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The quantum refrigerator: The quest for absolute zero
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Abstract – The emergence of the laws of thermodynamics from the laws of quantum mechanics is
an unresolved issue. The generation of the third law of thermodynamics from quantum dynamics
is analysed. The scaling of the optimal cooling power of a reciprocating quantum refrigerator is
sought as a function of the cold bath temperature as Tc→ 0. The working medium consists of
noninteracting particles in a harmonic potential. Two closed-form solutions of the refrigeration
cycle are analyzed, and compared to a numerical optimization scheme, focusing on cooling toward
zero temperature. The optimal cycle is characterized by linear relations between the heat extracted
from the cold bath, the energy level spacing of the working medium and the temperature. The
scaling of the optimal cooling rate is found to be proportional to T

3/2
c giving a dynamical

interpretation to the third law of thermodynamics.

Copyright c© EPLA, 2009

Walter Nernst stated the third law of thermodynamics
as follows: “it is impossible by any procedure, no matter
how idealized, to reduce any system to the absolute zero
of temperature in a finite number of operations” [1,2].
This statement has been termed the unattainability
principle [3–6]. In the present study the unattainability
statement is viewed dynamically as the vanishing of the
cooling rate Q̇c when pumping heat from a cold bath
whose temperature approaches absolute zero. Finding
a limiting scaling law between the rate of cooling and
temperature Q̇c ∝ T δc quantifies the unattainability
principle.
The second law of thermodynamics already imposes

a restriction on δ [7]. For a cyclic process entropy is
generated only in the baths: σ=−Q̇c/Tc+ Q̇h/Th > 0. If
Q̇h stays bounded, |Q̇h|<C, as Tc approaches 0, then
rearranging the inequality above gives C/Th > Q̇h/Th >
Q̇c/Tc, and so

(

C
Th

)

Tc > Q̇c. This forces Q̇c→ 0 as Tc→ 0
and, expanding Qc as a series near Tc = 0, the dominant
power δ in Q̇c ∝ T δ must satisfy δ � 1. Such an exponent
has been realized in refrigerator models [7,8] where the
source of irreversibility is the heat transfer. The vanishing
of Q̇c is also consistent with the vanishing of the quantum
unit of heat transport

π2k2
B
Tc

3� [9].

(a)E-mail: yair.rezek@mail.huji.ac.il

Our goal in the present study is to set more stringent
limits on the exponent δ for a reciprocating four stroke
cooling cycle. The cooling rate is replaced by the average
refrigeration power Rc =Qc/τ where τ is the cycle period.

The quantum Otto heat pump. – We consider a
refrigerator using a controllable quantum medium as its
working fluid. Our objective is to optimize the cooling
rate in the limit when the temperature Tc of the cold
bath approaches absolute zero. A necessary condition for
operation is that upon contact with the cold bath the
temperature of the working medium be lower than the
bath temperature Tint � Tc [10]. The opposite condition
exists on the hot bath. To fulfill these requirements the
external controls modify the internal temperature by
changing the energy level spacings of the working fluid.
The control field varies between two extreme values ωc
and ωh, where ω is a working medium frequency induced
by the external field. The working medium consists of
an ensemble of non-interacting particles in a harmonic
potential. The Hamiltonian of this system, Ĥ= 1

2m P̂
2+

K(t)
2 Q̂

2, is controlled by changing the curvature K =mω2

of the confining potential.
The cooling cycle consists of two heat exchange branches

alternating with two adiabatic branches (see fig. 1). The
heat exchange branches (the isochores) take place with
ω=constant, while the adiabatic branches take place with
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Fig. 1: (Colour on-line) A typical optimal cooling power cycle
ADCB in the energy entropy SE and frequency ω plane.

the working medium decoupled from the baths. This is
reminiscent of the Otto cycle in which heat is transfered
to the working medium from the hot and cold baths under
constant volume conditions.
The heat carrying capacity of the working medium

limits the amount of heat Qc which can be extracted from
the cold bath:

Qc =EC −ED = �ωc(nC −nD), (1)

where EC is the working medium internal energy at point
C (fig. 1), ED is the energy at point D and n= 〈N̂〉 is
the expectation value of the number operator. Examining
fig. 1 nC � n

eq
C and nD � nA, where equality is obtained

under the quantum adiabatic condition [11]. Note that the
two uses of adiabatic in thermodynamics and in quantum
mechanics collide here. We use adiabatic in the thermo-
dynamic sense to mean no heat exchange. Quantum
adiabatic or quasistatic means that ω is changed suffi-
ciently slowly that a system which starts in an eigenstate
of the Hamiltonian maintains this eigenstate during the
evolution [11].
The resultng condition means also nD � n

eq
h , leading to

Qc � �ωc (neqc −neqh ). Maximum Qc is obtained for high
frequency �ωh≫ kBTh, leading to neqh = 0 and EA = 12�ωh
being the ground state energy. Then for Tc→ 0

Q∗c = �ωcneqc = �ωce
− �ωc

kBTc � kBTc, (2)

where we have substituted the value of neqc obtained from
the partition function and the last inequality is obtained
by optimizing with respect to ωc leading to �ω

∗
c = kBTc.

The general result is that as Tc→ 0, Q∗c and ω∗c become
linear in Tc.
Only a finite cycle period τ leads to a non-vanishing

cooling power Rc =Qc/τ [12]. This cycle time τ = τhc+
τc+ τch+ τh is the sum of the times allocated to each
branch, cf. fig. 1. An upper bound on the cooling rate Rc
is required to limit the exponent as Tc→ 0. The optimal
cooling rate Roptc depends on the time allocated to the
different branches.

The dynamics on the adiabatic segments is generated by
an externally driven time dependent Hamiltonian Ĥ(ω(t)).

The equation of motion for an operator Ô of the working
medium is

dÔ(t)

dt
=
i

�
[Ĥ(t), Ô(t)]+

∂Ô(t)

∂t
. (3)

Typically [Ĥ(t), Ĥ(t′)] �= 0 which leads to friction like
phenomena [13,14]: too fast adiabatic segments will
generate parasitic internal energy which will have
to be dissipated to the heat baths, thus limiting
the performance. The dynamics on the adiabatic
segments is unitary, therefore the von Neumann entropy
Svn =−kBtr{ρ̂ ln ρ̂} is constant. In contrast the energy
entropy SE changes, where SE =−kB

∑

j Pj lnPj and
Pj = tr{|j〉〈j|ρ̂} is the probability of occupying the energy
level j. Constant SE is obtained only under quasistatic
conditions. Faster operation can be shown to result in an
increase in the energy entropy and consequent entropy
production on the following isochore branch [14]. One can
therefore use the energy entropy as a gauge to determine
heat production due to the finite speed of the adiabatic
branch.
The external power of the compression/expansion

segments is the rate of change of the internal energy
of the working medium [15]. Therefore inserting Ĥ for

Ô in equation (3) leads to the power dEdt =P = 〈∂Ĥ∂t 〉.
Using the Heisenberg picture, the dynamics on the heat
exchange branches, termed isochores, are generated
by L∗(Ô) = i

�
[Ĥ, Ô] +L∗D(Ô) [16] with the dissipative

Lindblad term L∗D leading the system toward ther-
mal equilibrium of an harmonic oscillator defined by
k↑
k↓
= exp(− �ω

kBT
) [14]. For the dissipative dynamics, the

heat flow from the cold/hot bath is Q̇= 〈LD(Ĥ)〉 [13,14].
At thermal equilibrium the energy expectation value is

sufficient to fully characterize the state of a system. For
the working medium not in equilibrium, there is a family
of generalized Gibbs states [14] that completely character-
ize the system during the cycle. This is because starting
from an arbitrary initial state, the system will relax to a
unique limit cycle [17]. The states along this limit cycle
are generalized Gibbs states. Note that thermal states are
also included among the Gibbs states, which are defined
by three operators: the time-dependent Hamiltonian

Ĥ= 1
2m P̂

2+ K(t)2 Q̂
2, the Lagrangian L̂= 1

2m P̂
2− K(t)2 Q̂2

and the correlation Ĉ= ω(t)12 (Q̂P̂+ P̂Q̂). As a result

ρ̂= ρ̂(Ĥ, L̂, Ĉ). The invariance of the set Ĥ, L̂, Ĉ under
the equation of motion, is due to this set forming a closed
Lie algebra, which leads to closed equations of motion on
the adiabats as well as on the isochores [14,18].
The dynamics of the operators on the adiabats is

obtained from eq. (3):

d

dt

⎛

⎝

Ĥ

L̂

Ĉ

⎞

⎠ (t) = ω(t)

⎛

⎝

μ −μ 0
−μ μ −2
0 2 μ

⎞

⎠

⎛

⎝

Ĥ

L̂

Ĉ

⎞

⎠ (t), (4)
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where μ= ω̇
ω2 is the dimensionless adiabatic parameter.

The power becomes: P = μω(〈Ĥ〉− 〈L̂〉) [14,18]. The solu-
tion of eq. (4) depends on the functional form of ω(t).
When μ≪ 1, the number n(t) will remain constant on the
adiabats ; these are the quasistatic conditions. For most
other functions ω(t), the time evolution will involve some
quantum friction [14] and nf � ni due to the resultant
parasitic increase in the internal energy ∆E = �ωf (nf −
ni). The dissipation of this energy in particular into the
cold bath counters the cooling: Qc � �ωc(neqc −nc), there-
fore when nc >n

eq
c the refrigerator can no longer cool.

On the isochores the energy displays an exponential
approach to equilibrium:

dĤ

dt
=−Γ(Ĥ−〈Ĥ〉eq Î), (5)

where Γ= k↓− k↑ is the heat conductance. 〈Ĥ〉eq is the
equilibrium expectation of the energy. The heat transfer
becomes Q̇=−Γ(〈Ĥ〉− 〈Ĥ〉eq).
The operators L̂ and Ĉ display an oscillatory decay to

an expectation value of zero at equilibrium:

d

dt

(

L̂

Ĉ

)

(t) =

(

−Γ −2ω
2ω −Γ

)(

L̂

Ĉ

)

(t). (6)

The equations of motion (4), (5) and (6) can be solved in
closed form for certain special choices of ω(t) (cf. section
below) and numerically for any given functions ω(t) and
time allocation to the branches. After a few cycles, the
refrigerator settles down to a periodic limit cycle [17],
which allows to calculate the cooling power Rc =Qc/τ
from the expectations of Ĥ, L̂, Ĉ in the limit cycle.

Optimization of the cooling rate. – For sufficiently
low Tc, the rate limiting branch of our cycle is cooling the
working medium to a temperature below Tc (A→D along
the expansion adiabat). As Tc→ 0, the total cycle time τ is
of the order of the time of this cooling adiabat, τhc, which
tends to infinity.
Quantum friction is completely eliminated if the
adiabat proceeds quasistatically with μ≪ 1. This leads
to a scaling law Rc ∝ T δ with δ� 3. It turns out however
that it is not the only frictionless way to reach the final
state at energy ED = (ωc/ωh)EA. We describe two other
possibilities which require less time and result in improved
scaling, δ= 2 and δ= 3/2, respectively.
The first frictionless solution to eq. (4) is obtained for

μ= const, by changing the time variable to θ=
∫ t

0
ω(t′)dt′.

Then factoring out the term μ�1 and diagonalizing the time
independent part with the eigenvalues λ0 = 0 and λ± =
±Ω where Ω=

√

μ2− 4 leads to the adiabatic propagator
Ua of Ĥ, L̂, Ĉ:

Ua(t) =
ω(t)

ω(0)Ω2

⎛

⎝

μ2c− 4 μΩs 2μ(c− 1)
μΩs Ω2c 2Ωs

−2μ(c− 1) −2Ωs μ2− 4c

⎞

⎠ , (7)

where c= cosh(Ωθ), s= sinh(Ωθ) and θ(t)=− log(ω(0)ω(t) )/μ.

The cycle propagator becomes the product of the segment
propagators Ucyc = UcUchUhUhc, where Uh/c is obtained
from eq. (5) and eq. (6) on the isochores.
The energy change on the expansion adiabat is the key

for the optimal solution: A→D:

ED =
1

2
�ωc

1

Ω2
(

μ2 cosh(Ωθc)− 4
)

, θc =−
1

μ
log (C), (8)

where C = ωhωc is the compression ratio and equilibration is
assumed at the end of the hot isochore EA =

1
2�ωh

for ωh→∞. For very fast expansion μ→∞,
ED =

1
4�ωc(1/C+ C). As Tc→ 0, ED = 14�ωh which

becomes larger than Eeqc therefore the cooling stops due
to friction. For the limit of infinite time μ→ 0 leading to
the frictionless result characterized by constant n and SE .
Then ED→ 1

2�ωc which is the ground state of the oscil-
lator. At this limit since τ →∞, Rc = 0. The surprising
point is that we can find an additional frictionless point
where nc = nh, when cosh(Ωθc) = 1. Then μ< 2 and Ω
becomes imaginary leading to the critical points

μ∗ =− 2 log (C)
√

4π2+ log (C)2
, (9)

τ∗hc = (1−C)/(μ∗ωh). (10)

Asymptotically as Tc→ 0 and ωc→ 0, the critical terms
approach μ∗→−2 and with it the time allocation
τ∗hc =

1
2ω
−1
c . This frictionless solution with a minimum

time allocation τ∗hc scales as the inverse frequency ω
−1
c

which is better than the quasistatic limit where τhc ∝ ω−2c .
As we will see, it leads to δ= 2.
Inspired by these findings, we sought the minimum

time frictionless solution. The resulting optimal control
problem [19] is solvable leading to a second closed-form
solution. The optimal trajectory is of the bang-bang form
with three jumps

ω(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ωh, for t= 0,
ωc, for 0< t� τ1,
ωh, for τ1 < t< τhc,
ωc, for t= τhc,

(11)

where τ1+ τ2= τhc and the times τ1=
1
2ωc
arccos

(

ω2
h
+ω2

c

(ωh+ωc)2

)

and τ2 =
1
2ωh
arccos

(

ω2
h
+ω2

c

(ωh+ωc)2

)

are chosen such that the

number operator is preserved nf = ni. The minimum
time allocation for ωc→ 0 which is appropriate for Tc→ 0
becomes τ∗hc =

1√
ωh
ω
− 1
2

c , which is better than the solution

in eq. (10). As we show below, it leads to δ= 3/2.
The derivation of this optimum is based on constructing

an optimal control Hamiltonian, which then is found to
be linear in the control u= ω̇/ω, (the details are found
in ref. [19]). The Pontryagin maximality principle then
dictates maximal or minimal frequency at any point in
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the trajectory, with instant jumps between them. This is
because in this case one can exclude “singular” segments,
where u varies. The number of jumps and their sequence is
then determined by the boundary conditions (ω= ωh for
t= 0 and so on), and the degrees of freedom. Thus, the
above solution is derived for the case where the frequency
is constrained to remain between ωh and ωc at all times.
Both frictionless solutions lead to an upper bound on

the optimal cooling rate of the form

Rc �Aωνneqc , (12)

where A is a constant and the exponent ν is either ν = 2 for
the μ= const solution or ν = 32 for the three-jump solution.
Optimizing Rc with respect to ωc leads to a linear relation
between ωc and Tc, �ωc = κkBTc. The constant κ= 2+
P(−2e−2)≈ 1.6 for ν = 2 and κ= 3/2+P(−3/2e−3/2)≈
0.87 for ν = 32 , where P is the product-log function.
Once the time allocation on the adiabats is set the time

allocation on the isochores is optimized using the method
of ref. [14]:

R∗c =
ez

(1+ ez)2
Γ�ωc(n

eq
c −neqh ), (13)

where z =Γhτh =Γcτc and z is determined by the equation
2z+Γ(τhc+ τch) = 2 sinh(z). For the limit Tc→ 0, Γτhc is
large therefore z is large leading to

R∗c ≈
Γ(τhc+ τch)

(1+Γ(τhc+ τch))2
Γ�ωc(n

eq
c −neqh ). (14)

At high compression ratio ωh≫ ωc and if in addition
ωc≪ Γ we obtain

R∗c ≈ �ω2cneqc (15)

for the μ= const frictionless solution, and

R∗c ≈
1

2
�ω

3

2

c
√
ωhn

eq
c , (16)

for the three-jump frictionless solution. Due to the linear
relation between ωc and Tc, eqs. (15) and (16) determine
the exponent δ. We obtain δ= 3 for the quasistatic
scheduling, δ= 2 for the constant μ frictionless scheduling
and δ = 32 for the three-jump frictionless scheduling.
To check the optimization assumptions a numerical

procedure was applied to maximize the cooling rate by
adjusting the times on the four branches for a given
choice of scheduling function and the external constraints
on the cycle. These constraints are the coupling Γ, the
temperatures Tc and Th, and the frequencies ωc and ωh.
The cooling rate optimizations employed random time
allocations to the different cycle segments augmented
by a guided-search algorithm. The choice of scheduling
function ω(t) determines the exponent of the scaling
in Rc ∝ T δ. The optimal cooling rate for linear and
exponential scheduling functions are shown in fig. 2. As
a final numerical corroboration, we tried a multistep
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Fig. 2: (Colour on-line) The cooling rate as a function of
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δ
c is indicated. The lowest exponent (red squares) shows

the three-jump frictionless optimization. The next lowest (blue
circles) show the result of the optimization with µ= const. The
black diamonds correspond to ω(t)∝ exp(αt) and the highest
exponent corresponds to ω(t)∝ t (magenta triangles).

genetic algorithm allowing piecewise variation of ω(t). The
algorithm converged to a cooling rate very close to the
optimal three-jump solution.
Two main observations have led to the optimal expo-

nents as Tc→ 0, the first is that the time allocation on
the expansion adiabat sets the scaling and the second
is that the frictionless cycles have superior performance.
Figure 2 also shows the results of numerical optimizations
for the two frictionless schedules. At low temperatures the
time allocated to the adiabats dominates and scales as
τ∗hc ∝ 1/Tc for the μ= const schedule and τ∗hc ∝ 1/T

1/2
c for

the three-jump schedule. Since Qc for all cases is linear
with Tc, the asymptotic cooling rate approaches Rc ∝ T 2c
and Rc ∝ T 3/2c , respectively.

Discussion and conclusion. – The optimal quantum
refrigerator in the quest to reach the absolute zero
temperature shows a linear scaling of Q∗c with ωc and Tc.
This scaling is the minimum to eliminate the divergence
of the entropy generated on the cold bath. If the energy
level spacing �ωc cannot follow Tc, the refrigerator will be
limited by a minimum temperature. If the level spacing
follows Tc, the scaling of the cycle time is dominated by
the scheduling function ω(t) on the adiabats. The best
results were obtained for the three-jump frictionless solu-

tions which give τ ∝ ω−1/2c . The three-jump scheduling is
the minimum time frictionless solution [19]. We conjecture
that the time required by any cooling cycle is limited
by the adiabatic expansion [5]. The critical exponent
is composed from the linear relation Qc ∝ Tc and the
scaling of the minimum cycle time T

−1/2
c . Our conjecture

therefore implies that the unattainability principle is a
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consequence of dynamical considerations and is limited
by the exponent Roptc ∝ Tc3/2.
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[2] Nernst W., Ber. K. Preuss. Akad. Wiss., 52 (1906) 933.
[3] Landsberg P. T., Rev. Mod. Phys., 28 (1956) 363.
[4] Landsberg P. T., J. Phys A: Math. Gen., 22 (1989) 139.
[5] Wheeler J. C., Phys. Rev. A, 43 (1991) 5289.
[6] Belgiorno F., J. Phys A: Math. Gen., 36 (2003) 8165;
8195.

[7] Kosloff R., Geva E. and Gordon J. M., Appl. Phys.,
87 (2000) 8093.

[8] Feldmann T. and Kosloff R., Phys. Rev. E, 61 (2000)
4774.

[9] Rego L. G. C. and Kirczenow G., Phys. Rev. Lett., 81
(1998) 232.

[10] Jahnke T., Birjukov J. and Mahler G., Ann. Phys.
(Leipzig), 17 (2008) 88.

[11] Kato T., J. Phys. Soc. Jpn., 5 (1950) 435.
[12] Andresen B., Salamon P. and Berry R. S., Phys.

Today, 37, issue No. 9 (1984) 62.
[13] Kosloff R. and Feldmann T., Phys. Rev. E, 65 (2002)

055102 1.
[14] Rezek Y. and Kosloff R., New J. Phys., 8 (2006)

83.
[15] Kosloff R., J. Chem. Phys., 80 (1984) 1625.
[16] Lindblad G., Commun. Math. Phys., 48 (1976) 119.
[17] Feldmann T. and Kosloff R., Phys. Rev. E, 70 (2004)

046110.
[18] Feldmann T. and Kosloff R., Phys. Rev. E, 68 (2003)

016101.
[19] Salamon P., Hoffmann K. H., Rezek Y. andKosloff

R., Phys. Chem. Chem. Phys., 11 (2009) 1027.

30008-p5




