
ore
.

of
t

le
ral
ot
to
va

ce
.
r

ed
he
l
ssi-

g
tor.

ics
s

an
IP

m-
is

e.
c-
to
se
ter
al

be
A Scalable Architecture for Multi-threaded JAVA Applications

Michael Mrva, Klaus Buchenrieder, Rainer Kress
Siemens AG, Corporate Technology, ZT ME 5

D-81730 Munich, Germany
{Michael.Mrva|Klaus.Buchenrieder|Rainer.Kress}@mchp.siemens.de

Abstract
The paper presents a scalable architecture for multi-

threaded Java applications. Threads enable modeling of
concurrent behavior in a more or less natural way. Thus
threads give a migration path to multi-processor
machines. The proposed architecture consists of multiple
application-specific processing elements, each able to
execute a single thread at one time. The architecture is
evaluated by implementing a portable and scalable Java
machine onto an FPGA board for demonstration.

1. Introduction

Java was originally designed for the use in embedded
electronic applications to overcome the major weakness of
C and C++ [2]. Later on it was retargeted to the internet.
Due to this, Java became very popular. It allows to run
highly interactive, dynamic, and secure applets and appli-
cations on networked computers. Nevertheless, the use of
Java for embedded systems is still interesting. It allows the
building of graphical user interfaces very simply in the
same programming environment. Maintenance can easily
be done via the inter- or intranet by reloading class files.

Embedded systems have fewer resources and more
specialized functionality than a network computer, such as
set top boxes, printers, copiers, and cellular phones [5].
These devices have special constraints like small memory,
low power, specified performance, etc. These require-
ments are fulfilled from so-called application-specific inte-
grated processors (ASIPs) [8]. ASIPs are optimized
processors for a few (or in most cases one) applications.
Since such programs never (or less frequently) change, the
hardware can be highly optimized towards specific goals.
The idea, described here, is to combine the advantages of
both Java and ASIPs, retrieving the Java application-spe-
cific integrated processor (JASIP).

The prototype of the JASIP architecture is realized on
an FPGA board having in total a gate capacity of 100000
gates and an attached memory board. The prototype con-
sists of several (currently up to three) JASIP processing

elements (JPE). The architecture also scales well to m
JPEs if the required gate capacity is available (figure 1)

Java allows a high degree of parallelism because
its multi-threading capabilities. Threads provide efficien
multiprocessing and distribution of tasks. They enab
modeling of concurrent behavior in a more or less natu
way. Though threads are often helpful, they usually are n
always trivial to master because of race hazards leading
corrupted data, deadlocks, fairness, or starvation. Ja
simplifies thread programming to a certain degree sin
multi-threading primitives are built into the language
Threads give a migration path to multi-processo
machines. Thus the JASIP architecture is well support
by performing a single thread at one time on a JPE. T
degree of parallelism of the application lies in full contro
of the user by using as much concurrent threads as po
ble.

The JASIP architecture is evaluated by implementin
a portable and scalable Java machine as a demonstra
Therefore the FPGA board was hooked up to a graph
liquid crystal display module (LCD) for presenting result
visually.

The paper is organized as follows: Section 2 gives
overview on Java and its execution mechanism. The JAS
architecture is described in section 3. Then its progra
ming environment is shown in section 4. The example
presented in section 5. Finally, the paper is concluded.

2. Java and its execution mechanism

Java is both, a compiled and interpreted languag
Java source code is compiled into simple binary instru
tions called bytecode. But whereas C++ is compiled
native instructions, bytecode is a universal format. The
instructions are interpreted by a Java run-time interpre
based on a Java virtual machine (JVM) [7], [6]. A gener
JVM starts executing an application with the methodmain
of the selected class [2]. The following steps have to
performed.
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Loading. If the class is not loaded already, the JVM
uses a class loader to find and load the binary representa-
tion of the class, called class file. The class file contains
the compiled version of either a Java class or a Java inter-
face. The format of such a file is documented in the JVM
specification [3].

Linkage. After loading the class file, it must be
linked. This step includes verification, preparation, and
optionally resolution. Verification checks that the loaded
code obeys the semantic requirements of Java and the
JVM. This includes the verification of the operation code,
the signature of the methods, etc.

Preparation involves the allocation of static storage
and data structures which are used by the JVM, such as
creatingstaticfields for a class or interface and the initial-
ization of these fields to the default values. The prepara-
tion step does not require to execute code up to now.

Resolution means checking symbolic references of
the loaded class to other classes and interfaces by loading
these classes and interfaces. If the symbolic references are
correct, they can be replaced by direct ones. When a prob-
lem is encountered in one of these link steps, an error is
thrown.

The resolution step is optional at the time of linkage.
Either the symbolic references are resolved very early in
this step, or late, resolving the references only when they
were actively used. The references are resolved one at a
time or never when not used in the program. The early res-
olution is preferred in systems where the provided mem-
ory is fixed and all necessary class files are available and
loaded at the beginning, e.g. in embedded systems. The
resolution of symbolic references can then be shifted into
“compile-time” rather than using “run-time” for it. On the
other hand, systems with widely distributed sources like
networks, loading of classes increases traffic. Thus it is
more suitable to fetch classes only on demand, avoiding
unnecessary loading.

Initialization. Initialization consists of the execution
of any class variable initializers and static initializers of
the currently loaded class. But before this class can be ini-
tialized, its superclass and also their superclasses must be
initialized. Since Java is multi-threaded, the initialization
of a class or interface requires careful synchronization,
because another thread may try to initialize the same class
or interface at the same time. A well defined procedure
exists to avoid error in such situations, as described in [2].

3. JASIP architecture

The Java application-specific integrated processor
(JASIP) is targeted to multi-threaded applications. A
thread independently executes Java code that operates on
values and objects residing in a shared memory. Compute

instructions only operate on stack data and never on d
of the shared memory. The JASIP architecture direc
reflects these memory accessing schemes (figure 1).

A global main memory is used for storing the clas
files and the heap for the objects. Each JASIP process
element (JPE) executes a single thread at one time
implements a kind of JVM with own local memory for the
bytecode of the current method and the method frame. T
method frame contains the local variables, the opera
stack, and the frame information.

The controller is responsible for two major tasks: fo
the scheduling of threads and for supervision of acces
to the main memory. Each available JPE gets a thre
ready for execution. This thread is then completed unle
the user program blocks the thread. After finishing, a ne
thread is assigned to this JPE by the controller.

A single JPE is allowed to access the main memory
one time. A token which is passed in a round-robin ma
ner between the JPEs grants this access. Each time a
or write cycle has to be performed, the JPE waits for th
token. After all actual memory cycles are finished, th
token is released. This means, e.g. in the case of load
the bytecode from the class file to the local program me
ory, the token is released after complete loading. The p
formance loss due to blocking other main memor
accesses is tolerable, since loading the byte code to
local memory of a JPE happens rarely.

3.1 JASIP processing element

A JASIP processing element (JPE) consists of fo
main parts: the datapath with the ALU, the program mem
ory, the data memory with its addressing unit, and th
access to the global memory (figure 2). The sizes of t
memories and the datapath width are adjustable accord
to the size of the problem.

JASIP
Processing

JASIP
Processing

JASIP
Processing

Controller

Global Main
Memory

...
Element Element Element

Fig. 1. Overview on the JASIP architecture
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Datapath. The datapath consists of an ALU and two
registers (A and B). Register A is able to load its upper
byte and lower byte separately. So in case of a 16 bit data-
path, a word can simply be built out of two byte values. An
instruction profiling of the current application leads to the
instruction set of the ALU. This means, besides the basic
functionality of the ALU, like add, subtract, shift, and con-
ditions, custom operators can be added. Since each JPE
should be able to run any thread of the application, all
JPEs use the same architectural parameters.

Program memory.The program memory contains
the bytecode of the actual method. Its width is 8 bit, as
specified in the Java virtual machine. The program counter
(PC) can be loaded, stored (in the method frame), or incre-
mented. The instruction register (IR) triggers the control
unit.

Local data memory.The local data memory con-
tains the actual method frame and the frame of the calling
method. Thus a reloading of data after a return from the
called method is not necessary. The address generation
unit for this memory consists of a small ALU with register
file (Adr.RF). The register file contains the references to
the top of the stack (optop), the local variables (vars), and
the frame information (frame). A memory address register
(MAR) addresses the memory. Figure 3 shows the organi-
zation of the local memory. Each time a new method is
invoked, a new method frame is created (figure 3 right
side). The stack is constructed to allow overlap between
the methods, enabling direct parameter passing without
requiring any copying of the parameters, like in the pico-
Java architecture [4]. Parameters values of the operand
stack become part of the local variables of the new frame.
The frame info is used to store the referencesoptop, vars,
frame, the return PC etc. The new references of the new

method frame can easily be computed since the size of
memory for the local variables and the frame info
known. The operand stack is empty at the beginning.
case of a return to the caller method, the old values a
restored from the frame info.

In the current prototype there is no mechanisms
avoid stack overflow errors, like e.g. a dribbling stac
mechanism. The size of the memory is adjusted accord
to the requirements of the Java program following th
ASIP approach. These requirements are given by t
JASIP programming environment.

Global memory access.The global memory is
addressed indirect via a lock table (figure 4). The obje
reference from stack, points to a lock table with the actu
base address of the main memory and a bit indicati
whether the targeted object is locked. The lock table
enlarged, each time a new object is created. If the lock
free (zero), the addition of the base and the offset (tak
from the bytecode) results in the actual address. Oth
wise, the access is denied and the token allowing mem
access of the current JPE is transferred to the next J
After the token passed one round, another access can
tried.

Garbage collect.Java removes objects which are n
longer needed with a low priority garbage collection pro
cess. There is no special algorithm specified in the Ja
language. Thus no behavior can be guaranteed. In
JASIP architecture, the controller is responsible for ga
bage collection. It just again uses the space on top of
heap which is not used anymore. So currently no gaps
the heap are removed and nofinalize() method is evalu-
ated. Of course the entries in the lock table are remov
too.

Fig. 2. A single JASIP processing element

Progr.
Mem.

PC+1

A B

Add.RF

MAR

MAR’

IR

Control Unit

Progr.
Mem.

PC+1

A B

Adr.RF

MAR

Local
Data

MAR’

from/to
global memory

IR

Control Unit

ALU Memory

Fig. 3. Local memory with its method frames
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3.2 Handling of threads

In addition to the platform-specific run-time system,
Java has approximately 22 fundamental classes that con-
tain architecture-dependent methods [7]. These native
methods serve as a gateway to the real world. Though
Java, in general, is architecture-neutral, the concrete thread
package is platform-dependent (least common denomina-
tor approach).

A new thread is born when an instance of the
java.lang.threadclass is created. The thread remains idle
until its start() method is called. The thread then wakes up
and proceeds to execute therun() method of its target
object. Once it is started it runs until therun() method fin-
ishes, the thread’sstop() method is called, or it is
destroyed. All runnable threads are maintained in a list by
the controller of the JPEs. On every free JPE, a thread
from the top of the list is scheduled. Usually, this thread
runs until it finishes, realizing a round-robin schedule.

There are several methods which allow to control the
execution of a thread. Figure 5 shows the relations of the-
ses methods in the thread state diagram. The bubble ‘run-
nable’ contains also the bubble ‘running’. For graphical
reasons, it is drawn separately.

The methodssuspend()and resume()operate on the
current thread object and therefore require no argument.
They are used to arbitrarily pause and restart the execution
of a thread. In the JASIP architecture, a thread is paused,
but it is still remaining on its JPE. Obviously, if the threads
in all JPE are suspended, a deadlock occurs and an error is
thrown. This decision was taken because saving the status
of a thread will require very much time. The local data
memory has to be saved in the main memory. The idea of
suspend()is used in situations where the setup of a thread
is very expensive. So ifsuspend()is used rarely in these
cases, it is cheaper to freeze the status of a JPE instead of
saving the status into the global memory.

The methodsleep()will cause the thread to sleep for
a given period of time. A counter in the controller will take
care of waking up the thread. During sleeping, the thre
still remains on its JPE.

The most common need for synchronizing threads
to serialize the access to an object. Only a single thread
a time can manipulate on an object. This is done by ma
ing the method with the keywordsynchronized. When the
method is called, a lock is given the current object and
other method has access to that memory (see also the
of section 3.1 ’global memory access’). The methods
wait() andnotify()extend this capability. A thread gives up
its lock by usingwait() at any arbitrary point and then
waits for another thread to give it back by callingnotify().
In this case the thread still remains on its JPE, just givin
away its lock and waiting to receive it back. Whenwait ()
is called with an argument, the thread will continue work
ing after the time specified by the argument. Withnotify-
All() all waiting threads are continued.

Java allows to change priorities of threads. In the cu
rent prototype a thread with higher priority is schedule
earlier, but no other thread is pre-empted. If each JPEs
executing a thread, the high prior thread has to wait unti
running thread finishes on a JPE. Thus callingyield(), a
thread will not give up its JPE. It still will continue. Due to
the availability of multiple JPEs there is no necessity
yield a thread. I/O blocking is transparent and not utiliz
able by the user.

4. JASIP programming environment

Programming of the JASIP consists of two parts: sy
thesizing the hardware and compiling the Java source co
(figure 6).

Java compiler.The source code can be complie
with any Java compiler to get the Java bytecode (class fi

Fig. 4. The lock mechanism of the global main
memory

MAR’

ObjectRef.
Lock

BaseAddress

Offset

...

MAR’

Global Main
Memory

from local
Program Memory

Lock Table

Fig. 5. Thread state transition diagram
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of the source code). This step is completely platform inde-
pendent. While an interpreter based on the Java virtual
machine start now with the execution, our approach ana-
lyzes and optimizes the bytecode of the current application
for the JASIP architecture.

Class loader.The class loader searches for all neces-
sary class files to run the current application and assigns
them to actual addresses of the main memory.

Code analyzer.The code analyzer tries to find out
how large the program and the local data memory has to
be and which instructions occur. Therefore it analysis the
hierarchy of the method invocations using the profiling
information of the.prof file of the java interpreter. Each
time, a new method is invoked, the local variables, the
frame information, and the rest of the operand stack is
added on the local data memory. Thus, the deeper the
method hierarchy, the larger the memory has to be. The
size of the requested stack depth and the number of local
variables required is taken from the class file. Of course,
the same is done with the program memory. The memory
sizes, which directly influence the necessary addressing
space, determine the datapath width of the address genera-
tion unit. Depending on the occurring instructions in the
bytecode the complexity of the ALU is chosen. These
architectural parameters are passed to the synthesis tool on
the hardware part.

Synthesis tool.Input to the synthesis tool is a generic
core description of JASIP. The tool itself consists currently
of the Synopsys synthesis tool [9] and schematic entry
using Xilinx tools like X-BLOX [10]. Output to the JASIP
analyzer is whether the requested architecture can be build
or not, and for configuring the FPGA board the configura-
tion bit stream.

JASIP optimizer. The JASIP optimizer resolves the
symbolic references in the Java bytecode to actu
addresses following the principle of early resolution. Thu
speeding up the application. How this is done, is shown
the two examples method invocation and accesses
fields.

Field access.In the case of a field access viaputfield,
a JVM uses the two indexbytes from the bytecode whi
follow the keywordputfield to construct an index to the
constant pool of the current class. The constant pool ite
will be a field reference to the class name and a field nam
The item is resolved to a field block pointer which ha
both the field width in bytes and the field offset in bytes
The field at that offset from the start of the object refe
enced by the object reference (on the operand stack) w
be set to the value on top of the operand stack [3]. In t
JASIP bytecode, the field width and the field offse
directly follows the keywordputfield. Thus the main mem-
ory can be directly set to the value on top of the stack.
will be addressed via the object reference from the sta
and the offset.

Method invocation.In the case of a method invoca-
tion, the arguments are on top of the stack followed by t
object reference. The lookup in the constant pool is simil
to the field access. If the method is not found in the curre
class file, its superclass is searched, and so on (in the c
of invokevirtual). Details can be found in [2]. In the JASIP
architecture, the address of the required method block f
lows directly the keywordinvoke. The number of argu-
ments are found in the method block. If the method
marked synchronized, the lock of the object reference s
The object reference and the arguments become the in
local variables of the new method (see also figure 3). Ex
cution continues with the first instruction of the new
method, as specified in the JVM specification.

5. Example

As an example we developed a Java applet that dra
an oscillating parabola curve on the screen. It consists
two classes WPDriver (WP stands for WavePainter) a
StripePainter. The idea is to partition the applet frame in
a number of vertical stripes and to assign a separate thr
to each stripe. In figure 7, eight threads are shown for si
plicity.

The task of each thread is to draw an appropriate p
of the desired curve on its own stripe. To accomplish th
job, we used a pattern which we called the “Wrappe
Driver-Runner” pattern. In its abstract form (figure 8; in
UML notation [1]), it consists of a subclass of clas
Thread and a second class Driver that implements
interface Runnable.

Fig. 6. Overview on the JASIP programming
environment
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The superclass Thread serves as a wrapper for the
Runnable Driver which additionally becomes the simulta-
neous parent of all instances of the Subclass. The concrete
application of the “Wrapper-Driver-Runner” pattern is
derived from the abstract pattern by substituting Subclass
by StripePainter, instance by runners, n by grid, and Driver
by WPDriver, resp. A part of the Java source code of the
example is shown in listing 1.

Prototype. The proposed JASIP architecture will be
evaluated by implementing the above Java example. To
build the demonstrator a proprietary FPGA board was
hooked up to a high resolution graphics liquid crystal dis-
play module (LCD). The FPGA-board carries four Xilinx
4025 chips with a total of 100000 equivalent gates. Three
FPGAs are used for implementing a JPE each and the
forth is used for the controller. Once the FPGA-board is
configured, the platform is running stand alone, and may
be used as a portable prototype of the implemented appli-
cation.

The LCD module provides a resolution of 480 x 12
pixels on a screen of 242 mm by 69 mm. The whole scre
is divided into four independent segments. A single se
ment supplies 240 x 64 pixels (figure 9).

The 12-pin edge connector at the lower right corn
establishes the interface to the display control circuit. T
LCD module clocks pixel data serially into the specifi
segment with a clock rate of up to 2.5MHz. Each of the
segments is addressed individually and allows to write
the display in parallel mode. This important feature resu
in a speed up factor of four accessing the display memo
Shared memory access times are crucial to the overall p
formance of highly parallel systems. The display memo
is an exclusive resource, and is usually the bottleneck
data exchange. We used an interleaved memory struct
that is reflected by the display memory organization. Th
speeds up the overall system performance significantly.

In our example, the demonstrator needs high da
exchange rates from the FPGA board to the display
draw smooth curve-movements along the display cycle
An important task to gain maximum performance, is ba
ancing the processing time of each JPE corresponding
the display access rate. Ideally, all JPEs are calculat
data in parallel. Using the presented scheme no JPE ha
access memory during a display read cycle, since each J
has his own local memory associated. In rare cases a J
needs to write to the display memory in a display-rea

Fig. 7. The oscillating parabola wave and the
responsible threads
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Fig. 8. Abstract “Wrapper-Driver-Runner” pattern

Subclass

1..n

instance:

runner
{ordered}

driver

param

wrapper
«conforms»
client

Thread

Driver
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Runnable

1..n

1

Subclass

1

1

Listing 1. Part of the Java source code of the
“Wrapper-Driver-Runner” example

public class WPDriver extends
java.applet.Applet
implements Runnable {

...
public void start() {

for (int i = 0; i < grid; i++) {
runners[i] = new

StripePainter(this, i);
runners[i].start();

}
}
...

}

public class StripePainter extends
Thread {

...
StripePainter(Runnable parent, int

idx) {
super(parent);
iMT = idx;

}
...

}
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cycle, execution of the JPE will be blocked until the end of
this display-read-cycle.

In order to gain highest flexibility, which is a basic
feature of the presented JASIP architecture, a commercial
display-controller circuit is not considered for this applica-
tion. Synthesizing individual I/O drivers according to the
specification gives maximum freedom in scaling the per-
formance of the display mechanism. If certain applications
require other resolution factors, we will provide a straight
forward method to connect such devices as well. The pre-
sented JASIP architecture controls signal generation and
data conversion required for the LCD module by its own.
So no special hardware interface is required. The LCD
module allows direct connection to the FPGA-board as
depicted in figure 9. A photograph of the demonstrator is
shown in figure 10.

6. Conclusions

A scalable architecture for multi-threaded Java appli-
cations called JASIP has been presented. It combines the
advantages of Java with its simple mechanism to handle
threads, and application-specific processors (ASIPs) with
their highly optimized architecture. The parallel and scal-
able architecture of JASIP directly reflects the execution of
Java source using concurrent threads. Thus it provides an

architecture which is optimized to the current problem an
archives high speed-ups due to the parallel execution
threads. A prototype of the JASIP architecture is realiz
on an FPGA board having 100k gate capacity.

Future work will consist of the integration of pipelin-
ing, a dribbling stack mechanism for the local data mem
ory, as well as supporting exception handling.
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