = 500N ·m · s/rad. When following the trajectory
of the master manipulator, the slave hits an obstacle. The
obstacle is a rigid wall which is located at x = 0.6 m, and
has stiffness coefficient equal to Kenv = 106 N/m; thus,
the obstacle can be considered as an extremely rigid one.
The contact force due to environment is then transferred to
the master side with force reflecting gain Kf > 0. Both
the forward and the backward communication channels are
modelled as one-step delay systems with variable sampling,
where the sampling instants are Poisson distributed with
mean rate λ = 10 sec−1.

First, we simulate the teleoperator system where the force
feedback is provided to the master using the standard pro-
portional force-reflection scheme (i.e., α(·) ≡ I(·) in (1)).
Keeping in mind that the slave robot makes a contact with
a very stiff environment, it is not surprising that the system
with proportional force reflection generally admits a very
low force reflection gain without loosing the overall stability.
In fact, our simulations show that, under the conditions
described above, the border of stability in terms of force
reflecting gain lies somewhere between Kf = 0.4 and
Kf = 0.7. Typical plots for Kf = 0.4 (stable) and Kf = 0.7

(unstable) are shown in figures 1 and 2, respectively. Be-
tween these values, the performance of the system decreases
gradually.

These results are then compared with the response of the
same teleoperator system with the projection-based force
reflection algorithm (1), (3). For simplicity, we consider only
linear weighting functions α(·) = α0 · I(·), α0 ∈ [0, 1]. It
can be seen from the formula (1), that lower values of α0

imply higher weights of the signal φ̂env , generated by the
projection-based algorithm (3), in the overall force reflection
term f̂r. According to our theoretical considerations, this
results in smaller amount of the induced master motion
and, therefore, improved stability properties (in particular,
higher force reflection gains can be implemented without
loosing the overall stability). This is clearly confirmed by our
simulation results. Examples of these results are presented in
figures 3, 4, where the responses of the teleoperator system
for Kf = 1, α0 = 0.2 and Kf = 10, α0 = 0.01 are
presented, respectively. As one can see from the plots, both
these responses are stable.

Overall, our simulations show that, in accordance with
theoretical results, the higher weight of the projection-based
term φ̂env in the force reflection signal decreases the amount
of induced master motion and, therefore, leads to improved
stability characteristics (for example, in terms of higher
admissible force reflection gains). On the other hand, it seems
like some small enough amount of the induced master motion
may have positive influence on the transient response in
terms of force regulation . To illustrate this point, consider
Fig. 5, (a), (b), where the actual contact force due to
environment is shown versus the force signal reflected to
the hand of the human operator, for α = 0.2 and α = 0.1,
respectively. In both these cases, the actual contact force
and the force reflected converge to each other, however,
the convergence is faster for α = 0.2. More precisely, it
seems like for each set of the task parameters (such as
the environmental stiffness, force reflection gain, etc.) there
exists some “optimal” value of the weighting coefficient α
that results in combination of stable response and fast force
convergence. This phenomenon may worth further research.

V. CONCLUSIONS

Traditionally, the small-gain approach is considered to
be not particularly suitable for teleoperation tasks, since
it “. . . would result in conservative design criteria (leading
to poor transparency). . . ” [18]. Indeed, for force reflecting
teleoperator systems, the direct application of the small-gain
approach results in significant constraints on the force reflec-
tion gain, as well as generally requires high damping/stiffness
of the master manipulator. In this paper, we show that,
using the projection-based force reflection algorithms, the
constraints on subsystem’s gains can be effectively removed.
In particular, this implies that the stability can be achieved
for arbitrarily high force reflection gain and arbitrarily low
damping/stiffness of the master manipulator. Essentially, the
proposed approach reduces the design of stable force re-
flecting teleoperator system with communication delay to the
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design of two stable subsystems. It is worth noting that this
is achieved by utilizing certain fundamental characteristics
of the human force sensing and without paying the price in
terms of transparency deterioration. In our opinion, the use
of projection-based force reflection algorithms may signifi-
cantly improve the applicability of the small-gain methods
to the design of the force-reflecting teleoperator systems,
particularly in presence of network induced communication
constraints.
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