
Cut-off point of linear discriminant rule for large dimension

Takayuki Yamada1, Tetsuto Himeno2 and Tetsuro Sakurai3

1 General Studies, College of Engineering,
Nihon University,

1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642, Japan

2Department of Computer and Information Science, Faculty of Science and Technology,
Seikei University,

3-3-1 Kichijoji-Kitamachi, Musashino-shi, Tokyo 180-8633, Japan

3Center of General Education,
Tokyo University of Science, Suwa,

5000-1, Toyohira, Chino-shi, Nagano, 391-0292, Japan

Abstract

This paper is concerned with the problem of classifying a observation vector into one of two pop-
ulations Π1 : Np(µ1,Σ) and Π2 : Np(µ2,Σ). Anderson (1973, Ann. Statist.) gave an asymptotic
expansion of the studentized statistic, and derived cut-off point to achieve a specified probability of
misclassification. But the dimension p gets large, the precision becomes worse. So in this paper, we
proposed studentized statistic in terms of (n, p) asymptotic. An asymptotic expansion of the statis-

tic is derived up to the order O1, where O1 is a term with respect to {p−1/2, N
−1/2
1 , N

−1/2
2 ,m−1/2}

for each sample size Ni and m = N1 +N2 − 2− p. Using the expansion, we gave cut-off point to
achieve a specified probability of misclassification.
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1 Introduction

This paper is concerned with the problem of classifying a observation vector into one of two populations
Π1 : Np(µ1,Σ) and Π2 : Np(µ2,Σ). The observation x is classified as coming from either Π1 or Π2

based on the samples
xi1, . . . ,xiNi ∼ Np(µi,Σ) (i = 1, 2),

which are independent. For this problem, linear discriminant analysis is used. Let

W = (x̄1 − x̄2)
′S−1

{
x− 1

2
(x̄1 + x̄2)

}
,

where x̄1, x̄2 and S are the sample mean vectors and the pooled sample covariance matrix defined by

x̄i =
1

Ni

Ni∑
j=1

xij , i = 1, 2, S =
1

n

2∑
i=1

Ni∑
j=1

(xij − x̄i)(xij − x̄i)
′,

n = N − 2 = N1 +N2 − 2.

Linear discriminant rule classifies x as Π1 if W (x) > c and Π2 if W (x) < c for a constant c. Inference
concerning linear discriminant analysis is studied under large sample asymptotic framework A0:

A0 : N1 → ∞, N2 → ∞, N1/N2 → c ∈ (0,∞).
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For a review of results under A0, see, e.g., Fujikoshi et al. [4]. When p becomes large, accuracy
of results proposed using A0 gets worse. As a way to improve the poorness, it is studied under the
asymptotic framework A1:

A1 : p → ∞, N1 → ∞, N2 → ∞, p/N1 → γ1 ∈ (0, 1), p/N2 → γ2 ∈ (0, 1)

and N1/N2 → γ ∈ (0,∞).

As results under A1, Fujikoshi and Seo [3] gave an asymptotic approximation of the probabilities of
misclassification, Fujikoshi [2] gave its error bound. These results are reviewed in Fujikoshi et al. [4].
Following Lachenbruch [5], for x ∈ Πi,

W = (x̄1 − x̄2)
′S−1

{
x− 1

2
(x̄1 + x̄2)

}
= V 1/2Zi + (−1)iUi, (1)

where

V = (x̄1 − x̄2)
′S−1ΣS−1(x̄1 − x̄2),

Zi = V −1/2(x̄1 − x̄2)
′S−1(x− µi),

Ui = (−1)i+1(x̄1 − x̄2)
′S−1(x̄i − µi)−

1

2
D2,

and D2 is the squared sample Maharanobius distance defined by D2 = (x̄1 − x̄2)
′S−1(x̄1 − x̄2).

From the normality of x, Zi is distributed as the standard normal distribution, which we denote it
as Zi ∼ N(0, 1). Since it does not depend on {x̄1, x̄2,S}, Zi is independent to the set, and so Zi

is independent from {Ui, V }. The limiting distribution of W under the asymptotic framework A1 is
normal with mean ui,0 = (−1)i limA1 E[Ui] and variance v0 = limA1{E[V ]+Var(Ui)} if x ∈ Np(µi,Σ).

Under the assumption that the Mahalanobis distance ∆ =
√

(µ1 − µ2)′Σ
−1(µ1 − µ2) converges to a

positive constant under A1, Fujikoshi and Seo [3] and Fujikoshi [2] showed that Var(Ui) → 0. So, we
can abbreviate as v0 = limA1 E[V ].

One may want to determine the cut-off point c to adjust the probabilities of misclassification.
Results under A0 is written in Anderson [1]. On the other hand, from Fujikoshi [2], under the as-
sumption that x ∈ Πi, the limiting distribution (W − ui)/

√
v is N(0, 1), where ui and v are constants

such that limA1(ui − ui,0) = 0 and limA1(v − v0) = 0. Using this result, we find that the approxi-
mation of the misclassification probability that x is allocated to Πj even though x ∈ Πi is given as
Φ((−1)i−1(c − ui)/

√
v) for i, j = 1, 2 with i ̸= j, where Φ(.) is the cumulative distribution function

of the standard normal distribution. Since ui and v contain ∆2, which need to be estimated. The
unbiased estimator is given as

∆̂2 =
n− p− 1

n
(x̄1 − x̄2)

′S−1(x̄1 − x̄2)−
pN

N1N2
.

Consistency under the asymptotic framework A1 holds. One can choose c from the fact that the
limiting distribution of (W − ûi)/

√
v̂ is N(0, 1) if x ∈ Np(µi,Σ), where (ûi, v̂) is (ui, v) with replacing

∆2 by ∆̂2.
This paper is organized as follows. In Section 2, we give an asymptotic expansion of the (W−ûi)/

√
v̂

for the case that x ∈ Πi. We propose a cut-off point which the misclassification probability becomes
presetting level, asymptotically. Section 3 presents simulation results for misclassification probability.
Proof of lemma and derivation of expectations are given in Appendix.

2 Asymptotic expansion under A1

For technical reason, set

ui =
n

2(m− 1)

{
(−1)i+1∆2 +

(
p

N2
− p

N1

)}
,

v =
n2(n+ 1)

(m− 1)(m+ 1)(m+ 2)

(
∆2 +

Np

N1N2

)
,
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where m = n − p. Note that ui = (−1)iE[Ui], but v equals E[V ], asymptotically, under A1. Then
limA1 ui = ui,0 and limA1 v = v0. Using unbiased estimator of (ui, v), we have

P

(
W − û1√

v̂
< x

∣∣∣∣∣x ∈ Π1

)
= E

[
Φ

(√
v̂x+ U1 + û1√

V

)]
,

P

(
W − û2√

v̂
> x

∣∣∣∣∣x ∈ Π2

)
= E

[
Φ

(
−
√
v̂x+ U2 − û2√

V

)]
.

Let

u1 =

(
1

N1
+

1

N2

)−1/2

Σ−1/2(x̄1 − x̄2),

u2 =
1√
N

Σ−1/2(N1x̄1 +N2x̄2 −N1µ1 −N2µ2),

B = Σ−1/2SΣ−1/2,

where N = N1 + N2. Then u1, u2 and B are independent. In addition, u1 ∼ Np((1/N1 +

1/N2)
−1/2δ, Ip) and u2 ∼ Np(0, Ip), where δ = Σ−1/2(µ1 − µ2). It also holds that nB is dis-

tributed as a Wishart distribution with degrees of freedom n = N −2 and covariance matrix Ip, which
is denoted as Wp(n, Ip). Substituting them,

Ui = − (−1)i+1

2

(
p

N2
− p

N1

)
u′
1B

−1u1

p
+

(−1)i+1p√
N1N2

u′
1B

−1u2

p
− τi

δ′B−1u1√
p

,

V =
Np

N1N2

u′
1B

−2u1

p
,

τi =

√
pN3/2+(−1)i+1/2

NN3/2−(−1)i+1/2

.

In addition,

∆̂2 =
Np

N1N2

{
m− 1

n

u′
1B

−1u1

p
− 1

}
.

Then,

ûi = (−1)i+1 n

2(m− 1)

{
Np

N1N2

m− 1

n

u′
1B

−1u1

p
− Np

N1N2
+ (−1)i+1

(
p

N2
− p

N1

)}
,

v̂ =
n(n+ 1)

(m+ 1)(m+ 2)

Np

N1N2

u′
1B

−1u1

p
.

The following lemma gives that these random variables can be expressed as functions of the inde-
pendent standard normal and chi-squared variables, simultaneously.

Lemma 1. Let v1 ∼ Np(δ, Ip), v2 ∼ Np(0, Ip), A ∼ Wp(n, Ip), and v1, v2 and A are independent.
Then the following equalities in distribution hold, simultaneously:

S ≡ δ′A−1v1
D
=

∆

Y1

(
Z1 +∆−

√
Y2

Y3
Z2

)
,

T ≡ v′
2A

−1v1
D
=

√
1

Y 2
1

(
1 +

Y2

Y3

)
{(Z1 +∆)2 + Z2

2 + Y4}Z3

U ≡ v′
1A

−1v1
D
=

1

Y1
{(Z1 +∆)2 + Z2

2 + Y4},

V ≡ v′
1A

−2v1
D
=

1

Y 2
1

(
1 +

Y2

Y3

)
{(Z1 +∆)2 + Z2

2 + Y4},
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where ∆ =
√
δ′δ; Z1, Z2, Z3, Y1, . . . , Y4 are independent, Zi ∼ N(0, 1), i = 1, 2, 3, Yi ∼ χ2

fi
, i =

1, . . . , 4,

f1 = n− p+ 1, f2 = p− 1, f3 = n− p+ 2, f4 = p− 2.

Note that Fujikoshi and Seo [3] has also given similar results, but their results are individual ones,
so cannot treat simultaneously. The proof of Lemma 1 is given in Appendix.

It can be described that

(−1)i+1
√
v̂x+ Ui − (−1)iûi

= (−1)i+1

√
n(n+ 1)

(m+ 1)(m+ 2)
ω−1

√
Q1

p
x− (−1)i+1

2

(
p

N2
− p

N1

)
Q1

p
+

(−1)i+1p√
N1N2

B2

p
− τi

B1√
p

+
ω−2

2

Q1

p
− n

2(m− 1)
ω−2 +

(−1)i+1

2

n

m− 1

(
p

N2
− p

N1

)
, (2)

V = ω−2Q2

p
, (3)

where Q1 = u′
1B

−1u1, Q2 = u′
1B

−2u1, B1 = δ′B−1u1 and B2 = u′
2B

−1u1, ω
2 = N1N2/(Np). From

Lemma 1, we have

Q1

p

D
=

n

f1

1

1 +
√
2/f1W1

S,

B1√
p

D
=

n

f1

∆

1 +
√
2/f1W1

(
Z1√
p
+ ω∆−

√
f2
f3

√
T
Z2√
p

)
,

B2

p

D
=

n

f1

1

1 +
√
2/f1W1

√(
1 +

f2
f3

T

)
S
Z3√
p
,

Q2

p

D
=

n2

f2
1

1

(1 +
√
2/f1W1)2

(
1 +

f2
f3

T

)
S,

where Wi =
√

fi/2(Yi/fi − 1) for i = 1, . . . , 4,

S =

(
Z1√
p
+ ω∆

)2

+

(
Z2√
p

)2

+
p− 2

p

(
1 +

√
2

f4
W4

)
,

T =
1 +

√
2/f2W2

1 +
√

2/f3W3

.

Sorting S in descending order, it can be expressed as

S = s0 + S1/2 + S1 +O3/2,

where

s0 = 1 + ω2∆2,

S1/2 =
2ω∆
√
p
Z1 +

√
2

f4
W4,

S1 =
Z2
1

p
+

Z2
2

p
− 2

p
,

and Oj/2 is a term of j-th order with respect to {p−1/2, N
−1/2
1 , N

−1/2
2 ,m−1/2}. By Maclaurin expansion

of (1 +
√
2/f3W3)

−1 up to the term with order of f−1
3 ,

T =

(
1 +

√
2

f2
W2

)(
1−

√
2

f3
W3 +

2

f3
W 2

3

)
+O3/2,
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which can be sorted in descending order as

T = 1 + T1/2 + T1 +O3/2

with

T1/2 =

√
2

f2
W2 −

√
2

f3
W3,

T1 =
2

f3
W 2

3 − 2√
f2f3

W2W3.

Doing Maclaurin expansion of (1 +
√
2/f1W1)

−1 in Q1/p up to the term with order of f−1
1 , and sort

it in descending order, it is written as

Q1

p
= q1,0 +Q1,1/2 +Q1,1 +O3/2,

where

q1,0 =
n

f1
s0,

Q1,1/2 =
n

f1

(
S1/2 −

√
2

f1
s0W1

)
,

Q1,1 =
n

f1

(
S1 −

√
2

f1
S1/2W1 +

2

f1
s0W

2
1

)
,

and using this expansion,√
Q1

p
=

√
q1,0

{
1 +

1

2q1,0
(Q1,1/2 +Q1,1)−

1

8q21,0
Q2

1,1/2

}
+O3/2.

Using similar way, we can express Q2/p as

Q2

p
= q2,0 +Q2,1/2 +Q2,1 +O3/2,

where

q2,0 =

(
n

f1

)2(
1 +

f2
f3

)
s0,

Q2,1/2 =

(
n

f1

)2 [{(
1 +

f2
f3

)
S1/2 +

f2
f3

s0T1/2

}
− 2

√
2

f1

(
1 +

f2
f3

)
s0W1

]
,

Q2,1 =

(
n

f1

)2 [{(
1 +

f2
f3

)
S1 +

f2
f3

S1/2T1/2 +
f2
f3

s0T1

}
− 2

√
2

f1

{(
1 +

f2
f3

)
S1/2 +

f2
f3

s0T1/2

}
W1

+
6

f1

(
1 +

f2
f3

)
s0W

2
1

]
.

In addition, it is also expanded that

B1√
p
= b1,0 +B1,1/2 +B1,1 +O3/2,

where

b1,0 =
n

f1
ω∆2,

B1,1/2 =
n

f1

{(
Z1√
p
−

√
f2
f3

Z2√
p

)
∆−

√
2

f1
ω∆2W1

}
,

B1,1 =
n

f1

{
−∆

2

√
f2
f3

Z2√
p
T1/2 −

√
2

f1

(
Z1√
p
−

√
f2
f3

Z2√
p

)
∆W1 +

2

f1
ω∆2W 2

1

}
.
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Sorting in descending order, it can be described that(
1 +

f2
f3

T

)
S = s0

(
1 +

f2
f3

)
(1 + T̃1/2 + S̃1/2) +O1,

where S̃1/2 = S1/2/s0 and T̃1/2 = {(f2/f3)/(1 + f2/f3)}T1/2, and so√(
1 +

f2
f3

T

)
S =

√
s0

(
1 +

f2
f3

)(
1 +

1

2
(T̃1/2 + S̃1/2)

)
+O1.

Substituting this expansion into B2/p, and using Maclaurin expansion of (1 +
√
2/f1W1)

−1 up to the

term with order of f
−1/2
1 , we have

B2

p
= B2,1/2 +B2,1 +O3/2,

where

B2,1/2 =
n

f1

√(
1 +

f2
f3

)
s0

Z3√
p
,

B2,1 =
n

f1

√(
1 +

f2
f3

)
s0

{
1

2
(T̃1/2 + S̃1/2)−

√
2

f1
W1

}
Z3√
p
.

Substituting these expansions in (2) and (3), and coordinating it in order, (2) and (3) can be represented
as the sum of terms with descending order, respectively, which are

(−1)i+1
√
v̂x+ Ui − (−1)iûi = (−1)i+1

√
n2(n+ 1)

(m+ 1)2(m+ 2)
s0ω

−1x+ Ui,1/2 + Ui,1 +O3/2,

V = ω−2 n2(n+ 1)

(m+ 1)2(m+ 2)
s0 + ω−2Q2,1/2 + ω−2Q2,1 +O3/2,

where

Ui,1/2 = AiQ1,1/2 − τiB1,1/2 +
(−1)i+1p√

N1N2

B2,1/2,

Ui,1 = AiQ1,1 − (−1)i+1

√
n(n+ 1)

(m+ 1)(m+ 2)

ω−1x

8q
3/2
1,0

Q2
1,1/2 +

(−1)i+1p√
N1N2

B2,1 − τiB1,1

+
n

(m− 1)(m+ 1)

[
(−1)i+1

(
p

N2
− p

N1

)
− ω−2

]
,

Ai = (−1)i+1

√
n(n+ 1)

(m+ 1)(m+ 2)

ω−1

2
√
q1,0

x− (−1)i+1

2

(
p

N2
− p

N1

)
+

ω−2

2
.

These expansions lead that

Ri =
(−1)i+1

√
v̂x+ Ui + (−1)i+1ûi√

V
= (−1)i+1x+Ri,1/2 +Ri,1 +O3/2,

where

Ri,1/2 = −1

2
(−1)i+1xQ̃2,1/2 + Ũi,1/2,

Ri,1 = (−1)i+1x

(
3

8
Q̃2

2,1/2 −
1

2
Q̃2,1

)
− 1

2
Ũi,1/2Q̃2,1/2 + Ũi,1

6



with

Ũi,j/2 = Ui,j/2

/{√
n2(n+ 1)

(m+ 1)2(m+ 2)
s0ω

−1

}
,

Q̃i,j/2 = Qi,j/2

/{
n2(n+ 1)

(m+ 1)2(m+ 2)
s0

}
.

By Taylor expansion,

Φ(Ri) = Φ((−1)i+1x) + ϕ((−1)i+1x)
[
Ri,1/2 +Ri,1

]
− (−1)i+1x

2
ϕ((−1)i+1x)R2

i,1/2 +O3/2.

Since Ri,1/2 is represented as the linear combination of {Z1, Z2, Z3,W1, . . . ,W4}, E[Ri,1/2] = 0. As a
result, we give the following theorem.

Theorem 1. Let
x̃i = x−

{
(−1)i+1Ê[Ri,1]−

x

2
̂E[R2

i,1/2]
}
,

where Ê[Rk
i,j ] is E[Rk

i,j ] with replacing ∆2 by ∆̂2. For i = 1, 2,

P

(
(−1)i+1W − ûi√

v̂
< (−1)i+1x̃i

∣∣∣∣∣x ∈ Πi

)
= Φ((−1)i+1x) +O3/2.

Explicit formula of E[Ri,1] and E[R2
i,1/2] can be derived, which are given in Appendix.

Based on the expansion, we set cutoff point ci as

ci =
√
v̂

[
(−1)i+1zα −

{
(−1)i+1Ê[Ri,1]−

(−1)i+1zα
2

̂E[R2
i,1/2]

}]
+ ûi (i = 1, 2),

where zα is the α percentile point of the standard normal distribution. The cutoff point c1(c2) makes
the desired misclassification probability to be α within the error O3/2. The other misclassification
probabilities can be described as

P (W > c1|x ∈ Π2) = E

[
Φ

(
−(c1 − û2) + U2 − û2√

V

)]
,

P (W < c2|x ∈ Π1) = E

[
Φ

(
(c2 − û1) + U1 + û1√

V

)]
,

respectively. Note that

v̂/V
p→ 1,

U1 + û1
p→ 0, U2 − û2

p→ 0,

E[Ri,j/2] = Oj/2 (i, j = 1, 2).

From the expansion, we have

û1 − û2 =
n

m− 1

{
Np

N1N2

m− 1

n

u′
1B

−1u1

p
− Np

N1N2

}
= ω−2(1 + ω2∆2)

n

m+ 1
− n

m− 1
ω−2 +O1/2.

It will be found that

û1 − û2 −
n

m
∆2 p→ 0

under the asymptotic framework A1. In addition,

v̂ − n3

m3
ω−2(1 + ω2∆2)

p→ 0.

Combining these results,

lim
A1

P (W > c1|x ∈ Π2) = lim
A1

P (W < c2|x ∈ Π1) = Φ

(
z1−α − lim

A1

√
m

n

∆2

√
∆2 + ω−2

)
.
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A Proof of Lemma 1

Proof of Lemma 1. Let Γ be a orthogonal matrix of order p which the first row is proportional to δ′,
and let B = ΓAΓ′ and wi = Γvi, i = 1, 2. Then B ∼ Wp(n, Ip), w1 ∼ Np(∆e1, Ip), w2 ∼ Np(0, Ip)
and w1, w2 and B are independent;

S = (Γδ)′(ΓAΓ′)−1(Γv1)
D
= ∆e′1B

−1w1,

T = (Γv2)
′(ΓAΓ′)−1(Γv1)

D
= w′

2B
−1w1

D
=

√
w′

1B
−2w1Z

U = (Γv1)
′(ΓAΓ′)−1(Γv1)

D
= w′

1B
−1w1,

V = (Γv1)
′(ΓAΓ′)−2(Γv1)

D
= w′

1B
−2w1,

where ei denotes fundamental vector with 1 in i-th position, Z ∼ N(0, 1), and Z and {B,w1} are
independent. By using reflection matrix(Householder matrix) H between e1 and (1/

√
w′

1w1)w1,

S
D
= ∆

√
w′

1w1(He1)
′(HBH ′)−1{H(1/

√
w′

1w1)w1} = ∆w′
1(HBH ′)−1e1.

Besides,

U
D
= w′

1B
−1w1 = w′

1w1 · e′1(HBH ′)−1e1,

V
D
= w′

1B
−2w1 = w′

1w1 · e′1(HBH ′)−2e1.

Given w1, C ≡ HBH ′ ∼ Wp(n, Ip), so C and w1 are independent. Partition

C =

(
c11 c′21
c21 C22

)
and w1 =

(
w11

w21

)
.

It can be expressed that

S
D
= ∆w′

1C
−1e1 =

∆

c11·2
(w11 −w′

21C
−1
22 c21),

where c11·2 = c11 − c′21C
−1
22 c21. In addition,

U
D
= w′

1w1 · e′1C
−1e1 =

w′
1w1

c11·2
,

V
D
= w′

1w1 · e′1C
−2e1 =

w′
1w1

c211·2
(1 + c′21C

−1
22 c21).

It is noted that x ≡ C
−1/2
22 c21 ∼ Np−1(0, Ip), D ≡ C22 ∼ Wp−1(n, Ip−1), and x and D are indepen-

dent, thus w11, w21, x, D and c11·2 are independent. Using these results, we have

S
D
=

∆

c11·2
(w11 −w′

21D
−1/2x) and V

D
=

w′
11w11

c211·2
(1 + x′D−1x).

Let G be orthogonal matrix of order p − 1 which the first row is proportional to x′D−1/2. Given x
and D, y ≡ Gw21 ∼ Np−1(0, Ip−1), and it is found that w11, c11·2, x, D and y are independent.
Partitioning y = (y1 y′

2)
′, we have

S
D
=

∆

c11·2
{w11 − (Gw21)

′(GD−1/2x)} D
=

∆

c11·2
(w11 −

√
x′D−1xy1),

U
D
=

w2
11 + (Gw21)

′(Gw21)

c11·2

D
=

1

c11·2
(w2

11 + y21 + y′
2y2),

V
D
=

w2
11 + (Gw21)

′(Gw21)

c211·2
(1 + x′D−1x)

D
=

1

c211·2
(1 + x′D−1x)(w2

11 + y21 + y′
2y2).

These show the conclusion of the lemma.
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B Expectations

Firstly, we calculate E[R2
i,1/2]. It is that

E[R2
i,1/2] =

x2

4
E[Q̃2

2,1/2] + E[Ũ2
i,1/2]− (−1)i+1xE[Q̃2,1/2 · Ũi,1/2].

Since S1/2 ⊥⊥T1/2 ⊥⊥W1,

E[Q2
2,1/2] =

n4

f4
1

[(
1 +

f2
f3

)2

E[S2
1/2] +

(
f2
f3

)2

s20E[T 2
1/2] + 4 · 2

f1

(
1 +

f2
f3

)2

s20E[W 2
1 ]

]
.

Noting that

S2
1/2 =

4ω2∆2

p
Z2
1 +

2

f4
W 2

4 + 2
2ω∆
√
p

√
2

f4
Z1W4,

it holds that

E[S2
1/2] =

4ω2∆2

p
+

2

f4
.

It also holds that

E[T 2
1/2] =

2

f2
E[W 2

2 ] +
2

f3
E[W 2

3 ] =
2

f2
+

2

f3
.

Thus,

E[Q2
2,1/2] =

n4

f4
1

[(
1 +

f2
f3

)2(
4ω2∆2

p
+

2

f4

)
+

(
f2
f3

)2

(1 + ω2∆2)2
(

2

f2
+

2

f3

)

+
8

f1

(
1 +

f2
f3

)2

(1 + ω2∆2)2

]
.

For evaluating E[U2
i,1/2], note that

Q2
1,1/2 =

n2

f2
1

(
S2
1/2 +

2

f1
s20W

2
1 − 2

√
2

f1
s0S1/2W1

)
.

Thus,

E[Q2
1,1/2] =

n2

f2
1

[(
4ω2∆2

p
+

2

f4

)
+

2

f1
s20

]
=

n2

f2
1

[
2

f4
+

2

f1
+

(
4

p
+

2

f1

)
ω2∆2

]
.

Moreover, the following equalities hold.

E[B2
2,1/2] =

n2

f2
1

s0

(
1 +

f2
f3

)
1

p
=

n2

f2
1

(
1 +

f2
f3

)
(1 + ω2∆2)

1

p
,

E[B2
1,1/2] =

n2

f2
1

{(
1

p
+

f2
f3

1

p

)
ω∆2 +

2

f1
ω2∆4

}
.

From independence,

E[B1,1/2 ·B2,1/2] = E[B1,1/2] · E[B2,1/2] = 0,

E[Q1,1/2 ·B2,1/2] = E[Q1,1/2] · E[B2,1/2] = 0.
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In addition,

E[Q1,1/2 ·B1,1/2] =
n2

f2
1

[
2ω∆2

p
E[Z2

1 ] +
2

f1
s0ω∆

2E[W 2
1 ]

]
=

n2

f2
1

[(
2

p
+

2

f1

)
ω∆2 +

2

f1
ω3∆4

]
.

On the other hand,

E[U2
i,1/2] = A2

iE[Q2
1,1/2]− 2τiAiE[Q1,1/2 ·B1,1/2]

+
p2

N1N2
E[B2

2,1/2] + τ2i E[B2
1,1/2].

From independence,

E[Q2,1/2 · Ui,1/2]

=

(
n

f1

)3(
1 +

f2
f3

)
AiE[S2

1/2]− τi

(
n

f1

)3(
1 +

f2
f3

)
2ω∆2

p
E[Z2

1 ]

+ 2
2

f1

(
1 +

f2
f3

)(
n

f1

)3

s20AiE[W 2
1 ]− 2

2

f1

(
1 +

f2
f3

)(
n

f1

)3

s0τiω∆
2E[W 2

1 ]

=

(
n

f1

)3(
1 +

f2
f3

)[(
4ω2∆2

p
+

2

f4

)
+

4

f1
(1 + ω2∆2)2

]
Ai

−
(

n

f1

)3(
1 +

f2
f3

)
N3/2+(−1)i+1/2

N

2∆2

p
− 4

f1

(
n

f1

)3(
1 +

f2
f3

)
(1 + ω2∆2)

N3/2+(−1)i+1/2

N
∆2.

Next, we calculate E[Ri,1]. It can be expressed that

E[Ri,1] = (−1)i+1x

(
3

8
E[Q̃2

2,1/2]−
1

2
E[Q̃2,1]

)
− 1

2
E[Ũi,1/2Q̃2,1/2] + E[Ũi,1].

Since S1/2 ⊥⊥T1/2 ⊥⊥W1,

E[Q2,1] =
n2

f2
1

[(
1 +

f2
f3

)
E[S1] +

f2
f3

s0E[T1] +
6

f1

(
1 +

f2
f3

)
s0E[W 2

1 ]

]
.

Noting that E[S1] = 0 and E[T1] = 2/f3,

E[Q2,1] =
n2

f2
1

[
2f2
f2
3

(1 + ω2∆2) +
6

f1

(
1 +

f2
f3

)
(1 + ω2∆2)

]
.

It is described that

E[Ui,1] = AiE[Q1,1]− (−1)i+1

√
n(n+ 1)

(m+ 1)(m+ 2)

ω−1x

8q
3/2
1,0

E[Q2
1,1/2]

+
(−1)i+1p√

N1N2

E[B2,1]− τiE[B1,1] +
n

(m− 1)(m+ 1)

[
(−1)i+1

(
p

N2
− p

N1

)
− ω−2

]
,

where the following equalities hold.

E[Q1,1] =
n

f1

[
2

f1
(1 + ω2∆2)

]
,

E[B2,1] = 0,

E[B1,1] =
2n

f2
1

ω∆2.
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