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Abstract 

Although the heart rate variability (HRV) normally is 
highly synchronised with respiration during deep 
breathing, in patients with transthyretin amyloidosis we 
occasionally observe abnormal heart rate responses due 
to subtle arrhythmias. This study evaluates the use of 
cardiorespiratory coherence analysis for automatic 
detection of these abnormal patterns. 

1. Introduction

In healthy subjects, paced deep breathing (DB) with 
six breaths/min causes a marked response in the heart rate 
variability (HRV). On the other hand, patients with 
autonomic dysfunction often present reduced HRV during 
deep breathing. Therefore, the overall variation in heart 
rate during the DB test is often used as an index of 
autonomic function, e.g., in patients with diabetes 
mellitus [1], and in healthy subjects [2].  

Progressive autonomic dysfunction is common in 
patients with the hereditary and fatal disease transthyretin 
amyloidosis (ATTR), or as it is also known, familial 
autonomic polyneuropathy (FAP) [3]. ATTR is caused by 
a mutation in the transthyretin gene, which causes 
widespread deposition of amyloid fibrills, e.g., causing 
organ dysfunction and neuropathies and ultimately, death. 
Transthyretin is mainly produced by the liver, and liver 
transplantation has been the only available treatment to 
stop the progress of the disease. The efficacy of new 
medical treatments are currently evaluated in clinical 
trials, where the DB test has been selected as one of the 
tests for scoring of autonomic function [4]. 

 At our clinic, the first HRV recordings were per-
formed around 1990, as part of the clinical evaluation of 
the autonomic function in ATTR patients before eventual 
liver transplantation. DB is included as part of our study 
protocol, but ATTR patients often present arrhythmias 
due to atrioventricular blocks or other irregular heart rate 
responses during the test [3]. Therefore, we have 
questioned the reliability of the DB test in this group of 
patients. Instead, in previous studies we have evaluated 

autonomic function in ATTR patients based on recordings 
during spontaneous breathing before and after passive tilt, 
or based on data from 24-hour ECG recordings. However, 
the HRV analysis is often difficult to evaluate, since 
subtle atrial arrhythmias are common in many patients [5, 
6]. This study aimed to evaluate if cardiorespiratory 
coherence analysis could be used to detect abnormal 
HRV patterns during the DB test.  

2. Methods

One-minute sequences from paced DB (6/min) were 
obtained from 131 recordings in adult ATTR patients and 
176 healthy subjects. The recorded signals, respiration 
and the beat-to-beat variability in heart rate, were 
converted to equidistantly sampled data (using fs=5 Hz 
for re-sampling). Data were taken from previously 
performed clinical investigations. Power spectrum 
analysis was used to validate the quality of the respiration 
signals.  In this study, we only included recordings where 
>70% of the power of the respiration signal was found at 
the breathing frequency (at 0.1 Hz). 

The total power of HRV (PTOT) and the power in the 
low-frequency region (PLF; 0.04-0.15 Hz) were estimated. 
Linear regression analysis was used to estimate the age-
dependency in HRV for controls with corresponding 95% 
confidence intervals.  

The coherence function is defined as:

c12 f   p12 f  2

p1 f  p2 f  (1)

where p1 f   and p2 f   are the power spectral

density function of x1(t) and x2 (t) , and p12 ( f ) is the 

cross-power spectrum of the two signals. 
The magnitude-squared coherence was determined 

with the nonparametric Welch (averaged periodogram) 
method and by bivariate autoregressive (AR) modelling. 
We investigated the effect of two central parameters for 
each method: the length of the analysis window, or 
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equivalently the number of segments (Nseg) used for 
averaging of power spectra in the Welch method, and the 
model order in the bivariate autoregressive model. The 
coherence function was sampled at 0.1 Hz. To obtain an 
index for the overall co-variation in the two signals, we 
calculated the fraction of the total power of x1(t) that was 

coherent with x2 (t )  as follows: 

 The product of the coherence and the power spectrum 
is referred to as the coherent output power spectrum, 

pc( f )  p1( f ) c12 ( f ) (2)

This gives a measure of how much of the power of the 
output signal is caused by the input signal at different 
frequencies. Then, the fraction of the total power of x1(t) 

that is coherent with x2 (t)  is given by the coherent power 

index (CPI)  

CPI 

p1( f ) c12 ( f )df
f 0

fs /2



p1( f )df
f 0

fs /2


(3)

Non-parametric statistical methods were used in all 
comparisons, where a p-value <0.05 was considered 
statistically significant. 

Figure 1. Low-frequency (LF) power in HRV during deep 
breathing. Solid lines show the regression line and 95% 
confidence intervals for the age-dependency in controls, and 
symbols (o) show individual values in patients. 

3. Results

Figure 1 shows results from the “traditional” HRV 
analysis, where 58 (44%) patients presented PLF within 
normal limits. Note that data for controls are only 
presented as the regression line for the age-dependency in 
controls, together with the corresponding 95% confidence 
intervals. For PTOT, HRV scores were within normal 
limits in 55 patients (42%).   

Figure 2 shows results from the coherence analysis. the 
mean of AR-based coherence increased from 0.67/0.87 in 
patients/controls for AR(2), to 0.86/0.96 for AR(8). The 
Welch-based coherence decreased markedly with in-
creasing number of segments used for averaging. Both 
methods showed significantly lower coherence and CPI in 
patients than in controls; except for the trivial case where 
only one segment was used in the Welch method, since 
the coherence then will be equal to one at all frequencies. 
For AR(8) mean CPI was 0.57 in patients vs. 0.79 in 
controls (p<0.001, Mann-Whitney test).   

The relation between coherence and coherent power 
index is shown in Figure 3 (for Nseg=4 and AR(8), 
respectively). Among subjects with high coherence 
(>0.80), CPI was below 0.50 in 21 subjects (4 controls/17 
patients) for AR, and in 14 subjects (4 controls/10 
patients) for Welch. 

Figure 2. Changes in coherence and coherent power index for 
different analysis parameters. Coherence between the HRV and 
respiration signals was determined based on the Welch method 
and bivariate autoregressive modeling (AR). Boxes show range, 
interquartile range and median for all subjects. Solid line show 
mean values for controls, and dashed lines show means for 
patients. 
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Figure 3. Relation between coherence and coherent power index 
for patients (o) and controls (). Top: Welch method. Bottom: 
bivariate autoregressive modeling (AR). 
 

 
 
To further illustrate the additional information given 

by CPI, Figure 4 shows the age-dependency in HRV for 
all subjects presented as the regression line for controls 
together with the 95% confidence intervals. Symbols 
show individual values but are scaled proportionally to 1-
CPI. Thus, a large circle represents a lower CPI indicating 
a more irregular HRV pattern. Among the subjects with 
normal HRV scores (58 patients and 170 controls), AR-
based CPI was lower than 0.50 in 29% of patients and in 
5% of controls (for Welch the corresponding proportions 
for patients/controls were 40%/11%). 

 
Figure 4. Total power (PTOT) in HRV during deep breathing.  
Solid lines show the regression line and 95% confidence 
intervals for the age-dependency in controls. Symbols are scaled 
according to 1-CPI (CPI=coherent power index).  
 

 
4. Discussion and conclusion 

This study analysed HRV patterns during deep 
breathing in a cohort of patients where both severe 
autonomic dysfunction and cardiac arrhythmia are 
common findings. We started with the traditional HRV 
analysis, where the focus is on the magnitude of the heart 
rate responses. This analysis verified the expected finding 
that HRV was reduced during the DB test in the majority 
of ATTR patients, as shown in Figure 1. However, among 
those patients (and to some extent controls) that presented 
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HRV scores within normal limits, the cardiorespiratory 
coherence analysis could identify a significant number of 
subjects that presented more irregular HRV patterns than 
expected. These irregularities partly originated from 
cardiac conduction disturbances and subtle atrial 
arrhythmias, but also from different types of amplitude 
modulation that were found in the HRV signal, but not in 
the recorded respiration signal. There were also patients 
that presented very regular responses in HRV, but where 
the magnitude of these fluctuations was very low. This 
could possibly reflect a pure mechanical modulation, such 
as stretching of the sinus node, or it could indicate that 
the patient had some small residual cardiac autonomic 
modulation.  

Low values of CPI were found among patients with 
HRV scores both within and below normal limits (Figure 
4). Older controls also tended to present lower CPI (larger 
circles) than younger controls. One explanation for the 
latter is that older subjects probably have more 
difficulties in keeping a steady breathing pattern during 
the test than younger subjects. Another possibility is that 
the more marked irregularity in HRV at older age reflects 
degradation in the parasympathetic nervous system, as 
also indicated by the well-known successive reduction in 
HRV with increasing age. However, further studies are 
needed, where any eventual irregularities in the breathing 
signal are analysed in more detail than in the present 
study. 

Coherence, by itself, provided information that helped 
to identify some, but not all, subjects with abnormal HRV 
patterns. The Welch-based estimates were successively 
reduced when the number of segments used for averaging 
was increased, which also reduces the resolution in 
frequency in the estimated coherence spectrum as shown 
in Figure 2. Thus, the threshold for defining a significant 
coherence was dependent on Nseg, but the difference in 
mean values for the two groups remained relatively 
unchanged for Nseg >3. 

On the contrary, the coherence at the breathing 
frequency increased with increasing model order in the 
bivariate AR model (Figure 2). The lowest model order 
that we investigated was two, since this is the lowest 
order where a frequency component with a non-zero 
central frequency can be modelled. However, to obtain an 
estimated coherence spectrum with a peak near 0.1 Hz, a 
model order of four or higher was needed in most 
subjects. When the model order becomes high, over-
fitting may cause problems with the interpretation of the 
results. 

In particular for the coherence estimated using the AR 
model, there was a substantial number of subjects that 
presented coherence values above 0.8, but where CPI was 
below 0.5, see Figure 3. Therefore, for AR, a high 
coherence close to one probably means that there is at  
 
 

least some power at the breathing frequency, but if CPI is  
low then the HRV signal is dominated by signal 
components at other frequencies than respiration. The 
recorded signals must then be carefully inspected, e.g. to 
detect cardiac arrhythmia or other factors that could 
explain the lack of the expected heart rate response. 

Conclusion: To evaluate the reliability of the deep 
breathing test for detection of cardiac autonomic 
dysfunction in ATTR patients, we determined the 
coherent power index, CPI, as the fraction of HRV that 
was coherent with respiration. The study showed that CPI 
provided additional information to the conventionally 
used HRV indices, which can be used to identify subjects 
with “falsely” increased HRV scores due to non-
autonomic responses during deep breathing.  
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