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Abstract. A hypersonic flow about a cylindrically blunted thick plate at a zero angle of attack is numerically studied with 

the kinetic (DSMC) and continuum (Navier-Stokes equations) approaches. The Navier-Stokes equations with velocity 

slip and temperature jump boundary conditions correctly predict the flow fields and surface parameters for values of the 

Knudsen number (based on the radius of leading edge curvature) smaller than 0.1. The results of computations 

demonstrate significant effects of the entropy layer on the boundary layer characteristics. 
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INTRODUCTION 

Leading edges of small bluntness can be used as elements of advanced spacecraft and hypersonic aircraft design 

to provide a high lift-to-drag ratio. A specific feature of the high-speed flow about such edges is a significant local 

effect of rarefaction and thermal non-equilibrium even for segments of the flight trajectory where the flow about the 

vehicle is not rarefied as a whole. Because of difficulties in experimental modeling of such flows, an important task 

is the development of an efficient approach for correct simulation of high-speed flows near leading edges. 

The leading edge area may affect the flow at large downstream distances even if rarefaction effects in the vicinity 

of the leading edge are insignificant. The flow passing through the near-normal bow shock detached from the 

blunted leading edge causes formation of an inviscid entropy layer near the body. Farther downstream, the entropy 

layer is swallowed by the growing viscous boundary layer. Entropy/boundary layer interaction causes significant 

changes in boundary layer characteristics. In particular, the entropy layer greatly affects the boundary layer stability. 

At small bluntness, the laminar/turbulent transition point is displaced downstream. Greater bluntness produces a 

boundary layer transition reversal, i.e. additional blunting produces forward displacement of the transition point. 

The swallowing distance of the entropy layer is an important correlation parameter for the transition reversal [1]. If 

the rarefaction effects are significant, the flow pattern in the vicinity of the blunted leading edge becomes more 

complicated: in particular, a merged layer can be observed (as in the case of a sharp leading edge on a flat plate, see, 

e.g., [2]), where it is impossible to distinguish the shock wave, entropy layer, and boundary layer. In this case, the 

velocity distribution function may be substantially nonequilibrium; in addition, translational-rotational and 

translational-vibrational nonequilibrium may be observed. The role of these processes in the vicinity of the leading 

edge on boundary layer development is not fully understood.  

The parameter that characterizes the rarefaction and thermal non-equilibrium effects is the Knudsen number 

based on the leading edge radius of curvature Knc=λ/Rc. When the Knudsen number is of the order of 0.01 or lower, 

the continuum approach and traditional methods of computational fluid dynamics based on the Navier-Stokes (NS) 

equations are usually used. For higher Knudsen numbers up to 0.1, the NS equations should be used with taking into 

account the initial rarefaction effects through the velocity slip and temperature jump boundary conditions [3]. For 

Knudsen numbers higher than 0.1, the kinetic approach based on the solution of the Boltzmann equation is usually  



 
 

FIGURE 1.  Temperature flowfields for M=5, KnR = 0.1 (left) and KnR = 0.5 (right). 

 

employed. The most efficient numerical technique for solving the Boltzmann equation for high-speed flows is the 

Direct Simulation Monte Carlo (DSMC) method [4].  

Numerical studies of hypersonic flows about blunted leading edges are performed in the present work on the 

basis of the kinetic (DSMC) and continuum (NS equations) approaches. The use of such a combined numerical 

strategy allows us to investigate the rarefaction and thermal nonequilibrium effects in the vicinity of the leading 

edge and to assess the area of applicability of the continuum approach. Attention is also paid to development of the 

entropy layer and its interaction with the boundary layer at Knc close to the boundary of applicability of the 

continuum approach.  

NUMERICAL TECHNIQUES 

Computations of M=5 and M=10 flows of a monatomic gas near the leading edge of a cylindrically blunted thick 

plate at a zero angle of attack was conducted by both NS and DSMC codes for the Knudsen numbers Knc=0.1 - 0.5 

(the geometry is shown in Fig.1). The plate length is 10Rc. Note that the Knudsen number based on the plate length 

is within the range Kn~0.01-0.05, which is believed to be within the area of applicability of the NS equations. A 

time-explicit shock-capturing code based on a 4th order MUSCL TVD scheme for convective terms and a second-

order central difference approximation of diffusive terms were used for solving the NS equations with the velocity 

slip and temperature jump boundary conditions [3]:  
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Here the subscript s refers to the gas quantities near the wall, u is the velocity component tangential to the wall and 

Tw is the wall temperature. These boundary conditions can be deduced from an approximate solution of the kinetic 

equation in the Knudsen layer assuming the diffusive reflection of molecules from the wall with complete 

accommodation. The calculation gives for the numerical values of coefficients αu = 1.142 and αT = 0.5865. 



 
 

FIGURE 2. Surface parameters for M=5, KnR = 0.5. 

 

 
FIGURE 3. Temperature along the stagnation streamline for M=5 (left) and M=10 (right).  

 

DSMC computations were performed with the SMILE software system [5]. The plate was assumed to be 

isothermal with the temperature equal to the free-stream value. A diffuse reflection model with complete energy 

accommodation was used in the DSMC computations. The hard sphere collision model used in the DSMC 

simulations was consistent with the square root viscosity-temperature dependence in the NS computations. 

RESULTS 

The distribution of the pressure coefficient Cp, friction coefficient Cf, and Stanton number St over the plate 

surface for the Knudsen number Knc=0.5 is given in Fig. 2. For this Knudsen number, the kinetic and continuum 

approaches predict similar distributions of all parameters, namely, dimensionless pressure, friction, and heat flux. 

The NS friction coefficient values are more than 10 % greater than the DSMC values in some parts of the surface. 

The heat flux obtained in the NS computations is also higher than that predicted by the DSMC method (by more 

than 20 % for some parts of the surface). The results predicted by different approaches become closer to each other 

as the Knudsen number decreases. The pattern observed at the higher Mach number (M=10) is qualitatively similar.  



 
 

FIGURE 4. Tx/T flowfield (DSMC, M=10, Knc=0.5). 

 

As a whole, the NS equations with slip boundary conditions ensure a correct result (i.e. NS surface distributions are 

very close to DSMC ones) for Knc=0.1 and lower. 

The temperature flowfields are shown in Fig. 1 for M=5 and different Knudsen numbers. Though the NS and 

DSMC isolines in the area behind the bow shock are similar for both Knudsen numbers, a significant difference is 

observed in the shock wave thickness, which is much higher for the DSMC flowfield, especially for the higher 

Knudsen number. For M=10, the results are similar. An internal structure of the shock wave is seen in more detail in 

Fig. 3, which shows the temperature along the stagnation line for different Mach and Knudsen numbers. The 

behavior of the temperature profiles is qualitatively identical for different Mach numbers. For Knc=0.1, the flow 

along the stagnation line can be divided into the free stream, shock wave, region directly behind the shock wave 

with a moderate temperature gradient (viscous shock layer), and boundary layer directly adjacent to the stagnation 

point. The difference between the continuum and kinetic approaches is observed only inside the shock wave front 

(the DSMC method predicts a thicker wave than the NS equations). At the higher Knudsen number Knc=0.5, a 

merged layer is formed, the shock wave merges with the boundary layer, and the kinetic approach predicts a 

significantly greater wave thickness than the continuum approach (NS). The flow in the merged layer is substantially 

nonequilibrium. Figure 4 shows the field of dimensionless temperature (ratio of the temperature in the x direction to 

the total temperature, which is a parameter characterizing the anisotropy of the velocity distribution function). For 

Knc=0.5, the distribution function is substantially nonequilibrium almost in the entire flowfield in the vicinity of the 

leading edge, which is caused by the presence of a thick shock wave and also by violation of equilibrium in the flow 

near a cold wall. 

In the case considered, we cannot speak about the inviscid entropy layer, because the flow behind the bow shock 

wave front is nonequilibrium and viscous (at the higher Knudsen number, the viscous shock wave front and the 

boundary layer even merge together). At the smaller Knudsen number, the process of entropy layer formation is 

demonstrated in Fig. 5, where the flowfields and the profiles of parameters for the blunted plate with Knc=0.1 and 

for the sharp plate are compared. Plate bluntness leads to significant amplification of the shock wave, which is 

manifested, in particular, in an increase in entropy and a decrease in the Mach number behind the front. The velocity 

profiles show that the boundary layer thicknesses in these two cases are close to each other, while the high entropy 

region is substantially wider in the case of the blunted plate. This fact demonstrates the presence of an entropy layer 

propagating downstream from the subsonic region ahead of the frontal part of the blunted plate. Note that a small 

increase in entropy is observed downstream in both cases, which is associated with viscous dissipation. There is a 

decrease in entropy in an immediate vicinity of the wall because of heat losses on the cold wall.  

Figure 6 shows the streamwise velocity and entropy for different sections along x axis, which allow us to 

estimate the boundary layer evolution near the leading edge and its interaction with the entropy layer. At the smaller 

Knudsen number, the boundary layer is clearly seen as a region with a high gradient of velocity near the wall; with 

increasing y, there follows a constant velocity flow up to the shock wave where a high velocity gradient is again 

observed. At the higher Knudsen number, the boundary layer and the shock wave are rather weakly separated from 

each other at small distances from the edge; a plateau with a constant value of velocity at the boundary layer edge is 

formed only at X/R=10. The entropy curve is non-monotonic for both Knudsen numbers. At Knc=0.1, it has two 

peaks: one is the entropy maximum inside the shock wave, and the other peak is associated with the presence of the 

entropy layer. At the higher Knudsen number, the first peak is always observed, while the second peak is formed at 



some distance from the leading edge. The figures at larger downstream distances illustrate gradual swallowing of the 

entropy layer by the growing boundary layer. A more detailed study of this process should be performed on flat 

plates of considerably greater lengths.  

SUMMARY AND CONCLUSIONS 

A hypersonic flow around a blunted thick plate at a zero angle of attack in the transitional regime is numerically 

simulated by DSMC and Navier-Stokes solvers. It is demonstrated that the Navier-Stokes equations can be 

successfully used to describe the viscous flow behind the shock wave at Knudsen numbers based on the bluntness 

radius smaller than 0.1 is the initial rarefaction effects are taken into account through velocity slip and temperature 

jump boundary conditions on the plate surface. At Knudsen numbers about 0.5, the rarefaction effects are more 

noticeable; in particular, there is significant anisotropy of the distribution function, but the Navier-Stokes equations 

still yield a qualitatively correct result. 

The emergence of the bow shock wave on a blunted plate leads to formation of an entropy layer, which cannot be 

considered as inviscid in the range of parameters considered. At Knudsen numbers about 0.5, the entropy layer is 

inside the merged layer, which is formed by merging of the shock wave and the boundary layer. At Knudsen 

numbers about 0.1, the shock wave is separated from the boundary layer. As the boundary layer grows, it swallows 

the entropy layer.  

 

 

 

  
 

FIGURE 5. Entropy / Mach number flowfields and y-profiles of temperature and velocity for blunted and sharp plates (NS, 

M=10). 
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FIGURE 6. Entropy / Velocity y-profiles at different locations (NS, M=10). 
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