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ABSTRACT 
A full Eulerian finite difference method has been 

developed for solving a dynamic interaction problem between 
Newtonian fluid and hyperelastic material. It facilitates to 
simulate certain classes of problems, such that an initial and 
neutral configuration of a multi-component geometry converted 
from voxel-based data is provided on a fixed Cartesian mesh. A 
solid volume fraction, which has been widely used for 
multiphase flow simulations, is applied to describing the multi-
component geometry. The temporal change in the solid 
deformation is described in the Eulerian frame by updating a 
left Cauchy-Green deformation tensor, which is used to express 
constitutive equations for incompressible hyperelastic 
materials. The present Eulerian approach is confirmed to well 
reproduce the material deformation in the lid-driven flow and 
the particle-particle interaction in the Couette flow computed 
by means of the finite element method. It is applied to a 
Poiseuille flow containing biconcave neo-Hookean particles. 
The deformation, the relative position and orientation of a pair 
of particles are strongly dependent upon the initial 
configuration. The increase in the apparent viscosity is 
dependent upon the developed arrangement of the particles. 

INTRODUCTION 
Numerical simulations of Fluid-Structure Interaction (FSI) 

problems would make it possible to predict the effect of a 
medical treatment and help one decide the treatment strategy in 
clinical practice. In particular, a blood flow simulation is 
expected to contribute to assisting the surgical planning of a 
cardiovascular disease and a brain aneurysm. Recently, there 
are growing expectations for its applications along with a 
progress in imaging and computational technologies. It is also 
expected to contribute to the field of life science, such as in the 
understanding of the very essence of life and the demonstration 
of pathological mechanisms. It is of great importance to 
develop numerical techniques suitable for the characteristics of 
body tissues, which are flexible and complicated in shape, 
when attempting to rationalize and to generalize the fluid-
structure coupled analyses. The expectations include the further 
understandings of the micro/mesoscopic behavior of the 
flexibly deformable Red Blood Cells (RBCs) in plasma useful 
for evaluating the macroscopic blood rheology, and the 
thrombosis formation as aggregation of platelets, of which the 
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motion is remarkably affected by the RBC inducing a 
transverse fluid fluctuation. 

As in the case of industrial products, if a given blueprint 
can provide precise information on the boundary shape, the 
generation of meshes can be easily automated in many cases 
and accurate computations can be performed. However, a 
blueprint does not exist for the human body, and it therefore 
requires the acquisition of the multi-component geometric data 
converted from CT/MRI medical images before the mesh 
generation. The basic idea of the medical image-based 
simulation is found in [1, 2] dealing with blood flows in 
arteries. To predict the motion of moving/deforming objects, a 
finite element method based on an interface-tracking approach 
using a body-fit Lagrangian mesh, which includes Arbitrary 
Lagrangian Eulerian (ALE) [3, 4] and Deforming-Spatial-
Domain/Space-Time (DSD/ST) [5, 6] methods, attains a highly 
accurate computation. An Eulerian-Lagrangian approach such 
as Immersed Boundary (IB) [7, 8] and Immersed Finite 
Element (IFE) [9] methods, in which the fluid and solid phases 
are separately formulated on the fixed Eulerian and Lagrangian 
grids, respectively, is also feasible and effective for the 
purpose. The ALE, DSD/ST, IB, and IFE approaches have been 
applied to a wide variety of biological problems. However, if 
the finite element is used for the analysis of a system involving 
complicated geometry of solid and/or a large number of 
objects, it requires not only a high computational cost but also a 
great effort to reconstruct the mesh at each time step when the 
medical image is converted into voxel data. As pointed out in 
[10, 11], technical knowledge and expertise are required for the 
mesh generation and reconstruction. To release the FSI 
simulation from the mesh distortion and/or the mesh 
reconstruction procedure, and to extend the applicability to 
certain additional classes of problems, full Eulerian approaches 
[1219] and particle-in-cell approaches [20,21] have been 
explored.  

The authors formulated the basic equations suited for 
monolithically treating the moving boundary kinematics and 
the dynamics in interaction between Newtonian fluid and 
hyperelastic material [18]. The numerical treatment is similar to 
the Volume-Of-Fluid (VOF), level-set or front-tracking method 
frequently applied to two-phase flow problems, namely, though 
the grid resolution is high enough to capture the interfacial 
profile, the grid system is not boundary-fit but rectangular. In 
consideration that the voxel data contain the volume fractions 
of fluid and solid, a VOF function [22] is introduced to 
describe the multi-component geometry. Further, the left 
Cauchy-Green deformation tensor [23], which quantifies a 
level of solid deformation, is introduced on each grid point and 
temporally updated to describe a Mooney-Rivlin law [24, 25]. 
The method does not restrict the particle Reynolds number 
range as long as the cell Reynolds number is of the order unity 
or less. It has been demonstrated significant advances in our 
understanding of the geometrical flexibility [16,18]. 

In the present paper, firstly, we will outline the basic 
equations of the system consisting of Newtonian fluid and 

hyperelastic material, and how to implement the given voxel-
based geometry into the code. Secondly, we will explore the 
validity of the advocated numerical method. Thirdly, we will 
demonstrate three-dimensional motions of biconcave neo-
Hookean particles in a Poiseuille flow.  

 

NOMENCLATURE 
B  left Cauchy-Green deformation tensor. 
c1, c2  moduli of elasticity. 
D  strain rate. 
I  unit tensor. 
L  velocity gradient tensor. 
p  pressure. 
t  time 
v  velocity vector. 
 
Symbols 
  volume fraction. 
  viscosity.
  density. 
  deviatoric Cauchy stress tensor.
 
Subscripts 
f  fluid phase. 
s  solid phase. 
0  initial state. 
 
Superscripts 
  transpose 
   deviatoric part of second-order tensor.
 

BASIC EQUATIONS 

Governing equations 
The fluid and solid are assumed to be incompressible and 

to possess the same density. We use one set of governing 
equations for the whole flow field, which is one of the standard 
ways in multiphase flow simulations, and known as a one-fluid 
formulation [26]. The mass and momentum conservations are 

 
· 0, v                     (1) 

 · · ,t p      v v v τ           (2) 

 
where the deviatoric Cauchy stress stress  is modeled in the 
subsequent subsection.  

Constitutive equations 
The constitutive equations are described on an Eulerian 

frame adjusted to the voxel-based geometry. The fluid and solid 
phases are distinguished by the volume fraction of solid s, 
which obeys  
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· 0.t s s    v                  (3) 

 
We assume that fluid is Newtonian, and the solid stress has 
both the elastic and viscous components. The deviatoric 
Cauchy stress  is written in a mixture form 
 

1 2

2(1 )

  2 2 (tr( ) ( · ) ) 2 ,{ }
s f

s sc c

 

 

 





    

D

B B B B B D

τ
 

(4) 
where c1, and c2 denote the moduli of elasticity of a linear 
Mooney-Rivlin material, and ( ) / 2T  D vv  the strain 

rate. The prime on the second-order tensor stands for the 
deviatoric tensor, namely, tr( ) / 3   T IT T  for a tensor T. 

To avoid the numerical instability stemming from a rather 
rough distribution of B in the fluid region [13, 18], we 
introduce a modified deformation tensor B  to be zero in the 
fluid region: 
 

1/2
min

min

for

0

,

for .
s s

s

  
 

 
 



B
B               (5) 

 
The second term in the right-hand-side of (4) immediately 
reads 

1/2
1 22 2 (tr( ) ( ) 2 .· )s s sc c      B B B DB B      

 
The left Cauchy-Green deformation tensor obeys  
 

· · · 0,T
t     B v B B BL L             (6) 

 
where ( ) L v  denotes the velocity gradient tensor. 

General descriptions of numerical methods 
The basic equations are directly solved by means of the 

finite difference method using a uniform mesh. All the spatial 
derivatives are approximated by the second-order central 
difference scheme on a staggered grid [27], except the 
advection terms in (3) and (6) solved by the fifth-order WENO 
method [28, 29]. To integrate the equations in time, we employ 
the second-order Adams-Bashforth and Crank-Nicolson 
schemes. To complete the time marching in the momentum 
equation (2) and to simultaneously satisfy the solenoidal 
condition (1), we employ the SMAC procedure [30] by solving 
a Poisson equation for the pressure. For a more detailed 
description, we refer the readers to [18]. 

The solid volume fraction s0 at the starting point is given 
as a set of artificial voxel data. As a preprocessing, we 
numerically compute the ratio of the occupied solid to each 
control volume from the initial configuration of the system 
geometry, and construct the distribution ofs0. 

VALIDATION TESTS 

A solid motion in a lid-driven cavity flow 
We made a comparison with well-validated FSI analysis 

[18]. We perform full Eulerian simulations of deformable solid 
motion in a lid-driven cavity with the same setup and 
conditions as in [31], in which a mixed Lagrangian and 
Eulerian approach was employed. The initial setup is 
schematically illustrated in figure 1(a). The size of the cavity is 

1 1x yL L   . The cavity is bounded by rigid walls. Initially, 

the system is at rest. The unstressed solid shape is circular with 
a radius of 0.2, and centered at (0.6, 0.5). At t = 0, to drive the 
fluid and solid motions, the top wall starts to move at a speed 
of VW = 1 in x direction. The material properties are  = 1, f = 
s = 102, c1 = 0.05 and c2 = 0. 

t = 1.17t = 0

t = 3.52t = 2.34

t=5.86t = 4.69

t=0

t=8.20t=7.03

(a) (b)

(c) (d)

(e)

(f)

(g) (h)

 

 
 

FIGURE 1.  COMPARISON OF THE SOLID DEFORMATION 
IN THE LID-DRIVEN FLOW WITH THE AVAILABLE 
SIMULATION RESULTS [31]. 
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Figure 1 visualizes the particle deformation and the 
streamlines for eight consecutive time instants. The solid 
curves correspond to the particle outlines obtained in [31]. The 
dotted points correspond to the material points inside the 
particle predicted by the present full Eulerian simulation with a 
mesh 41024 102 . These are tracked just to transfer images of 
the particle deformation, but we did not use these material 
points for computing solid stress and strain. The particle moves 
and deforms driven by the fluid flow, and exhibits highly 
deformed shape when the particle approaches the wall. It 
should be noticed that no special artifact for avoiding a 
particle-wall overlap is implemented into the present method 
because the particle-wall hydrodynamic repulsion is likely to 
be brought due to the geometry change via the particle 
deformation. The solid shapes predicted by the present Eulerian 
simulation are in excellent agreement with the well-validated 
results in [31]. 

 

 

Two particles interaction in a Couette flow 
Further, we made a comparison [18] with the available 

numerical analysis of the interaction between two deformable 
particles in a Couette flow performed in [32], in which the ALE 
approach was employed. The computational extent is 

8 4x yL L   . Initially, the system is at rest. Two unstressed 

solid particles are initially circular with a radius of 0.5, and 
centered at xc,A = (2, 2.5) and xc,B = (6, 1.5) as depicted in 
figure 2(a). The upper and lower plates located at y = 4 and y = 
0, respectively, start to move impulsively to drive the fluid and 
solid motions at speeds of upper 1WV   and lower 1WV    in x 

direction. The no-slip condition is imposed on the plates, while 

the periodic condition is applied in x direction. The material 
properties are  = 1, f = 20, s = 0, c1 = 0 and c2 = 40. 

 
 

 
 

Figure 2 visualizes the two-particle shape for five time 
instants. The dotted markers are, again, to represent the solid 
deformations in the present full Eulerian simulation with a 
mesh 1024 512 . The arrows at the particle centers are the 
instantaneous translating velocity vectors. The dashed curves in 
figure 2 correspond to the outlines of the particles obtained in 
[32]. As examined in [32], the particles experience somehow 
complicated interactions involving the “roll over”' and “bounce 
back” modes even in such a simple system. The solid shape 
obtained by the present Eulerian simulation is again in 
agreement with the well-validated result [32], indicating that 
the particle-particle interaction is also reasonably captured by 
the present approach. 

 

 
Figure 3 shows the temporal evolution of the yc-position of 

the particle centroid for various grid resolutions 
( 128 64x yN N   , 256 128 , 512 256 ,1024 512 ). In the 

ALE computation [32], the finite element mesh is refined 
within the particle-particle gap, whereas in the present Eulerian 
simulation, the grid size is uniform and fixed. When the plot 
shows peaks around t = 3, t = 16 and t = 20, the gap between 
the particles is narrow, and the particle undergoes relatively 
strong hydrodynamic force owing to a squeezing effect. Such a 
narrow-gap effect is less resolved by the present method than 
the full Lagrangian method especially for the low spatial 
resolution cases, that is reflected on the larger deviations from 
the result in [32] preferentially at the peaks. In the higher 
spatial resolution, the profiles of the present simulation get 
closer to the ALE result [32]. 

FIGURE 3.  TEMPORAL EVOLUTION OF PARTICLE yc-
POSITION FOR VARIOUS NUMBER OF GRID POINTS. 
COMPARISON WITH THE RESULTS IN [32]. FIGURE 2.  COMPARISON OF THE PARTICLE-PARTICLE 

INTERACTION WITH THE AVAILABLE SIMULATION 
RESULTS [32]. 
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BICONCAVE PARTICLES IN A POISEUILLE FLOW 
One of the strong advantage of the present simulation 

method is characterized by no process of generation and 
reconstruction of the unstructured meshes. The use of the 
Eulerian method makes it easily possible to perform a FSI 
simulation even on a target with a complicated geometry, if the 
distribution of the solid volume fraction at the starting point is 
provided. As examples of the Eulerian analyses, three-
dimensional interactive motions of several neo-Hookean 
discoid biconcave particles, which replicate the shape of RBC, 
in Poiseuille flows are demonstrated. 

The initial and neutral shape of the particle is biconcave. 
Following [33], we describe the initial interface of the particle, 
of which the centroid is located at (xc, yc, zc), together with a 
characteristic length a, as 

 2
1 2 3

1
1 ,

2
cx x

b b b
a

  
            (7) 

with the coefficients b1 = 0.207, b2 = 2.003, and b3 = 1.123. 
We set to 2 2 2{( ) ( }) /c cy y z z a   . The system is 

bounded by the bottom (y = 0) and top (y = Ly) plates, and is 
periodic in x and z directions with the periodicity of Lx and Lz, 
respectively . Initially, the system is at rest. To pump the fluid 
and solid, the uniform pressure gradient / xP L  is applied 

to the system for the time 0t  . The system is supposed in 
stationary equilibrium before the driving pressure is imposed. 
The size of the computational domain is 

7.2 7.2 7.2x y zL L L      with the number of grids of 

128 128 128  . The particle characteristic length is a = 1.36, 
and the driving pressure gradient is / 1xP L  . Initially, 16 

unstressed particles are seeded in the system as shown in 
Figure 4(a). Temporal evolution of the particle position and 
orientation is shown in Figure 4. The particles deform and 
translate in the downstream. As the time goes on, they rotate 
and tend to be more mixed. 

To check whether the an conservation is correctly captured 
by the present numerical method, we examine a budget of the 
overall kinetic-energy transport written as 

d
0,

ds f

E
I

t
                     (8) 

where ( ( / ) )x VI v P L    , ( : )s s VG     B D , ( 2 : )f V     D D , 

and ( · / 2)VE   v v  (here, ... V   stands for the average over the 

entire domain) denote the energy input rate, the strain energy rate, 
the energy dissipation rate, and the kinetic-energy, respectively. 
Figure 5 shows the time history of each contribution in the left-hand-
side of (8). The double-chained curve in Fig. 5 shows the 
summation of the left-hand-side terms of (8). Its absolute value is 
much smaller than the variation of the contributions of the individual 
terms. Therefore, the system is well conserved during the simulation 
in view of the energy balance, and the energy exchange between the 
fluid and solid phases via the solid deformation is reasonably 
guaranteed. 

FIGURE 4.  SNAPSHOTS OF DISCOID BICONCAVE 
PARTICLES OF THE NEO-HOOKEAN MATERIAL IN A 
POISEUILLE FLOW. THE TOP (a), MIDDLE (b), AND 
BOTTOM (c) PANELS SHOW THE PARTICLE INTERFACES 
AT t = 0, t = 5, AND t = 20, RESPECTIVELY. THE COLOR ON 
THE WALLS INDICATE THE SHEAR STRESS 
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CONCLUSION AND PERSPECTIVES 
A full Eulerian simulation method for solving Fluid-

Structure Interaction (FSI) problems has been developed. It is 
suitable for the voxel data, which are converted from the 
medical CT/MRI image and describe multi-component 
geometry. It releases the coupling simulation from the mesh 
generation procedure. The present study demonstrated the 
validity of the simulation method, which consistently captured 
the well-validated simulation data for the deformed solid 
motion in the lid-driven cavity [31] and for two particles 
interaction in the Couette flow [32]. To demonstrate the 
feasibility in dealing with a system involving multiple bodies, 
the present Eulerian method was applied to  three-dimensional 
motions of 16 discoid biconcave neo-Hookean particles in the 
Poiseuille flow. 

If the distribution of the solid volume fraction for the 
initial geometry is given, the present approach facilitates to 
solve the FSI problem. It provides a significant boost of the 
geometrical flexibility, and thus encourages one to tackle a 
target with a complicated geometry. A characteristic of the 
Eulerian analysis is to make it easily possible to perform a 
coupled analysis using general computational algorithms for 
incompressible fluid. In consideration of a fact that a large-
scale computation is essential when a realistic system is 
analyzed, the expertise for parallelization that has been 
cultivated in the field of the computational fluid dynamics can 
be utilized, which would be a large advantage in the realization 
of massively parallel computation. The expansion of the scale 
and models allows us to analyze a series of phenomena starting 
from the adsorption, under a condition in which many red 

blood cells are present, and would gain insight into the 
dynamics in thrombosis. 

To improve the accuracy in the fluid-structure coupling, 
the ideas of the immersed interface treatment [34, 35] and the 
localized strain formulation [36] would be effective. It is a 
challenging task to overcome the multiphysics difficulty 
particularly associated with the difference in constitutive laws 
for fluid and solid. The sharp interface-capturing and the robust 
time advancement are the ongoing subject. 

ACKNOWLEDGMENTS 
This research was supported by Research and 

Development of the Next-Generation Integrated Simulation of 
Living Matter, a part of the Development and Use of the Next-
Generation Supercomputer Project of the Ministry of 
Education, Culture, Sports, Science and Technology (MEXT), 
and by the Grant-in-Aid for Young Scientist (B) 
(No.21760120) of MEXT. 

REFERENCES 
[1] Taylor, C.A., Hughes, T.J.R. and Zarins, C.K., 1998. “Finite 

element modeling of blood flow in arteries,” Comput. 
Methods. Appl. Mech. Engrg., 158, pp. 155196. 

[2] Torii, R., Oshima, M., Kobayashi, T. and Takagi, K., 2001. 
“Numerical simulation system for blood flow in the cerebral 
artery using CT imaging data,” JSME Int. J. Ser. C, 44, pp. 
982989.  

[3] Hirt, C.W., Amsden, A.A. and Cook, J.L., 1974. “An 
arbitrary Lagrangian-Eulerian computing method for all 
flow speeds,” J. Comput. Phys., 14, pp. 227253. 

[4] Hughes, T.J.R., Liu, W.K. and Zimmermann, T.K., 1981. 
“Lagrangian-Eulerian finite element formulation for 
incompressible viscous flows,” Comput. Methods Appl. 
Mech. Engrg., 29, pp. 329349. 

[5] Tezduyar, T.E., Behr, M. and Liou, J., 1992. “A new 
strategy for finite element computations involving moving 
boundaries and interfaces - the deforming-spatial-
domain/space-time procedure: I. The concept and the 
preliminary numerical tests,” Comput. Methods Appl. Mech. 
Engrg., 94, pp. 339351.  

[6] Tezduyar, T.E., Behr, M., Mittal, S. and Liou, J., 1992. “A 
new strategy for finite element computations involving 
moving boundaries and interfaces - the deforming-spatial-
domain/space-time procedure: II. Computation of free-
surface flows, two-liquid flows, and flows with drifting 
cylinders,” Comput. Methods Appl. Mech. Engrg., 94, pp. 
353371. 

[7] Peskin, C.S., 1972. “Flow patterns around heart valves: a 
numerical method,” J. Comput. Phys., 10, pp. 252271.  

[8] Peskin, C.S., 2002. “The immersed boundary method,” Acta 
Numerica, 11, pp. 479517.  

[9] Zhang, L., Gerstenbetger, A., Wang, X. and Liu, W.K., 
2004. “Immersed finite element method,” Comput. Methods 
Appl. Mech. Engrg., 193, pp. 20512067. 

FIGURE 5.  THE BUDGET OF THE KINETIC-ENERGY 
TRANSPORT IN THE POISEUILLE FLOW CONTAINING 16 
NEO-HOOKEAN PARTICLES. 

Copyright © 2011 by JSME6

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 

[10] Matsunaga, N., Liu, H. and Himeno, R., 2002. “An 
immersed-based computational fluid dynamics method for 
haemodynamic simulation,” JSME Int. J. Ser. C, 45, pp. 
989996. 

[11] Yokoi, K., Xiao, F., Lui, H. and Fukasaku, K., 2005. 
“Three-dimensional numerical simulation of flows with 
complex geometries in a regular Cartesian grid and its 
application to blood flow in cerebral artery with multiple 
aneurysms,” J. Comput. Phys., 202, pp. 119. 

[12] Van Hoogstraten, P.A.A., Slaats, P.M.A. and Baaijens, 
F.P.T., 1991. “A Eulerian approach to the finite element 
modelling of neo-Hookean rubber material,” Appl. Sci. Res., 
48, pp. 193210. 

[13] Liu, C. and Walkington, N.J., 2001. “An Eulerian 
description of fluids containing visco-elastic particles,” 
Arch. Rational Mech. Anal., 159, pp. 229252. 

[14] Dunne, T., 2006. “An Eulerian approach to fluid-structure 
interaction and goal-oriented mesh adaptation,” Int. J. 
Numer. Meth. Fluids, 51, pp. 10171039. 

[15] Cottet, G.-H., Maitre, E. and Milcent, T., 2008. “Eulerian 
formulation and level set models for incompressible fluid-
structure interaction,” Math. Modelling and Numer. Anal., 
42, pp. 471492.  

[16] Sugiyama, K., Ii, S., Takeuchi, S., Takagi, S. and 
Matsumoto, Y., 2010. “Full Eulerian simulations of 
biconcave neo-Hookean particles in a Poiseuille flow,” 
Comput. Mech., 46, pp. 147157. 

[17] Nagano, N., Sugiyama, K., Takeuchi, S., Ii, S., Takagi, S. 
and Matsumoto, Y., 2010. “Full-Eulerian finite-difference 
simulation of fluid flow in hyperelastic wavy channel,” J. 
Fluid Sci. Tech., 5, pp. 475490. 

[18] Sugiyama, K., Ii, S., Takeuchi, S., Takagi, S. and 
Matsumoto, Y., 2011. “A full Eulerian finite difference 
approach for solving fluid-structure coupling problems,” J. 
Comput. Phys., 230, pp. 596627.  

[19] Ii, S., Sugiyama, K., Takeuchi, S., Takagi, S. and 
Matsumoto, Y., 2010. “An implicit full Eulerian method for 
the fluid-structure interaction problem,” Int. J. Numer. Meth. 
Fluids, (published online doi: 10.1002/fld.2460).  

[20] Gilmanov, A. and Acharya, S., 2008. “A hybrid immersed 
boundary and material point method for simulating 3D 
fluid-structure interaction problems,” Int. J. Numer. Meth. 
Fluids, 56, pp. 21512177. 

[21] Sugiyama, K., Nagano, N., Takeuchi, S., Ii, S., Takagi, S. 
and Matsumoto, Y., 2011. “Particle-in-cell method for fluid-
structure interaction simulations of neo-Hookean tube 
flows,” Theor. Appl. Mech. Jpn., 59 (accepted).  

[22] Hirt, C.W. and Nichols, B.D., 1981. “Volume of fluid 
(VOF) method for the dynamics of free boundaries,” J. 
Comput. Phys., 39, pp. 201225.  

[23] Bonet, J. and Wood, R.D., 2008. ‘Nonlinear Continuum 
Mechanics for Finite Element Analysis,’ Chap. 4, second 
edition, Cambridge University Press, Cambridge. 

[24] Mooney, M., 1940. “A theory of large elastic 
deformation,” J. Appl. Phys., 11, pp. 582592. 

[25] Rivlin, R.S., 1948. “Large elastic deformations of isotropic 
materials IV, Further development of general theory,” Phil. 
Trans. R. Soc. A, 241, pp. 379397. 

[26] Tryggvason, G., Sussman, M. and Hussaini, M.Y., 2007. 
“Immersed boundary methods for fluid interfaces,” in 
Prosperetti, A. and Tryggvason, G. (Eds.), ‘Computational 
Methods for Multiphase Flow,’ Chap. 3, Cambridge 
University Press, Cambridge. 

[27] Harlow, F.H. and Welch, J.E., 1965. “Numerical 
calculation of time-dependent viscous incompressible flow 
of fluid with free surface,” Phys. Fluids, 8, pp. 21822189. 

[28] Jiang, G.-S. and Shu, C.-W., 1996. “Efficient 
implementation of weighted ENO scheme,” J. Comput. 
Phys., 126, pp. 202228. 

[29] Osher, S. and Fedkiw, R., 2003. ‘Level Set Methods and 
Dynamic Implicit Surfaces,’ Chap. 3, Springer, New York. 

[30] Amsden, A.A. and Harlow, F.H., 1970. “A simplified 
MAC technique for incompressible fluid flow calculation,” 
J. Comput. Phys., 6, pp. 322325. 

[31] Zhao, H., Freund, J.B. and Moser, R.D., 2008. “A fixed-
mesh method for incompressible flow-structure systems 
with finite solid deformation,” J. Comput. Phys., 227, pp. 
31143140.  

[32] Gao, T. and Hu, H.H., 2008. “Deformation of elastic 
particles in viscous shear flow,” J. Comput. Phys., 228, pp. 
21322151.  

[33] Gong, X., Sugiyama, K., Takagi, S. and Matsumoto, S., 
2009. “The deformation behavior of multiple red blood cells 
in a capillary vessel,” J. Biomech. Engrg., 131, 074504.  

[34] LeVeque, R.J. and Li, Z., 1994. “The immersed interface 
method for elliptic equations with discontinuous coefficients 
and singular sources,” SIAM J. Numer. Anal., 31, pp. 
10191044. 

[35] Li, Z. and Ito, K., 2006. ‘The Immersed Interface Method,’  
SIAM, Philadelphia. 

[36] Okada, H. and Atluri, S.N., 1995. “Embedded localized 
strain zone constitutive model in finite strain and finite 
rotation,” Proc. of Int. Conf. on Computational Engineering 
Science, pp. 21545159.  
 

 

Copyright © 2011 by JSME7

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use




