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Mathematical models of inventory-distribution routing problem for two-echelon agriculture products distribution network are
established, which are based on two management modes, franchise chain and regular chain, one-to-many, interval periodic order,
demand depending on inventory, deteriorating treatment cost of agriculture products, start-up costs of vehicles and so forth.Then,
a heuristic adaptive genetic algorithm is presented for themodel of franchise chain. For the regular chainmodel, a two-layer genetic
algorithmbased on oddmentmodification is proposed, inwhich the upper layer is to determine the distribution period and quantity
and the lower layer is to seek the optimal order cycle, quantity, distribution routes, and the rational oddment modification number
for the distributor. By simulation experiments, the validity of the algorithms is demonstrated, and the two management modes are
compared.

1. Introduction

Agriculture products supply chain management is impor-
tant for reducing circulation costs and improving sup-
ply chain efficiency. A key factor in agricultural prod-
ucts supply chain management is inventory-distribution
routing problem. Federgruen and Zipkin [1] established
an inventory-transportation integrated optimization model
based on one-warehouse and multiretailer distribution net-
work, and Bender’s decomposition approach is used. Burns
et al. [2] discussed the minimum cost problem on joint
optimization of inventory and transportation based on one-
dispatching point and multireceive point network under
certain demand. Daganzo [3] researched the many-to-many
inventory-transportation integrated optimization problem
with bulk stations. Anily and Federgruen [4] studied the
inventory and vehicle routing problem based on single
product, certain demand, and continuous time. Trudeau
and Dror [5] considered the situation about stochastic
demand and the limited capacity of the vehicles. Ernst
and Pyke [6] designed a heuristic algorithm to confirm

the optimal delivery frequency, according to the inventory-
transportation integrated optimization problem based on
single distributor-single retailer under customer’s random
demand. Herer and Roundy [7], Viswanathan and Mathur
[8], Bertazzi et al. [9], andChen andZheng [10] researched an
inventory-transportation integrated optimization model of
one-warehouse multiretailer distribution network based on
heuristic algorithm tominimize the costs of inventory, order-
ing, and transportation. Bertazzi and Speranza [11] proposed
an efficient heuristic algorithm for multilayer inventory-
distribution systemwith certain demand, and single supplier,
no shortage, single delivery vehicle with limited capacity.
Wang et al. [12] designed a heuristic algorithm according
to the two-echelon distribution system which takes cyclical
replenishment strategy, and the terminal customer demand
is uncertain. Zhao et al. [13] proposed a decomposition
heuristic algorithm based on Markov decision processes and
Modified 𝐶-𝑊 saving algorithm under random demand.
Tang Jiafu researched delivery planning problem in distribu-
tion centerwith the strategy of vehicle outsourcingmodel and
multiple direct transport; an integer programmingmodel was
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presented, and a genetic algorithm is designed to solve this
model.

So far, the researches about joint optimization of inven-
tory and transportation focus on the industrial products,
without considering themetamorphism of agricultural prod-
ucts. Furthermore, considering that chain operation has
become the main way of distribution network operation, in
which the distributormakes the unified supply for the retailer.
At present, there are two models about chain operation: one
is regular chain mode. The distributors and the detailers
belong to the same enterprise, which makes the direct
operation and centralized management. The other is the
franchise chain mode, on which the distributors and the
detailers do not belong to the same enterprise, and they
conclude management relationship through contracts. In
this paper, mathematical models are established about the
routing problem based on the twomodes, and corresponding
algorithm is designed to give some analysis and comparison.

2. Assumptions and Notation

A two-echelon agriculture products supply chain system
which consists of one distributor and multiple retailers is
considered, in which the distributor has a single supplier and
delivers agriculture products to the retailers. Both supplier
and retailers adapt equal periodic order strategy and order
at the beginning of period. For average profit maximization
of supply chain, the optimal order time, quantity, and vehicle
routing for distribution are to be determined.

The mathematical model is developed based on the
following assumptions and notation.

Superscript and Subscript. Subscript 0 denotes the distributor.
Subscripts 𝑖, 𝑗 denote serial number of retailers. Superscripts
𝑟, 𝑚 denote serial number of order interval period and
delivery vehicles, respectively.

Constant and Set

𝑉,𝑀: denote, respectively, set of locations of distrib-
utor and retailers and set of delivery vehicles.

𝑁,Δ𝑇, 𝑛max, and𝐺: denote, respectively, total number
of retailers, minimum order interval period, maxi-
mum order cycle length of the retailer, andmaximum
capacity of the delivery vehicles.

𝑤: denotes wholesale price per unit of the retailers’
order on the franchise chain mode.

𝜃, 𝑏: denote, respectively, the constant deterioration
rate of agriculture products and deteriorating treat-
ment cost per unit of deteriorating items.

𝐹
0
, 𝐹
𝑗
: denote, respectively, constant order cost of

distributor and retailers for each time.

ℎ
0
, ℎ: denote, respectively, inventory holding cost per

unit per unit time of distributor and retailers.

𝑠
𝑗
, V: denote, respectively, inventory shortage cost and

salvage value of surplus item per unit.

𝐵
𝑗
, 𝛼
𝑗
: denote, respectively, the customer’s basic

demand, demand, and inventory correlation coeffi-
cient for retailer 𝑗.
𝑤
0
, 𝑝: denote, respectively, wholesale price per unit

of the distributor’s order and retail price per unit of
customers’ order.
𝑑
𝑖𝑗
, 𝑐
𝑖𝑗
: denote, respectively, the minimum distance

and single vehicle freight between retailer 𝑖 and
retailer 𝑗, 𝑖, 𝑗 ∈ 𝑉.

𝑐, 𝑐
0
, 𝑐/: denote, respectively, single vehicle freight

per distance unit between different retailers, start-
up costs of single vehicle, and freight per unit of the
distributor’s order.

Variables and Symbols

𝑛
𝑗
, 𝑄
𝑗
: denote, respectively, order period’s length and

order quantity of retailer 𝑗.
𝐻, 𝑄: denote, respectively, order period’s length and
order quantity of the distributor.
Ω: distribution route,Ω = {𝑥

𝑟𝑚

𝑖𝑗
| 𝑖, 𝑗 ∈ 𝑉, 𝑚 ∈ 𝑀, 𝑟 =

1, 2, . . . , 𝐿}, where 𝑥𝑟𝑚
𝑖𝑗

is the adjacency relationship of
single vehicle𝑚 between retailer 𝑖 and retailer 𝑗,𝑥𝑟𝑚

𝑖𝑗
∈

{0, 1}; 𝐿 is the length of distribution cycle.
𝛿
𝑟

𝑗
: order symbol of retailer 𝑗 in the periodic interval

𝑟, 𝛿𝑟
𝑗
∈ {0, 1}.

𝑡
𝑗
, 𝑇
𝑗
: denote, respectively, the retailer 𝑗’s time of the

inventory level decreased to zero and retailer 𝑗’s order
cycle.
𝑘, 𝐿: denote, respectively, the distributor’s order cycle
coefficient and the length of delivery cycle.
𝐷
𝑗
(𝑡), 𝐼

𝑗
(𝑡): denote, respectively, the customers’

demand and inventory level of retailer 𝑗 at time 𝑡.
𝜋, 𝜋
𝑗
: denote, respectively, the distributor’s profit and

retailer 𝑗’s profit.
𝜋, 𝜋
𝑗
: denote, respectively, the distributor’s average

profit and retailer 𝑗’s average profit.
Π: average profit of supple chain system.

Assumption. (1) The retailers’ demand is independent, and
the demand rate is related to inventory level. Padmanabhan
and Vrat’s [14] demand model is adopted; at any time
𝑡, demand of the retailer 𝑗’s customer, 𝐷

𝑗
(𝑡), is 𝐷

𝑗
(𝑡) =

𝐵
𝑗
+ 𝛼
𝑗
𝐼
𝑗
(𝑡), where 𝛼

𝑗
is demand and inventory correlation

coefficient, 𝛼
𝑗
> 0, 𝐵

𝑗
, is basic demand, 𝐵

𝑗
≥ 0. Without loss

of generality, profit is minus when 𝐵
𝑗
= 0, that is, the retailer

cannot gain profit without customers’ basic demand.
(2) Considering the metamorphism of agricultural prod-

ucts, the longest length of retailers’ order cycle is 𝑛max. At the
ending of every order cycle, the surplus inventory is treatment
at salvage value V, V < 𝑤

0
.

(3) Agriculture products inventory of retailers deterio-
rates at constant deterioration rate 𝜃, 0 < 𝜃 < 1. The
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deteriorated items can be treated in time, and the treatment
cost is 𝑏 per deteriorated unit.

(4) Wholesale price per unit of distributor is 𝑤
0
, and

retailer price per unit is 𝑝. Inventory holding cost per unit
per unit time of distributor and retailers is ℎ

0
and ℎ, 𝑤

0
+ℎ
0
+

ℎ < 𝑝. For franchise chain mode, wholesale price per unit of
retailer’s order is𝑤,𝑤

0
+ℎ
0
< 𝑤.Then,𝑤

0
+ℎ
0
+ℎ < 𝑤+ℎ < 𝑝.

(5) On franchise chain mode, distributor and retailers
are risk neutral, sharing information based on wholesale
contract. The distributor is leader, and the retailers act as the
follower. For the distributor, shortage is not allowed and bear
all freight. The average profit of distributor and retailer is
concave functions of order cycle.

(6) Retailers’ ordering lead time is zero. Both distributor
and retailers adopt equal periodic order, and the order period
is integral multiple of the minimum interval period Δ𝑇. The
distributor’s order cycle𝐻 is integral multiple of the retailers’
order cycle 𝑛

𝑗
Δ𝑇:

𝐻 = 𝑘𝐿Δ𝑇, (1)

where 𝑘 is integer, 𝑘 ≥ 1, 𝐿 is least common multiple of any
retailer’s order cycle:

𝐿 = [𝑛
1
, 𝑛
2
, . . . , 𝑛

𝑁
] , (2)

where [⋅, ⋅, . . . , ⋅] denotes least common multiple
(7) Delivery vehicle capacity is 𝐺. Single vehicle trans-

portation cost between retailer 𝑖 and retailer 𝑗, 𝑐
𝑖𝑗
, is in

proportion to the distance. In view of vehicle start-up costs
𝑐
0
,

𝑐
𝑖𝑗
= {

𝑐𝑑
𝑖𝑗
, 𝑖 ̸= 0,

𝑐
0
+ 𝑐𝑑
𝑖𝑗
, 𝑖 = 0,

𝑖 ̸= 𝑗, ∀𝑖, 𝑗 ∈ 𝑉. (3)

From assumptions above, the retailer’s maximum inven-
tory level equal to order quantity 𝑄

𝑗
. Define 𝑡

𝑗
as time of

the inventory level decreased to zero; we have 𝑑𝐼
𝑗
(𝑡)/𝑑𝑡 =

−𝜃𝐼
𝑗
(𝑡)−𝐷

𝑗
(𝑡) = −(𝜃+𝛼

𝑗
)𝐼
𝑗
(𝑡)−𝐵

𝑗
, 𝑡 ≤ 𝑡

𝑗
.With the boundary

condition 𝐼(𝑡
𝑗
) = 0, then we have

𝐼
𝑗 (𝑡) =

{{

{{

{

𝐵
𝑗

𝜃 + 𝛼
𝑗

[𝑒
(𝜃+𝛼𝑗)(𝑡j−𝑡) − 1] , 𝑡 ≤ 𝑡

𝑗
,

0, 𝑡 > 𝑡
𝑗
.

(4)

Accordingly, the retailer’s maximum inventory level and
order quantity are

𝐼𝐻
𝑗
= 𝑄
𝑗
= 𝐼
𝑗 (𝑡)

𝑡=0
=

𝐵
𝑗

𝜃 + 𝛼
𝑗

[𝑒
(𝜃+𝛼𝑗)𝑡𝑗 − 1] . (5)

Define 𝑥
𝑟𝑚

𝑖𝑗
as adjacent relationship in order interval

period 𝑟 and vehicle𝑚:

𝑥
𝑟𝑚

𝑖𝑗

=

{{

{{

{

1, if vehicle 𝑚 directly goes to retailer 𝑗 after
serving retailer 𝑖 at the beginning of period 𝑟,

0, otherwise,
(6)

𝑖 ̸= 𝑗, ∀𝑖, 𝑗 ∈ 𝑉, 𝑚 ∈ 𝑀, 𝑟 = 1, 2, . . . , 𝑘𝐿.

DefineΩ as distribution route:

Ω = {𝑥
𝑟𝑚

𝑖𝑗
| 𝑖, 𝑗 ∈ 𝑉,𝑚 ∈ 𝑀, 𝑟 = 1, 2, . . . , 𝐿} . (7)

3. Model on Franchise Chain Mode

On franchise chain mode, supply chain is decentralized; the
optimal order quantity and order cycle rely on wholesale
price. The distributor delivery products according to the
retailers’ demand, and determine the distributor’s optimal
order quantity and order cycle.

3.1. Profit Analysis on Retailor

Proposition 1. On franchise chain mode, as far as single order
cycle 𝑛

𝑗
Δ𝑇 of retailer 𝑗 is concerned, when profit of retailer 𝑗 is

maximumzied, time of the inventory level decreased to zero, 𝑡
𝑗
,

satisfies

𝑡
𝑗
= 𝑛
𝑗
Δ𝑇. (8)

From Proposition 1, profit is maximized when 𝑡
𝑗
= 𝑇
𝑗
,

profit of retailer 𝑗, 𝜋
𝑗
(𝑇
𝑗
), is

𝜋
𝑗
(𝑇
𝑗
) = 𝑝∫

𝑇𝑗

0

[𝐵
𝑗
+ 𝛼
𝑗
𝐼 (𝑡)] 𝑑𝑡

− 𝑤∫

𝑇𝑗

0

[𝐵
𝑗
+ (𝛼
𝑗
+ 𝜃) 𝐼 (𝑡)] 𝑑𝑡

− 𝑏∫

𝑇𝑗

0

𝜃𝐼 (𝑡) 𝑑𝑡 − ℎ
𝑗
∫

𝑇𝑗

0

𝐼 (𝑡) 𝑑𝑡 − 𝐹
𝑗
.

(9)

The partials of (9) are in sequence of sales revenue, pur-
chase cost, deteriorating treatment cost, inventory holding
cost, constant order cost. From (4), (5), and (9), we have the
average profit of retailer 𝑗:

𝜋
𝑗
(𝑇
𝑗
) =

𝜋
𝑗
(𝑇
𝑗
)

𝑇
𝑗

= 𝐴
𝑒
(𝜃+𝛼𝑗)𝑇𝐽 − 1

𝑇
𝑗

−
𝐹
𝑗

𝑇
𝑗

+
𝐵
𝑗

𝜃 + 𝛼
𝑗

[𝜃 (𝑝 + 𝑏) + ℎ
𝑗
] ,

(10)

where

𝐴 =
𝐵
𝑗

(𝜃 + 𝛼
𝑗
)
2
⋅ [(𝑝 − 𝑤) 𝛼

𝑗
− (𝑤 + 𝑏) 𝜃 − ℎ

𝑗
] . (11)

From assumption (6), Let 𝑑𝜋
𝑗
(𝑇
𝑗
)/𝑑𝑇
𝑗
= 0; we have

[1 − (𝜃 + 𝛼
𝑗
) 𝑇
∗

𝑗
] 𝑒
(𝜃+𝛼𝑗)𝑇

∗
𝑗 = 1 +

𝐹
𝑗

𝐴
. (12)

Then, when profit of retailer 𝑗 is maximumzied, the optimal
order cycle 𝑇

∗

𝑗
satisfies (13). According to the constant

order interval Δ𝑇, we can find the optimal length of order
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cycle 𝑛
∗

𝑗
, and 𝜋

𝑗
approach or reach the maximum value

correspondingly:

𝑛
∗
𝑗 =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

⌊

𝑇
∗
𝑗

Δ𝑇
⌋ ,

if 𝜋𝑗 (𝑇𝑗 = Δ𝑇⌊

𝑇
∗
𝑗

Δ𝑇
⌋) ≥ 𝜋𝑗 (𝑇𝑗 = Δ𝑇⌈

𝑇
∗
𝑗

Δ𝑇
⌉) ,

⌈

𝑇
∗
𝑗

Δ𝑇
⌉ ,

if 𝜋𝑗 (𝑇𝑗 = Δ𝑇⌊

𝑇
∗
𝑗

Δ𝑇
⌋) < 𝜋𝑗 (𝑇𝑗 = Δ𝑇⌈

𝑇
∗
𝑗

Δ𝑇
⌉) ,

(13)

where ⌊⋅⌋and ⌈⋅⌉ denote, respectively, top rounding and round
down.

Correspondingly, optimal profit of retailer 𝑗 is

𝜋
𝑗
(𝑛
∗

𝑗
Δ𝑇) = 𝐴

𝑒
(𝜃+𝛼𝑗)𝑛

∗
𝑗 Δ𝑇 − 1

𝑛
∗

𝑗
Δ𝑇

−
𝐹
𝑗

𝑛
∗

𝑗
Δ𝑇

+
𝐵
𝑗

𝜃 + 𝛼
𝑗

[𝜃 (𝑝 + 𝑏) + ℎ
𝑗
] .

(14)

3.2. Profit Analysis on Distributor. From assumption (5) and
Equation (1), the distributor’s order quantity 𝑄

0
equals his

retailers’ total demand in one order cycle:

𝑄
0
=

𝑁

∑

𝑗=1

𝑘0𝐿

∑

𝑟=1

𝛿
𝑟

𝑗
𝑄
𝑗
=

𝑁

∑

𝑗=1

𝑘0𝐿/𝑛𝑗

∑

𝑙=1

𝑄
𝑗
= 𝑘𝐿

𝑁

∑

𝑗=1

𝑄
𝑗

𝑛
𝑗

. (15)

Define 𝛿𝑟
𝑗
as order symbol of retailer 𝑗 in order interval period

𝑟:

𝛿
𝑟

𝑗
= {

1, 𝑟 = 𝑧𝑛
𝑗
,

0, 𝑟 ̸= 𝑧𝑛
𝑗
,

𝑧 is integer. (16)

At the beginning of order period 𝑟, the distributor’s delivery
quantity is 𝑄𝑟

𝑗
, so

𝑄
𝑟

𝑗
= 𝛿
𝑟

𝑗
𝑄
𝑗
. (17)

Profit of the distributor is

𝜋 (𝑘, 𝑤,Ω) = 𝑤𝑄
0
− 𝑤
0
𝑄
0
− ℎ
0

𝑁

∑

𝑗=1

𝑘𝐿/𝑛𝑗−1

∑

𝑙=1

𝑛
𝑗
Δ𝑇𝑄
𝑗
𝑙 − 𝑐
/
𝑄
0

−

𝑘𝐿

∑

𝑟=1

∑

𝑚∈𝑀

𝑁

∑

𝑖=0

𝑁

∑

𝑗=0

𝑗 ̸= 𝑖

𝑐
𝑖𝑗
𝛿
𝑟

𝑗
𝛿
𝑟

𝑖
𝑥
𝑟𝑚

𝑖𝑗
− 𝐹
0
.

(18)

The partials of (18) are in sequence of sales revenue,
purchase cost, inventory holding cost, freight of purchase

products, delivery cost, and constant order cost. From (17)
and (18), we have the average profit of the distributor:

𝜋 (𝑘, 𝑤,Ω) =
𝜋 (𝑘, 𝑤,Ω)

𝑘𝐿Δ𝑇

=
1

Δ𝑇

[

[

(𝑤 − 𝑤
0
− 𝑐
/
−
ℎ
0

2
𝑘𝐿Δ𝑇)

𝑁

∑

𝑗=1

1

𝑛
𝑗

𝑄
𝑗
]

]

+
ℎ
0

2

𝑁

∑

𝑗=1

𝑄
𝑗
−

1

𝐿Δ𝑇

𝐿

∑

𝑟=1

∑

𝑚∈𝑀

𝑁

∑

𝑖=0

𝑁

∑

𝑗=0

𝑗 ̸= 𝑖

𝑐
𝑖𝑗
𝛿
𝑟

𝑗
𝛿
𝑟

𝑖
𝑥
𝑟𝑚

𝑖𝑗

−
1

𝑘𝐿Δ𝑇
𝐹
0
.

(19)

From (19), The average profit of distributor is concave
functions of 𝑘. We can find the optimal 𝑘∗, 𝑘∗ ≥ 1, and 𝜋

approach or reach the maximum value correspondingly. Let
𝑑𝜋/𝑑𝑘 = 0, we have

𝑘 =

{{

{{

{

1, ⌊𝜌⌋ ≤ 1,

⌊𝜌⌋ , ⌊𝜌⌋ > 1, 𝜋(𝑘, 𝑤,Ω)
𝑘=⌊𝜌⌋ > 𝜋(𝑘, 𝑤,Ω)|𝑘=⌈𝜌⌉,

⌈𝜌⌉ , ⌊𝜌⌋ > 1, 𝜋(𝑘, 𝑤,Ω)
𝑘=⌊𝜌⌋ < 𝜋(𝑘, 𝑤,Ω)|𝑘=⌈𝜌⌉,

(20)

where

𝜌 =
1

𝐿
√

2𝐹
0

ℎ
0
Δ𝑇∑
𝑁

𝑗=1
(1/𝑛
𝑗
)𝑄
𝑗

. (21)

3.3. Mathematical Model. On franchise chain mode, the
retailers determine their order interval 𝑛

𝑗
Δ𝑇 and order

quantity according to wholesale price 𝑤, then the distributor
determines optimal order interval 𝑘𝐿Δ𝑇, order quantity
𝑄, and distribute route Ω. The mathematical model of
inventory-distribution routing problem is

max𝜋 (𝑘, 𝑤,Ω)

= max
𝑘,𝑤,Ω

{

{

{

1

Δ𝑇

[

[

(𝑤 − 𝑤
0
− 𝑐
/
−
ℎ
0

2
𝑘𝐿Δ𝑇)

𝑁

∑

𝑗=1

1

𝑛
𝑗

𝑄
𝑗
]

]

+
ℎ
0

2

𝑁

∑

𝑗=1

𝑄
𝑗

−
1

𝐿Δ𝑇

𝐿

∑

𝑟=1

𝑁

∑

𝑖=0

𝑁

∑

𝑗=0

𝑐
𝑖𝑗
𝛿
𝑟

𝑗
𝛿
𝑟

𝑖
𝑥
𝑟𝑚

𝑖𝑗
−

1

𝑘𝐿Δ𝑇
𝐹
}

}

}

(22)
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s.t.

𝑄
𝑗
=

𝐵
𝑗

𝜃 + 𝛼
𝑗

[𝑒
(𝜃+𝛼𝑗)𝑛𝑗Δ𝑇 − 1] , (23)

𝑛
𝑗
=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

⌊

𝑇
∗

𝑗

Δ𝑇
⌋ ,

if 𝜋
𝑗
(𝑇
𝑗
= Δ𝑇⌊

𝑇
∗

𝑗

Δ𝑇
⌋)

≥ 𝜋
𝑗
(𝑇
𝑗
= Δ𝑇⌈

𝑇
∗

𝑗

Δ𝑇
⌉) , ⌊

𝑇
∗

𝑗

Δ𝑇
⌋ ≤ 𝑛max,

⌈

𝑇
∗

𝑗

Δ𝑇
⌉ ,

if 𝜋
𝑗
(𝑇
𝑗
= Δ𝑇⌊

𝑇
∗

𝑗

Δ𝑇
⌋)

< 𝜋
𝑗
(𝑇
𝑗
= Δ𝑇⌈

𝑇
∗

𝑗

Δ𝑇
⌉) , ⌈

𝑇
∗

𝑗

Δ𝑇
⌉ ≤ 𝑛max,

𝑛max,

else,

(24)

(𝜃 + 𝛼
𝑗
) 𝑇
∗

𝑗
= 1 − 𝑒

−(𝜃+𝛼𝑗)𝑇
∗
𝑗 , (25)

𝜋
𝑗
(𝑇
𝑗
) =

𝐵
𝑗

(𝜃 + 𝛼
𝑗
)
2
⋅ [(𝑝 − 𝑤) 𝛼

𝑗
− (𝑤 + 𝑏) 𝜃 − ℎ

𝑗
]

×
𝑒
(𝜃+𝛼𝑗)𝑇𝐽 − 1

𝑇
𝑗

−
𝐹
𝑗

𝑇
𝑗

+
𝐵
𝑗

𝜃 + 𝛼
𝑗

[𝜃 (𝑝 + 𝑏) + ℎ
𝑗
]

≥ 0,

(26)

𝐿 = [𝑛
1
, 𝑛
2
, . . . , 𝑛

𝑁
] , (27)

𝑘 =

{{

{{

{

1, ⌊𝜌⌋ ≤ 1,

⌊𝜌⌋ , ⌊𝜌⌋ > 1, 𝜋(𝑘, 𝑤,Ω)
𝑘=⌊𝜌⌋ > 𝜋(𝑘, 𝑤,Ω)|𝑘=⌈𝜌⌉,

⌈𝜌⌉ , ⌊𝜌⌋ > 1, 𝜋(𝑘, 𝑤,Ω)
𝑘=⌊𝜌⌋ < 𝜋(𝑘, 𝑤,Ω)|𝑘=⌈𝜌⌉,

(28)

𝜌 =
1

𝐿
√

2𝐹

ℎ
0
Δ𝑇∑
𝑁

𝑗=1
(1/𝑛
𝑗
)𝑄
𝑗

, (29)

∑

𝑚∈𝑀

𝑁

∑

𝑗=1

𝑁

∑

𝑖=1

𝛿
𝑟

𝑖
𝛿
𝑟

𝑗
𝑄
𝑗
𝑥
𝑟𝑚

𝑖𝑗
≤ 𝐺, ∀𝑟 = 1, 2, . . . , 𝑘𝐿, (30)

∑

𝑚∈𝑀

𝑁

∑

𝑗=1

𝑥
𝑟𝑚

𝑖𝑗
= 1, 𝑖 ̸= 𝑗, ∀𝑖 = 1, 2, . . . , 𝑁,

∀𝑟 = 1, 2, . . . , 𝑘𝐿,

(31)

𝑁

∑

𝑗=1

𝑥
𝑟𝑚

𝑖𝑗
≤ 1, 𝑖 ̸= 𝑗, ∀𝑖 = 1, 2, . . . , 𝑁, ∀𝑟 = 1, 2, . . . , 𝑘𝐿,

∀𝑚 ∈ 𝑀,

(32)

𝑁

∑

𝑗=1

𝑥
𝑟𝑚

𝑖𝑗
−

𝑁

∑

𝑗=1

𝑥
𝑟𝑚

𝑗𝑖
= 0, 𝑖 ̸= 𝑗, ∀𝑖 = 1, 2, . . . , 𝑁,

∀𝑟 = 1, 2, . . . , 𝑘𝐿, ∀𝑚 ∈ 𝑀,

(33)

𝑁

∑

𝑗=1

𝑥
𝑟𝑚

0𝑗
= 1, ∀𝑟 = 1, 2, . . . , 𝑘𝐿, (34)

𝑁

∑

𝑗=1

𝑥
𝑟𝑚

𝑗0
= 1, ∀𝑟 = 1, 2, . . . , 𝑘𝐿, (35)

𝑥
𝑟𝑚

𝑖𝑗
∈ {0, 1} , 𝑖 ̸= 𝑗, ∀𝑖, 𝑗 ∈ 𝑉, ∀𝑚 ∈ 𝑀, (36)

𝛿
𝑟

𝑗
= {

1, 𝑟 = 𝑧𝑛
𝑗

0, 𝑟 ̸= 𝑧𝑛
𝑗

, 𝑧 is integer, (37)

Ω = {𝑥
𝑟𝑚

𝑖𝑗
| 𝑖, 𝑗 ∈ 𝑉,𝑚 ∈ 𝑀, 𝑟 = 1, 2, . . . , 𝐿} . (38)

Constraints (23) to (26) relate to optimal strategy of the
retailer. Constraint (26) ensures that each retailer’s profit is
positive. Constraints (27) to (29) relate to optimal strategy of
the distributor. Constraint (30) is capacity limit of delivery
vehicle. Constraints (31) to (32) limit that one retailer is
visited by exactly one vehicle. Constraint (33) ensures the
equation of flow between retailers. Constraints (34) and (35)
guarantee that the starting point and the terminal point
of every distribute route are the distribute center. Finally,
restrictions (34) to (38) define the nature of the variables.

4. Model on Regular Chain Mode

Proposition 2. On regular chain mode, when the average
profit of supply chain is maximumzied, there is no surplus
products at terminal time of order cycle.That is, the relationship
between any delivery cycle of retailer, 𝑛

𝑗
Δ𝑇, and retailer 𝑗 time

of the inventory level decreased to zero, 𝑡𝑟
𝑗
, satisfies

𝑡
𝑟

𝑗
= 𝑛
𝑗
Δ𝑇 − 𝜀

𝑟

𝑗
, 𝜀
𝑟

𝑗
≥ 0, 𝑟 = 1, 2, . . . ,

𝐿

𝑛
𝑗

, ∀𝑗 = 1, 2, . . . , 𝑁.

(39)

Within one distribution cycle 𝐿, the sales revenue of
retailer 𝑗 minus inventory holding cost, shortage cost, and
deteriorating treatment cost, we have

𝜋
/

𝑗
= 𝑝

𝐿/𝑛𝑗

∑

𝑟=1

𝑄
𝑟

𝑗
− ℎ
𝑗

𝐿/𝑛𝑗

∑

𝑟=1

∫

𝑡
𝑟
𝑗

0

𝐼
𝑟

𝑗
(𝑡) 𝑑𝑡 − 𝑠

𝑗
𝐵
𝑗

𝐿/𝑛𝑗

∑

𝑟=1

(𝑛
𝑗
Δ𝑇 − 𝑡

𝑟

𝑗
)

− 𝑏

𝐿/𝑛𝑗

∑

𝑟=1

∫

𝑡
𝑟
𝑗

0

𝜃𝐼 (𝑡) 𝑑𝑡.

(40)
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Then, we have the average profit of retailer 𝑗:

𝜋
/

𝑗
=

𝜋
/

𝑗

𝐿Δ𝑇

=
𝑝

𝐿Δ𝑇

𝐿/𝑛𝑗

∑

𝑟=1

𝑄
𝑟

𝑗
−
𝑠
𝑗
𝐵
𝑗

𝐿Δ𝑇

𝐿/𝑛𝑗

∑

𝑟=1

(𝑛
𝑗
Δ𝑇 − 𝑡

𝑟

𝑗
)

−
1

𝐿Δ𝑇

𝐵
𝑗
(ℎ
𝑗
+ 𝑏𝜃)

𝜃 + 𝛼
𝑗

𝐿/𝑛𝑗

∑

𝑟=1

[
1

𝐵
𝑗

𝑄
𝑟

𝑗
− 𝑡
𝑟

𝑗
] .

(41)

The distributor’s order quantity, 𝑄, equals the total delivery
quantity in one order cycle 𝑘𝐿Δ𝑇:

𝑄 =

𝑁

∑

𝑗=1

𝑘𝐿

∑

𝑟=1

𝛿
𝑟

𝑗
𝑄
𝑟

𝑗
= 𝑘

𝑁

∑

𝑗=1

𝐿/𝑛𝑗

∑

𝑟=1

𝑄
𝑟

𝑗
. (42)

The cost of distributor is

𝜋
/
= 𝑤
0
𝑄 + 𝑐
/
𝑄 + 𝑐
/
𝑄

+

𝑘𝐿

∑

𝑟=1

∑

𝑚∈𝑀

𝑁

∑

𝑖=0

𝑁

∑

𝑗=0

𝑗 ̸= 𝑖

𝑐
𝑖𝑗
𝛿
𝑟

𝑗
𝛿
𝑟

𝑖
𝑥
𝑟𝑚

𝑖𝑗
+ 𝐹.

(43)

The partials of (43) are in sequence of purchase cost,
freight of purchase products, delivery cost, inventory holding
cost, and constant order cost.Then, we have the average profit
of the distributor:

𝜋
/
=

𝜋
/

𝑘𝐿Δ𝑇

=
1

𝐿Δ𝑇
(𝑤
0
+ 𝑐
/
)

𝑁

∑

𝑗=1

𝐿/𝑛𝑗

∑

𝑟=1

𝑄
𝑟

𝑗

+
1

𝐿
ℎ
0

𝑁

∑

𝑗=1

𝐿/𝑛𝑗

∑

𝑟=1

[(𝑟 − 1) 𝑛
𝑗
+
𝑘 − 1

2
𝐿]𝑄
𝑟

𝑗

+
1

𝐿Δ𝑇

𝐿

∑

𝑟=1

∑

𝑚∈𝑀

𝑁

∑

𝑖=0

𝑁

∑

𝑗=0

𝑗 ̸= 𝑖

𝑐
𝑖𝑗
𝛿
𝑟

𝑗
𝛿
𝑟

𝑖
𝑥
𝑟𝑚

𝑖𝑗
+

1

𝑘𝐿Δ𝑇
𝐹.

(44)

From (41) and (44), we have the average profit of supply chain:

Π
/

=

𝑁

∑

𝑗=1

𝜋
/

𝑗
− 𝜋
/

=
1

𝐿Δ𝑇

𝑁

∑

𝑗=1

𝐿/𝑛𝑗

∑

𝑟=1

{𝑝 − 𝑤
0
− 𝑐
/
−
ℎ
𝑗
+ 𝑏𝜃

𝜃 + 𝛼
𝑗

− ℎ
0
Δ𝑇

× [(𝑟 − 1) 𝑛
𝑗
+
𝑘 − 1

2
𝐿]}𝑄

𝑟

𝑗

+
1

𝐿Δ𝑇

𝑁

∑

𝑗=1

𝐿/𝑛𝑗

∑

𝑟=1

𝐵
𝑗
(
ℎ
𝑗
+ 𝑏𝜃

𝜃 + 𝛼
𝑗

+ 𝑠
𝑗
) 𝑡
𝑟

𝑗

−
1

𝐿Δ𝑇

𝑁

∑

𝑗=1

𝐿/𝑛𝑗

∑

𝑟=1

𝑠
𝑗
𝐵
𝑗
𝑛
𝑗
Δ𝑇

−
1

𝐿Δ𝑇

𝐿

∑

𝑟=1

∑

𝑚∈𝑀

𝑁

∑

𝑖=0

𝑁

∑

𝑗=0

𝑗 ̸= 𝑖

𝑐
𝑖𝑗
𝛿
𝑟

𝑗
𝛿
𝑟

𝑖
𝑥
𝑟𝑚

𝑖𝑗

−
1

𝑘𝐿Δ𝑇
𝐹.

(45)

From (45), the average profit of supply chain is concave
functions of 𝑘. So, for constant order cycle of retailers, Δ𝑇𝐿,
we can find the optimal 𝑘∗, 𝑘∗ ≥ 1, andΠ/ approach or reach
the maximum value correspondingly. Let 𝑑Π//𝑑𝑘 = 0; we
have

𝑘 =

{{{

{{{

{

1, ⌊𝜌⌋ ≤ 1,

⌊𝜌⌋ , ⌊𝜌⌋ > 1, Π
/

(𝑘
/
= ⌊𝜌⌋) > Π

/

(𝑘
/
= ⌈𝜌⌉) ,

⌈𝜌⌉ , ⌊𝜌⌋ > 1, Π
/

(𝑘
/
= ⌊𝜌⌋) < Π

/

(𝑘
/
= ⌈𝜌⌉) ,

(46)

where

𝜌 =
1

𝐿
√

2𝐹

ℎ
0
Δ𝑇∑
𝑁

𝑗=1
∑
𝐿/𝑛𝑗

𝑟=1
𝑄
𝑟

𝑗

. (47)

On regular mode, the optimal problem is to determine the
optimal order quantity 𝑄 and order cycle 𝑘𝐿Δ𝑇, delivery
quantity 𝑄

𝑟

𝑗
, 𝑟 = 1, 2, . . . , 𝐿/𝑛

𝑗
, delivery cycle 𝑛

𝑗
Δ𝑇, and

distribution route Ω, which maxmize the average profit
of supply chain. The mathematical model of inventory-
distribution routing problem is

maxΠ/ (𝑘, 𝑛
𝑗
, 𝑄
𝑟

𝑗
, Ω)

= max
{{{

{{{

{

1

𝐿Δ𝑇

𝑁

∑

𝑗=1

𝐿/𝑛𝑗

∑

𝑟=1

{𝑝 − 𝑤
0
− 𝑐
/
−
ℎ
𝑗
+ 𝑏𝜃

𝜃 + 𝛼
𝑗

−ℎ
0
Δ𝑇[(𝑟 − 1) 𝑛

𝑗
+
𝑘 − 1

2
𝐿]}𝑄

𝑟

𝑗

+
1

𝐿Δ𝑇

𝑁

∑

𝑗=1

𝐿/𝑛𝑗

∑

𝑟=1

𝐵
𝑗
(
ℎ
𝑗
+ 𝑏𝜃

𝜃 + 𝛼
𝑗

+ 𝑠
𝑗
) 𝑡
𝑟

𝑗
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−
1

𝐿Δ𝑇

𝑁

∑

𝑗=1

𝐿/𝑛𝑗

∑

𝑟=1

𝑠
𝑗
𝐵
𝑗
𝑛
𝑗
Δ𝑇

−
1

𝐿Δ𝑇

𝐿

∑

𝑟=1

∑

𝑚∈𝑀

𝑁

∑

𝑖=0

𝑁

∑

𝑗=0

𝑗 ̸= 𝑖

𝑐
𝑖𝑗
𝛿
𝑟

𝑗
𝛿
𝑟

𝑖
𝑥
𝑟𝑚

𝑖𝑗
−

1

𝑘𝐿Δ𝑇
𝐹

}}}

}}}

}

,

(48)

s.t.

𝑄
𝑟

𝑗
=

𝐵
𝑗

𝜃 + 𝛼
𝑗

[𝑒
(𝜃+𝛼𝑗)𝑡

𝑟
𝑗 − 1] , ∀𝑗 = 1, 2, . . . , 𝑁,

𝑛
𝑗
is integer,

(49)

𝐿 = [𝑛
1
, 𝑛
2
, . . . , 𝑛

𝑁
] , (50)

𝑘 =

{{{

{{{

{

1, ⌊𝜌⌋ ≤ 1,

⌊𝜌⌋ , ⌊𝜌⌋ > 1, Π
/

(𝑘
/
= ⌊𝜌⌋) > Π

/

(𝑘
/
= ⌈𝜌⌉) ,

⌈𝜌⌉ , ⌊𝜌⌋ > 1, Π
/

(𝑘
/
= ⌊𝜌⌋) < Π

/

(𝑘
/
= ⌈𝜌⌉) ,

(51)

𝜌 =
1

𝐿
√

2𝐹

ℎ
0
Δ𝑇∑
𝑁

𝑗=1
∑
𝐿/𝑛𝑗

𝑟=1
𝑄
𝑟

𝑗

, (52)

∑

𝑚∈𝑀

𝑁

∑

𝑗=1

𝑁

∑

𝑖=1

𝛿
𝑟

𝑖
𝛿
𝑟

𝑗
𝑄
𝑗
𝑥
𝑟𝑚

𝑖𝑗
≤ 𝐺, ∀𝑟 = 1, 2, . . . , 𝑘𝐿, (53)

∑

𝑚∈𝑀

𝑁

∑

𝑗=1

𝑥
𝑟𝑚

𝑖𝑗
= 1, 𝑖 ̸= 𝑗, ∀𝑖 = 1, 2, . . . , 𝑁,

∀𝑟 = 1, 2, . . . , 𝑘𝐿,

(54)

𝑁

∑

𝑗=1

𝑥
𝑟𝑚

𝑖𝑗
≤ 1, 𝑖 ̸= 𝑗, ∀𝑖 = 1, 2, . . . , 𝑁,

∀𝑟 = 1, 2, . . . , 𝑘𝐿, ∀𝑚 ∈ 𝑀,

(55)

𝑁

∑

𝑗=1

𝑥
𝑟𝑚

𝑖𝑗
−

𝑁

∑

𝑗=1

𝑥
𝑟𝑚

𝑗𝑖
= 0, 𝑖 ̸= 𝑗, ∀𝑖 = 1, 2, . . . , 𝑁,

∀𝑟 = 1, 2, . . . , 𝑘𝐿, ∀𝑚 ∈ 𝑀,

(56)

𝑁

∑

𝑗=1

𝑥
𝑟𝑚

0𝑗
= 1, ∀𝑟 = 1, 2, . . . , 𝑘𝐿, (57)

𝑁

∑

𝑗=1

𝑥
𝑟𝑚

𝑗0
= 1, ∀𝑟 = 1, 2, . . . , 𝑘𝐿, (58)

𝑛
𝑗
≤ 𝑛max, (59)

𝑥
𝑟𝑚

𝑖𝑗
∈ {0, 1} , 𝑖 ̸= 𝑗, ∀𝑖, 𝑗 ∈ 𝑉, ∀𝑚 ∈ 𝑀, (60)

𝛿
𝑟

𝑗
= {

1, 𝑟 = 𝑧𝑛
𝑗

0, 𝑟 ̸= 𝑧𝑛
𝑗

, 𝑧 is integer, (61)

Ω = {𝑥
𝑟𝑚

𝑖𝑗
| 𝑖, 𝑗 ∈ 𝑉, 𝑚 ∈ 𝑀, 𝑟 = 1, 2, . . . , 𝐿} . (62)

Constraints (49) to (52) illustrate the relationship
between 𝑛

𝑗
and 𝑄

𝑗
, 𝐿, 𝑘. Constraint (53) is capacity limit

of delivery vehicle. Constraints (54) and (55) limit that one
retailer is visited by exactly one vehicle. Constraint (56)
ensures the equation of flow between retailers. Constraints
(57) and (58) guarantee that the starting point and the
terminal point of every distribute route are the distribute
center. Constraint (59) is length limit of retailer’s order cycle.
Finally, restrictions (60) to (62) define the nature of the
variables.

5. Solution

In the following, improved genetic algorithms are developed
to solve inventory-distribution routing problem of agricul-
ture products supply chain.

5.1. HAGA for Franchise Chain Mode. On franchise chain
mode, the optimal order quantity and order cycle rely on
wholesale price, so the key to solve the optimal problem is
distribution routing. A heuristic adaptive genetic algorithm
(HAGA) is developed for it. Heuristic rules mean that adding
some routes which obtained by nearest neighbor algorithm
and saving algorithm to initial population. Adaptive rules
are that crossover ratio and mutation ratio vary with the
population’s evolution state.

Natural number code is adopted, and the chromosome
structure is

(0, 𝑎
11
, 𝑎
12
, . . . , 𝑎

1𝑢
, 0, 𝑎
21
, 𝑎
22
, . . . , 𝑎

2V, 0, . . . , 0, 𝑎𝑙1,

𝑎
𝑙2
, . . . , 𝑎

𝑙𝑤
) ,

(63)

where 𝑎st denotes serial number of task, 0 denotes distribu-
tion center, and gene fragment between two adjacent 0 is a
delivery route.

To improve quality and stability of evolution, elitistmodel
and elitist selection strategy is adopted.

PMX operator is used in crossover operation, and
reversed operator is used in mutation operation. Crossover
ratio 𝑃

𝑐
and mutation ratio 𝑃

𝑚
are expressed as follows:

𝑃
𝑐
=
{

{

{

𝑒
𝑐1

𝐽avg − 𝐽min

𝐽
, 𝐽avg − 𝐽min < 𝐽,

𝑒
𝑐2
, 𝐽avg − 𝐽min ≥ 𝐽,

(64)

where 𝑒
𝑐1
, 𝑒
𝑐2
are constant, 0 ≤ 𝑒

𝑐1
≤ 1, 0 ≤ 𝑒

𝑐2
≤ 1. 𝐽avg is the

average fitness value of the population. 𝐽min is the fitness value
of the best chromosome in the population. 𝐽 is the better one
in the cross couple

𝑃
𝑚
=

{{

{{

{

𝑒
𝑚1

𝐽 − 𝐽min
𝐽avg − 𝐽min

, 𝐽 − 𝐽min < 𝐽avg − 𝐽min,

𝑒
𝑚2
, 𝐽 − 𝐽min ≥ 𝐽avg − 𝐽min,

(65)

where 𝑒
𝑚1
, 𝑒
𝑚2

are constant, 0 ≤ 𝑒
𝑚1

≤ 1, 0 ≤ 𝑒
𝑚2

≤ 1.
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Take time limitation of calculating or generations-
stagnancy as algorithm termination rule. The algorithm
procedure is as follows.

Step 1. According to (23) to (25), determine the optimal order
cycle and order quantity of the retailers. Then, determine the
distribution cycle 𝐿 and tasks in the order interval period.
Furthermore, obtain the value of 𝜌 via (29).

Step 2. If ⌊𝜌⌋ ≤ 1, let order cycle coefficient of the distributor
𝑘 = 1 and obtain the optimal order cycle and order quantity
of the distributor.Then, call subroutine ofHAGA, seeking the
optimal distribution route of every delivery interval period,
go to Step 4.

Step 3. If ⌊𝜌⌋ > 1, let 𝑘 = ⌊𝜌⌋ and 𝑘 = ⌈𝜌⌉ and calculate,
respectively, the optimal order cycle and order quantity of
the distributor. Then, call subroutine of HAGA, seeking the
optimal distribution route of every delivery interval period;
calculate the corresponding distributor’s average profit. Fur-
thermore, determine the optimal value of 𝑘.

The algorithm procedure of HAGA is as follows.

Step (1): yield initial population, evaluate every chro-
mosome, and save the elitist chromosome.
Step (2): selection, crossover, and mutation opera-
tion, yield the new population. Evaluate the new
population, find the elitist chromosome in the new
population, and refresh the elitist chromosome saved.
Step (3): if the elitist model or the super iteration
number reaches the upper limitation go to Step (5).
Step (4): go to Step (2).
Step (5): output the optimal solution.

Step 4. Output the optimal solution: include in the optimal
order cycle, optimal order quantity of the distributor and
retailers, and the optimal distribution routes.

5.2. Two-Layer Genetic Algorithm Based on Oddment Mod-
ification for Regular Chain Mode. On regular chain mode,
the supply chain is concentrated, and it is needed to seek the
optimal solution of all decision variables. On the other hand,
owing to the capacity limitation and vehicle start-up costs,
sometimes the delivery quantity of some retailer will be less
than that have ordered to avoid the case of distribution route
with little delivery quantity. Therefore, it is more difficult
to solve the optimal problem on regular chain mode than
that on franchise chain mode. A two-layer genetic algorithm
based on oddment modification is developed to solve it. The
algorithm procedure of the upper layer is as follows.

Step 1. In the upper layer, yield initial population and calcu-
late the initial delivery quantity of every retailer according to
(23).

Step 2. The upper layer transfers the initial delivery quan-
tity of every retailer to the lower layer and obtains the
modification schemes from the lower layer. Then, evaluate

Table 1: Parameter values of retailers.

𝐵
𝑗

ℎ
𝑗

𝛼
𝑗

𝑗 = 1 40 0.22 0.2
𝑗 = 2 100 0.16 0.15
𝑗 = 3 80 0.1 0.16
𝑗 = 4 30 0.18 0.16
𝑗 = 5 150 0.2 0.1
𝑗 = 6 100 0.15 0.2
𝑗 = 7 80 0.1 0.18
𝑗 = 9 60 0.2 0.1
𝑗 = 9 120 0.2 0.2
𝑗 = 10 90 0.14 0.1
𝑗 = 11 80 0.25 0.18
𝑗 = 12 20 0.1 0.1
𝑗 = 13 130 0.2 0.16
𝑗 = 14 70 0.15 0.2
𝑗 = 15 40 0.25 0.15
𝑗 = 16 100 0.18 0.05
𝑗 = 17 50 0.25 0.15
𝑗 = 18 110 0.1 0.1
𝑗 = 19 30 0.2 0.2
𝑗 = 20 90 0.2 0.2

the modification schemes. If the current best solution is
better than the maintaining optimum individual, refresh the
optimum individual.

Step 3. If calculating time or generations-stagnancy reaches
the upper limitation go to Step 5.

Step 4. Selection, crossover, andmutation operation yield the
new population; go to Step 2.

Step 5. Output the optimal solution.
The algorithm procedure of the lower layer is as follows.

Step (1): according to the order cycle and order
quantity of the retailers transferred by the upper layer,
determine the distribution cycle 𝐿 and delivery tasks
in every order interval period by (49) to (52). Then,
calculate 𝜌 by (52).

Step (2): if ⌊𝜌⌋ ≤ 1, let order cycle coefficient
of the distributor 𝑘 = 1 and obtain the optimal
order cycle and order quantity of the distributor.
Then, call subroutine of HAGA, seeking the optimal
distribution route of every delivery interval period; go
to Step (4).

Step (3): if ⌊𝜌⌋ > 1, let 𝑘 = ⌊𝜌⌋ and 𝑘 = ⌈𝜌⌉,
calculate, respectively, the optimal order cycle and
order quantity of the distributor.Then, call subroutine
of HAGA, seeking the optimal distribution route of
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every delivery interval period, caculate the corre-
sponding distributor’s average profit. Furthermore,
determine the optimal value of 𝑘.
Step (4): check the distribution scheme obtained
by HAGA subroutine and divide the total delivery
quantity in every distribution interval period by
vehicle capacity 𝐺; if the remainders do not exceed
the threshold Δ𝐺, go to Step (6).
Step (5): relaxing the vehicle capacity limitation to𝐺+
Δ𝐺, call subroutine of HAGA and calculate again (put
the current best distribution routes into initial pop-
ulation). Compare the new distribution routes with
vehicle capacity and set the surplus delivery quantity
as oddment. Then, by selecting retailers which have
the lowest shortage cost and reducing their delivery
quantity, obtain the modification delivery quantity.
Furthermore, compare the optimal results after odd-
ment modification with those of unmodified. If the
new scheme is worse than the old, let themodification
delivery quantity be zero.
Step (6): transfer the optimal result to the upper layer
and include in the modification delivery quantity of
retailers, the optimal order cycle and quantity of the
distributor, and the optimal distribution routes.

6. Numerical Study

To illustrate the frontal model and algorithm, we consider
a distribution network with one distributor and twenty
retailers. Some parameter values are as follows: Δ𝑇 = 1,
𝑛max = 4, 𝑝 = 10, 𝜃 = 0.05, 𝑏 = 0.1, 𝑠 = 0.6, 𝑤 = 7.5,
𝑤
0
= 3,𝐹
𝑗
= 20, 𝐹

0
= 200, ℎ

0
= 0.05, 𝑐 = 0.5, 𝑐 = 4, 𝑐

0
= 80,

and 𝐺 = 1500. Other relevant parameter values are shown in
Tables 1 and 2 in the appendix.

On franchise chain mode, the parameters of HAGA
algorithm are as follows: the number of initial population is
30, 𝑃
𝑠
= 0.1, 𝑒

𝑐1
= 𝑒
𝑐2
= 0.6, 𝑒

𝑚1
= 𝑒
𝑚2

= 0.2, upper limit of
the elitist model is 15, and super iteration number is 150.

In Table 3, the optimization results of order cycle length,
order quantity, and average profit for every retailer are listed.
Correspondingly, the optimal average profit of the retailers
sums up to 3457.24. For the distributor, the optimal order
cycle length 𝐾𝐿

∗
= 6, the optimal order quantity 𝑄

∗

0
=

11533.17, and the optimal average profit is 6880.468. On
franchise chain mode, optimal average profit of the supply
chain is 10337.71. An optimal distribution route schedule of
the distributor, in which𝐾𝐿 = 6, is shown in Table 4.

On regular chainmode, the parameters of the upper layer
algorithm are as follows: the number of initial population is
40, 𝑃
𝑠
= 0.1, 𝑃

𝑐
= 0.8, 𝑃

𝑚
= 0.2, and upper limit of the

elitist model is 20. The lower layer algorithm has the same
parameters as those of algorithm on franchise chain mode
and the oddment modification threshold Δ𝐺 = 100.

In Table 5, the optimization results of order cycle length
and order quantity for every retailer are listed. Correspond-
ingly, for the distributor, the optimal order cycle length
𝐾𝐿
∗

= 2 and the optimal order quantity 𝑄
∗

0
= 3543.11.

On regular chain mode, optimal average profit of the supply

Table 3: Optimal results of retailers on ranchise chain mode.

𝑛
𝑗

𝑄
𝑗

𝜋
𝑗

𝑗 = 1 3 178.72 85.50
𝑗 = 2 1 110.70 221.17
𝑗 = 3 2 198.84 182.60
𝑗 = 4 2 74.56 59.45
𝑗 = 5 1 161.83 328.96
𝑗 = 6 3 446.80 237.46
𝑗 = 7 3 345.64 188.74
𝑗 = 9 1 64.73 119.59
𝑗 = 9 2 311.38 278.58
𝑗 = 10 1 97.10 192.22
𝑗 = 11 2 203.16 173.11
𝑗 = 12 3 75.77 35.27
𝑗 = 13 1 144.66 292.43
𝑗 = 14 3 312.76 164.22
𝑗 = 15 2 98.36 78.29
𝑗 = 16 1 105.17 207.51
𝑗 = 17 2 122.96 100.37
𝑗 = 18 1 118.68 241.69
𝑗 = 19 3 134.04 63.63
𝑗 = 20 2 233.54 206.43

Table 4: Optimal distribution route of a distribution cycle on
ranchise chain mode.

Serial number
of distribution time Ω

𝑛 = 1 0-2-5-10-8-16-13-18-0

𝑛 = 2
0-2-4-5-9-17-11-10-20-0,
0-18-16-8-15-13-3-0

𝑛 = 3 0-2-5-6-12-14-0, 0-1-18-13-7-16-8-19-10-0

𝑛 = 4
0-2-4-5-9-17-11-10-20-0,
0-18-16-8-15-13-3-0

𝑛 = 5 0-2-5-10-8-16-13-18-0

𝑛 = 6
0-2-4-5-9-20-0, 0-14-10-12-11-17-6-0,

0-1-3-13-7-15-19-8-16-18-0

chain is 11290.3. An optimal distribution route schedule of the
distributor, in which𝐾𝐿 = 2, is shown in Table 6.

To illustrate the validity of oddment modification, we let
the vehicle capacity to be 1000, then use the two-layer genetic
algorithm based on oddment modification and without
oddment modification, respectively, to calculate the problem
of regular chain mode. The optimization results are shown
in Table 7, in which oddment modification is done when
𝑛 = 1; two routes are combined, and the corresponding
modification delivery quantity is 85.

From Table 7, when the tasks of some routes are not
adequate, by reducing the number of distribution routes,
oddment modification may save more transportation cost at
the cost of lesser shortage. It contributes to improvement of
the supply chain’s total profit.
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Table 5: Optimal results of retailers on regular chain mode.

𝑛
𝑗

𝑄
𝑗

𝑗 = 1 2 103.79
𝑗 = 2 1 110.70
𝑗 = 3 2 198.84
𝑗 = 4 2 74.57
𝑗 = 5 1 161.83
𝑗 = 6 2 259.49
𝑗 = 7 2 203.16
𝑗 = 9 1 64.73
𝑗 = 9 1 136.33
𝑗 = 10 1 97.10
𝑗 = 11 1 89.95
𝑗 = 12 2 46.65
𝑗 = 13 1 144.66
𝑗 = 14 2 181.64
𝑗 = 15 2 98.36
𝑗 = 16 1 105.17
𝑗 = 17 1 55.35
𝑗 = 18 1 118.68
𝑗 = 19 2 77.85
𝑗 = 20 2 233.54

Table 6: Optimal distribution route of a distribution cycle on
regular chain mode.

Serial number of
distribution time Ω

𝑛 = 1 0-2-5-9-17-11-10-8-16-13-18-0

𝑛 = 2
0-2-4-5-9-6-17-11-12-10-14-20-0,

0-1-3-13-7-15-19-8-16-18-0

Table 7: 𝐺 = 1000, optimal routes of a distribution cycle on regular
chain mode.

Without oddment
modification

With oddment
modification

Ω

𝑛 = 1
0-2-5-9-17-11-10-0,
0-8-16-13-18-0

0-2-5-9-17-11-10-8-16-
13-18-0

𝑛 = 2

0-2-4-5-9-6-17-11-12-
0,
0-1-3-13-7-15-19-16-18-
0,
0-20-14-10-8-0

0-2-4-5-9-6-17-11-12-
0,
0-1-3-13-7-15-19-16-18-
0,
0-20-14-10-8-0

Average profit of
supply chain 11081.3 11176.6

For supply chain, the character of centralized control is
better than that of decentralized control. In the frontal case,
the average profit of supply chain on regular chain mode,
11290.3, is higher than that on franchise chain mode, 10337.7.
However, a fixed order cost, 𝐹

0
= 20, is considered for

Table 8: Profit of supply chain with different wholesale price, on
ranchise chain mode.

Wholesale price Average profit
Retailers Distributor Supply chain

𝑤 = 7.48 3495.89 6717.02 10212.91
𝑤 = 7.49 3476.48 6900.75 10377.23
𝑤 = 7.50 3457.24 6880.47 10337.71
𝑤 = 7.54 3380.40 6927.29 10307.69
𝑤 = 7.60 3266.69 6898.71 10165.40
𝑤 = 8.00 2534.11 7419.28 9953.39
𝑤 = 8.99 791.48 8794.95 9586.43

every retailer on franchise chain mode, while no order cost
is considered on regular chain mode. Further, we remove
the retailers’ fixed order cost on franchise chain, that is, let
𝐹
0
= 0. Owing to no transportation cost, shorter order cycle

means less cost, so the retailers’ optimal length of order cycle
is 1. Hence the distributor’s optimal length of order cycle
and distribution cycle will be 1. The corresponding optimal
distribution routes are 0-2-4-5-9-6-17-11-12-10-14-20-0 and
0-1-3-13-7-15-19-8-16-18-0, the distributor’s optimal average
profit is 6587.65, and the optimal average profit of supply
chain is 10361.03, which is higher than that with 𝐹

0
= 20.

Table 8 shows the average profit with different wholesale
price on franchise chain mode. From Table 8, while whole-
sale price contract cannot coordinate the supply chain on
franchise chain mode, profit distribution can be regulated by
changing the wholesale price. For retailers, higher wholesale
price means less profit. For the distributor, the opposite
tendency is true in most cases, but owing to transportation
cost, the profit on 𝑤 = 7.50 is less than that of 𝑤 = 7.49.
The average profit of supply chain reaches the maximum
(10377.23) at𝑤 = 7.49, which is less than that on regular chain
mode.

7. Conclusions

We have discussed the inventory-distribution routing prob-
lem of agriculture products supply chain with one distributor
and multiple retailers, based on franchise chain mode and
regular chain mode. The corresponding mathematical mod-
els are presented.

For the franchise chain model, the optimal order cycle
and order quantity of the retailers are dependent onwholesale
price; therefore the key to solve the optimal problem is to
solve the static multiperiod distribution routing problem.
Then, an heuristic adaptive genetic algorithm is proposed for
the model of franchise chain. For the regular chain model, a
two-layer genetic algorithm based on oddment modification
is proposed, which searches for the optimal distribution
routes, the optimal order cycle, and order quantity for both
the retailers and the distributor. The upper layer provides the
distribution cycle and delivery quantity for the retailers, and
the lower layer seeks the optimal order cycle, order quantity,
distribution routes, and the rational oddment modification
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number for the distributor. The validity of the algorithms is
also demonstrated by numerical examples.

The supply chain on regular chain mode is centralized
controlling, and its average profit is higher than that on
franchise chain mode, which is decentralized controlling.
On franchise chain mode, profit distribution between the
retailers and the distributor can be regulated by changing the
wholesale price.

Appendix

For more details see Table 2.
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