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ABSTRACT 
Traditional hot gas path film cooling characterization 

involves the use of wind tunnel models to measure the spatial 

adiabatic effectiveness (η) and heat transfer coefficient (h) 

distributions.  Periodic unsteadiness in the flow, however, 

causes fluctuations in both η and h.  In this paper we present a 

novel inverse heat transfer methodology that may be used to 

approximate the η(t) and h(t) waveforms.  The technique is a 

modification of the traditional transient heat transfer technique 

that, with steady flow conditions only, allows the determination 

of η and h from a single experiment by measuring the surface 

temperature history as the material changes temperature after 

sudden immersion in the flow.  However, unlike the traditional 

transient technique, this new algorithm contains no assumption 

of steadiness in the formulation of the governing differential 

equations for heat transfer into a semi-infinite slab.  The 

technique was tested by devising arbitrary waveforms for η and 

h at a point on a film cooled surface and running a 

computational simulation of an actual experimental model 

experiencing those flow conditions.  The surface temperature 

history was corrupted with random noise to simulate actual 

surface temperature measurements and then fed into an 

algorithm developed here that successfully and consistently 

approximated the η(t) and h(t) waveforms. 

 
INTRODUCTION 

Film cooling protects hot gas path components by 

providing a layer of protective coolant between the surfaces and 

the hot freestream gas.  The film effectively reduces the 

adiabatic wall temperature, Taw, thereby reducing the driving 

potential for heat transfer.  Film cooling also tends to increase 

the heat transfer coefficient, h, necessitating prediction or 

experimental measurement of Taw and h to accurately predict 

the heat flux into the surface.  Taw is nondimensionalized in the 

form of the adiabatic effectiveness , defined as 
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Eq. (1) facilitates prediction of Taw on a real engine component 

through measurement on a scaled experimental model at 

temperatures more convenient in a laboratory setting since  is 

matched.  The net heat flux reduction (NHFR) takes into 

account the effects on both Taw and h and quantifies the net 

benefit of film cooling in terms of heat load to a component 

with Ts held at some acceptable temperature [1]: 
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The h in Eq. (2) is often denoted hf to emphasize that it is 

measured with film cooling, but we shall dispense with the 

subscript in the present paper.  The heat transfer coefficient 

without film cooling is represented by h0.  Some algebraic 

manipulation will show: 
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where   is the nondimensionalized local surface temperature 

of the engine component, or overall effectiveness.  Typically, 

is assumed to be in the vicinity of 0.6 but may be adjusted 

accordingly to correspond to the desired metal temperature [1]. 

If any unsteadiness is present that would cause fluctuations in  

or h, the NHFR is more meaningful in the time averaged sense.  

Reference [2] showed that the time averaged NHFR may be 

written 
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with bars indicating time averaged quantities and the primes 

indicating zero-mean fluctuating components.  Direct 

application of Eq. (4) requires time resolved measurements of h 

and η, which proves rather difficult.  Reference [2] developed a 

way around this problem by defining a new parameter,  , that 
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we will see is easily measureable and takes into account the 

combined effects of the more difficult parameters to measure: 
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Reference [2] calls  the “unsteady coupled average adiabatic 

effectiveness.”  This parameter allows Eq. (4) to be rewritten: 
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Reference [2] proved that  can be determined from the 

surface temperature on a film cooled model using infrared 

thermography and the following equation: 
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Direct application of Eq. (7) would require time resolved Ts and 

h measurements as indicated by the last term on the RHS.  This 

term may be kept negligible, however, provided that the heat 

capacity, c, of the model material is sufficiently large that 

temperature fluctuations in the material are damped to 

negligible levels.  To be precise, the nondimensional parameter 

that governs the temperature fluctuations is called C, defined 

as: 
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Reference [2] shows that the magnitude of 'sT  is inversely 

related to C.  Such an experiment with large C yields  and h , 

but not  .  Since this experimental technique requires only 

single temperature measurements for both the  and h  

experiments it naturally does not provide the time resolved 

waveforms of  and h. 

The purpose of the present research is to develop and test 

an inverse heat transfer methodology to determine the (t) and 

h(t) waveforms.  These waveforms can then be applied directly 

to Eq. (4) if desired, or examined to yield previously 

unattainable insight into the interactions between h and η.  

Additionally, the new methodology allows for determination of 

both waveforms with a single experiment. 

 

INVERSE HEAT TRANSFER AS APPLIED TO FILM 

COOLING 

Traditional steady film cooling experiments are generally 

simple enough that they are rarely discussed in terms of inverse 

heat transfer.  Before proceeding to the more complex case of 

unsteady (t) and h(t), it is instructive to consider how inverse 

heat transfer techniques apply to the legacy experiments. 

A typical “forward” heat transfer problem is one in which a 

temperature distribution or heat flux (both may be a function of 

time) is sought from known boundary conditions.  With the 

inverse problem, we normally have the temperature or heat flux 

data and wish to determine the boundary conditions.  This is 

precisely the case with traditional film cooling experiments. 

For example, consider a steady wind tunnel experiment 

from which we wish to determine .  The heat flux into the 

model may be written: 
  aw sq h T T   (9)
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Nondimensionalizing Eq. (10) using the definition of : 
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The determination of  is often desired without prior 

knowledge of h or an accurate measurement of q.  The 

experiment is thus typically conducted using a nearly adiabatic 

material so that the second term on the RHS of Eq. (11) is 

negligible, or at least small enough such that the error due to 

rough approximations for h and q cause little error in the 

measurement of .  (Note the similarity between Eqs. (11) and 

(7) when the last term on the RHS of Eq. (7) is kept small.)  

The methods used to account for the second term in Eq. (11) are 

varied.  For example, it is common to cover the film cooling 

holes in the region of interest with tape to determine the 

influence of conduction by observing the surface temperature, 

which is different from T∞ even though the absence of film 

cooling dictates that  = 0.  In any event, this is a rudimentary 

use of inverse heat transfer methodologies—the boundary 

condition, Taw, is determined through a surface temperature 

measurement that differs slightly from Taw. 

Another popular experimental technique that is more 

recognizable as an inverse heat transfer technique is that 

developed by Vedula and Metzger [3] and used by such 

researchers as Ekkad et al. [4].  In this methodology, a film 

cooled model is thermally soaked to a uniform and known 

temperature, Ti.  The model is then suddenly exposed to flow 

conditions, resulting in a step change in boundary conditions.  

The transient surface temperature distribution is measured and 

the boundary conditions, Taw and h, are sought.  Because the 

heat transfer is transient, Fourier’s law of conduction must be 

applied to the problem.  If the model and time length of the 

experiment is designed properly, one may assume that the 

conduction is locally one-dimensional and that the model 

behaves as a semi-infinite slab (the thermal wave never 

penetrates the material, i.e. 
maxt  thickness).  In this case, 

conduction behaves according to the following differential 

equation with the indicated initial condition and boundary 

values:  
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which implies: 
ix
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 The convective heat flux boundary condition contains the 

unknown parameters (h and Taw) that are sought through 

knowledge of the resulting surface temperature as a function of 

time.  Designing the experiment such that the model may be 

treated as a semi-infinite slab with a step change in boundary 

condition as above allows the use of a classic analytical 

solution to the above differential equation.  The solution for the 

surface temperature response is available in such heat transfer 

texts as Ref. [5]: 
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In theory, only two surface temperature measurements need be 

recorded at different times after initiation of the experiment.  

Eq. (16) applies at both times and the two unknown parameters, 

h and Taw, can be determined.  More accuracy can be obtained 

through a least squares curve fit to many temperature 

measurements forming a time history of surface temperature. 

As shown by its development, Eq. (16) is not applicable if 

there is any unsteadiness in either h or Taw.  In the present 

study, we develop an inverse heat transfer technique not to 

simply determine two values, h and Taw, but rather the functions 

h(t) and Taw(t).  The boundary condition of Eq. (13) is replaced 

with 
 

 
0

( ) ( ) ( )aw s

x

T
k h t T t T t

x 


  


 (17) 

where h(t) and Taw(t) are unknown periodic functions.  No such 

classic analytical solution is known to exist for arbitrary 

waveforms of h(t) and Taw(t).  Texts such as Ref. [6] present 

general solution methodologies for inverse heat transfer 

problems, but this problem is complicated by the absence of an 

analytical solution to the forward problem.  This challenge 

necessitated the development of a new inverse heat transfer 

technique. 

 

THE INVERSE FLUX SOLVER FOR ARBITRARY 

WAVEFORMS (IFSAW) 

The methodology we developed to determine the periodic 

h(t) and Taw(t) waveforms from a surface temperature time 

history is described here.  The conduct of the experiment itself 

is quite similar to that described in Ref. [4]; however, the data 

reduction algorithm differs markedly.  In a later section, the 

algorithm is used to step through several sample cases. 

1. Cold soak an experimental model to a uniform and known 

temperature.  A convenient temperature is the coolant 

temperature.  This way, unsteady coolant can run through the 

cold soaked model prior to test initiation, reducing the 

number of events that must occur to begin the experiment. 

2. Initiate the test by suddenly exposing the film cooled model 

to a freestream flow at a different, but known, temperature. 

3. Measure the spatial surface temperature distribution as a 

function of time.  The use of an infrared camera is a 

convenient way to do this, but the temperature data must be 

acquired fast enough to properly resolve the unsteady surface 

temperature response—this was not a criterion for the 

experimental equipment required for steady h and Taw.  The 

calculations described herein are then performed at each 

individual pixel falling on the model surface.  Alternatively, 

liquid crystals or discrete thermocouples could be used to 

provide surface temperature histories.  Conclude the 

measurements before the thermal wave penetrates the 

thickness of the model material, i.e. maxt  thickness. 

4. We now seek the solution to the forward heat transfer 

problem for the surface heat flux.  The surface temperature 

history is a Dirichlet boundary condition.  The differential 

equation with associated boundary conditions is then: 
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Note that only the second boundary condition, Eq. (19), 

differs from the inverse problem with the boundary condition 

given by Eq. (13).  The boundary conditions are known 

following the experiment, making this step a forward heat 

transfer problem.  The first step in solving this forward 

problem is to filter the temperature data.  Random noise in 

the data can have the effect of making the solution appear to 

have non-physical fluctuations in the heat flux.  The authors 

found that third order Savitzky-Golay filtering [7] is efficient 

and effective.  Care must be taken in the application of the 

filter to ensure that the highest frequency fluctuations in η 

and h are not lost.  The noise in the temperature data may 

very well limit this frequency.  The authors experimented 

with two distinct approaches to solving the forward heat 

transfer problem: 

 

Computational Heat Transfer Simulation 

In this approach, a simple time-marching one-

dimensional second order accurate numerical heat transfer 

solver was written.  The length of the computational domain 

should be selected such that it is an order of magnitude 

longer than maxt  to ensure that indeed a semi-infinite slab 

is modeled.  The temporal and spatial discretization should 

be selected such that the von Neumann stability requirement 

is satisfied [8]: 
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At the surface, the temperature is simply set to the 

filtered experimental temperature data, which may be 

interpolated to provide sufficiently small t .  Equation (18) 

is solved within the domain using an adiabatic boundary 

condition, 0
T

x





, at the end of the domain.  It is wise to 

ensure that the domain is long enough by recording the 

temperature at the end of the domain at the end of the 

simulation.  This temperature should not differ significantly 

from the initial temperature.  At each time step, the critical 

output is the surface heat flux, calculated from the surface 

temperature gradient. 
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Analytical Solution for Heat Flux 

As an alternative to relying on a computational 

simulation to find the surface heat flux from the Dirichlet 

boundary condition, Ts(t), an analytical solution exists for 

Eqs. (18) through (21).  Reference [9] presents the solution 

T(x,t) for an arbitrary surface boundary condition Ts(t), after 

the semi-infinite slab is initially at a uniform temperature as: 
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where ( ) ( )s if t T t T   (25) 

 

The temperature gradient is then found through 

differentiation and ultimately, the surface heat flux may be 

written: 
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Because the function f(t) is discrete, a numerical integration 

scheme must be employed. 

 

Both methods described above to calculate qs(t) were 

confirmed to yield equivalent results through testing.  The 

selection of either the analytical solution, which involves an 

improper integral, or the computational simulation is a choice 

to be made by the user and may be dependent on 

computational resources. 

5. With ( )sq t  now in hand, we wish to find periodic Taw(t) and 

h(t) functions that are least squares fits to 

  ( ) ( ) ( ) ( )s aw sq t h t T t T t   (27) 

Both qs(t) and Ts(t) are now known.  We may use truncated 

Fourier series to approximate the periodic Taw(t) and h(t) 

functions: 

 
0

1

ˆ
ˆ( ) cos sin

2

N

n n

n

h n t n t
h t h h

L L

 



 
   

 
  (28) 

 
0

1

ˆ
ˆ( ) cos sin

2

N

aw n n

n

T n t n t
T t T T

L L

 



 
   

 
  (29) 

In the above formulation, both waveforms are written with 

the same number of parameters, 2N+1, but there is no 

requirement to do so.  Since it is likely that the same 

phenomenon that causes fluctuations in Taw also causes 

fluctuations in h, it is entirely reasonable to use the same 

number of terms to approximate each parameter.  Also note 

that both waveforms written above use the same period 

length, L, for the same physical reasoning.  Alternatively, 

different period lengths may be used in Eqs. (28) and (29); 

however, as will be explained below, the implementation of 

this inverse heat transfer methodology is facilitated 

somewhat by this valid assumption of common period length. 

We wish to minimize ε, the sum of the square of the 

errors, across all NP data points by optimizing L and the 

vectors ˆ
nh , nh , ˆ

nT , 
nT
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Such an optimization procedure may be achieved through 

algorithms such as the Levenberg-Marquardt or trust-region 

methods.  We have experienced good success using the trust-

region reflective algorithm implemented within Matlab.  The 

choice of N, relating to the number of terms in the Fourier 

series depends on the fidelity with which one wishes to 

approximate the Taw(t) and h(t) waveforms.  For the 

experimentation used in this paper, we have used N = 13, 

thereby optimizing on a total of 55 parameters-- 2N+1 for 

each waveform and the period length, L.  The optimization 

routine is quite insensitive to the initial guesses on the ˆ
nh , nh

, ˆ
nT  and 

nT ; however, a poor initial guess of L can result in 

failure to optimize.  In many practical cases, the 

experimentalist may have a good idea of the lowest 

frequency expected in the waveforms.  It may be the 

frequency of coolant pulsation or it may be the blade passing 

frequency.  Nevertheless, our methodology requires no such a 

priori knowledge. 

The frequency content of the raw measured temperature 

data may be automatically determined through an appropriate 

application of a fast Fourier transform (FFT).  Savitzky-

Golay filtering may be used once again on the temperature 

data, but this time with a moving average spanning many 

cycles.  This long-time moving average may be subtracted 

from the raw temperature data to observe the fluctuating 

component of the surface temperature.  An FFT may then be 

performed on these temperature fluctuations to produce the 

single-sided amplitude spectrum.  Of the multiple peaks we 

would expect to see, we desire the lowest frequency peak.  A 

number of techniques exist to automatically locate this peak.  

One simple method we use is an algorithm to identify all 
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local maxima that fall above 3 standard deviations above the 

mean of the amplitude spectrum.  Of those identified peaks, 

we select the one at the lowest frequency.  Inverting this 

frequency provides a good initial guess to optimize on the 

period length, L.  In any event, this is only a method to 

provide an initial guess to be refined during optimization; 

failure to optimize would indicate a poor initial guess thereby 

removing the impact of subjectivity in this estimate. 

If different period lengths, L, are used in Eqs. (28) and 

(29), then the aforementioned technique to acquire an initial 

guess would still only provide a single initial guess.  A more 

robust optimization routine that is less sensitive to the initial 

guess on the period length might need to be used instead.  

Nevertheless, as mentioned earlier, the flow physics are 

probably such that the same phenomenon is responsible for 

fluctuations in both h and Taw so that L is the same for each. 

 

A summary of the IFSAW algorithm as described above is 

presented in Figure 1.   

 
Figure 1: FLOWCHART SHOWING STEPS TO CONDUCT EXPERIMENT 

AND REDUCE DATA IN ACCORDANCE WITH IFSAW ALGORITHM 

ALGORITHM TESTING METHODOLOGY 

To test the IFSAW algorithm, it would be inappropriate to 

proceed immediately to a physical laboratory experiment.  No 

other technique to reliably determine the h and  waveforms is 

known to exist, so it would be difficult at this point to verify 

that the resulting waveforms are in fact, correct approximations 

for the true waveforms.  As discussed in Ref [2], the heat 

capacity, ρc, of the model can cause such dampening of the 

surface temperature fluctuations with periodic steady-state 

experiments that even determination of   is extremely difficult 

with that method, let alone the actual waveforms.  Future 

experimental work with very slow fluctuations, however, may 

be able to test the algorithm. 

Test Overview 
For testing the algorithm, we thus selected a computational 

simulation of the experiment.  We contrived a variety of h and 

 waveforms, allowing us to test the robustness of the IFSAW 

algorithm.  A good data reduction algorithm must be able to 

handle not only the foreseen, but also the unexpected as the 

algorithm may be applied to handle unsteady heat transfer 

situations created by more than just simple coolant pulsing with 

a single frequency component.  The contrived h and  

waveforms were then input to a one-dimensional transient heat 

transfer simulator to determine the true surface temperature 

history following initiation of the transient experiment.  The 

output of this simulation is termed “actual” data and would be 

impossible to physically measure—it represents the actual 

physical state of the test article under the prescribed conditions.  

Random error was then added to the temperature history to 

simulate laboratory measurements—this is the “measured” 

data.  The noisy temperature history was then input to the 

IFSAW algorithm and the resulting waveforms compared to the 

originals.  A summary of the validation procedure used in this 

study is provided in Figure 2.  Details regarding the 

implementation will follow. 

 
Figure 2: VALIDATION PROCEDURE FLOWCHART 

Test Details 
A second order accurate finite differencing scheme was 

created to simulate the experiment.  The code is similar to the 

IFSAW code that determines the surface heat flux from the 

Dirichlet boundary condition.  This test simulator code, 

however, uses the Robin type surface boundary condition to 

determine the temperature profile through the slab.  This 

surface boundary condition is given by Eq. (17), repeated here: 

  
0

( ) ( ) ( )aw s

x

T
k h t T t T t

x 


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For the experimental simulation we have prescribed h(t) and 

Taw(t) through the conversion: 
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  ( ) ( )aw cT t T t T T     (31) 

T∞ and Tc are selected according to what would be expected in 

the laboratory to simulate a situation in which η varies due to 

periodic unsteadiness in the coolant blowing rate.
*
  The initial 

condition of the simulation is the initial temperature of the 

model.  As mentioned above, it is convenient from a practical 

standpoint to soak the model at the coolant temperature; we 

have thus selected Ti = Tc for our simulations. 

It was critical to ensure that the transient simulation code 

functions properly.  The code was validated using several 

techniques, including using steady h and  boundary conditions 

(Eq. (13)), for which a simple analytical solution for the surface 

temperature history exists (Eq. (16)).  In this and all subsequent 

simulations, we assume the model is made of General Plastics 

Last-A-Foam FR-7106.  The material properties and conditions 

for the simulation of the experiment are shown in Table 1.  For 

the steady h and  validation case, we chose to simulate  = 0.4 

and h = 100 W/(m
2
 K).  The absolute value of the temperature 

error from the numerical simulation as compared with the 

analytical solution is plotted in Figure 3.  The largest error is at 

the beginning of the simulation when temperature gradients, 

both in time and space, are largest.  Here, the error in 

temperature is a maximum of 0.0039 K at 0.5 ms after 

initiation. 
 

Table 1:  SIMULATED EXPERIMENTAL CONDITIONS AND MATERIAL 
PROPERTIES 

Property or 
Condition 

Value Source / Rationale 

k 0.03 W/(m K) 
Property of Last-A-Foam FR-
7106; From General Plastics 

ρ 96 kg/m
3
 

Property of Last-A-Foam FR-
7106; From General Plastics 

c 1260 J/(kg K) Ref. [10] 

Tc 290 K 
Easily achievable in lab with 

a chiller 

Ti 290 K 

same as Taw- allows coolant 
to run through the cold 
soaked model prior to 

mainstream flow initiation 

T∞ 320 K 
Easily achievable in lab with 

flow heater 

εT 0.1 K 
temperature measurement 

uncertainty with 95% 
confidence 

                                                           
* Alternative situations can be imagined in which T∞ and/or Tc depend on time.  
The impact remains the same, though, in that Taw is a function of time.  The 

time dependent values T∞(t) and Tc(t) would then be used in the 

nondimensionalization of Taw(t) to determine (t). 

 
Figure 3:  TEMPERATURE ERROR (K) IN NUMERICAL SIMULATION OF 

EXPERIMENT AS COMPARED WITH ANALYTICAL SOLUTION FOR 

STEADY h AND . 

RESULTS 

To demonstrate the IFSAW procedure with a practical 

example, we selected the following simple waveforms for h and 

: 
  100 50sin 2 10h t    W/(m

2
K)                                       (32) 

  

 0.4 0.3sin 2 10t     
(33) 

These waveforms are in phase; that is, h is high when  is high 

as is usually the case.  The parameters of 10 Hz and h = 100 W 

were selected as indicative of a 10x scale wind tunnel 

experiment roughly matching Reynolds number and 

nondimensional blade passing frequency order of magnitude 

with an actual engine (c.f. Ref [11]).  The selection of  = 0.4 

is reasonable for a location downstream of a film cooling jet 

(c.f. Ref [11]). 

First, for the purposes of testing/demonstrating IFSAW, we 

ran a numerical simulation of the experiment using the 

parameters in Table 1.  The first 0.5 seconds of the surface 

temperature response is shown in Figure 4.  Although the time 

step used in the numerical simulation was 10
-5

 seconds, 

temperature data was saved at 2 kHz, a more realistic 

laboratory data acquisition rate.  We can immediately learn 

something about the choice of model materials for such an 

experiment.  During these first 0.5 seconds, the temperature 

rises from 290 K to just over 300 K.  This is inconvenient for 

the experimentalist, who would prefer for the temperature 

change at the beginning to be less rapid.  This is often 

alleviated through the use of higher heat capacity materials 

such as acrylic instead of foam.  Although fine for the steady 

film cooling experiments, higher heat capacity results in 

smaller surface temperature undulations, exacerbating the 

uncertainty in the ultimate goal of determining the h(t) and (t) 

waveforms. 
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Temperature measurement noise is a major hurdle with 

inverse heat transfer and must be accounted for in simulations 

of experiments.  In order to simulate real imperfect temperature 

measurements in the laboratory, we added a normally 

distributed random error with 95% confidence uncertainty of 

0.1 K.  This noisy data was then filtered using Savitzky-Golay 

filtering.  The original “actual” temperature data along with the 

simulated “measured” noisy data and finally the filtered data 

are shown in Figure 5 for a subset of the time period shown in 

Figure 4.  The filter is imperfect, but it cleans up the data well 

enough for use as the Dirichlet boundary condition to compute 

the surface heat flux. 

 
Figure 4:  SURFACE TEMPERATURE OVER FIRST 0.5 SEC OF 

SIMULATED EXPERIMENT WITH  100 50sin 2 10h t   AND 

 0.4 0.3sin 2 10t   
 

 
Figure 5:  ACTUAL SURFACE TEMPERATURE (BLUE), SIMULATED 

NOISY MEASURED DATA WITH 0.1 K UNCERTAINTY (GREEN) AND 
FILTERED DATA (RED).  THE FILTERED DATA IS LATER USED TO 

DETERMINE THE SURFACE HEAT FLUX. 

The heat flux was then calculated from the filtered surface 

temperature history and plotted in Figure 6 along with the 

actual surface heat flux, provided as an output from the original 

simulation only for comparison purposes.  The influence of 

measurement noise is apparent, but the least squares fits for the 

Fourier series approximations for h(t) and Taw(t) will be shown 

to be quite accurate, particularly by taking a longer set of data 

than the 0.5 seconds shown here. 

 

 
Figure 6:  SURFACE HEAT FLUX DETERMINED BY IFSAW ALGORITHM 

COMPARED TO ACTUAL HEAT FLUX 

At this point, we must choose the number of terms we wish 

to use in the Fourier series approximations (Eqs. (28) and (29)).  

For this simple contrived example, we know that few terms are 

required (only 5 of the constants are non-zero); however, we 

cannot use any a priori knowledge of the form of the result to 

test the algorithm.  Therefore, we used N = 13 in Eqs. (28) and 

(29) for a total of 55 unknown constants to find through 

optimizing Eq. (30).  We found that this technique could 

provide decent approximations to even the more ill-behaved 

waveforms to be shown later.  The simulation of the present 

example was run for 20 seconds of physical time and the 

waveforms output by the IFSAW algorithm are compared to the 

true waveforms in Figures 7 and 8.  The influence of using “too 

many” terms in the Fourier series is evident; however, the 

approximations are decent.  The approximations can then be 

used to calculate   (through Eq. (5)) and h .  These values are 

compared with the true values in Table 2. 

Table 2 also gives the values that would be obtained if one 

erroneously assumed that h and  are constant and determined 

those values through a curve fit with Eq. (16).  As it turns out, 

in this case, that curve fit happens to give decent values if we 

were to assume (again, erroneously) that    as would be the 

case with steady film cooling (Eq. (5)).  In any event, only the 

IFSAW data reduction technique yields the time resolved 

waveforms. 
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Figure 7:  (t) WAVEFORM DETERMINED WITH 20 SECOND 

SIMULATED EXPERIMENT WITH  100 50sin 2 10h t   AND 

 0.4 0.3sin 2 10t     

 
Figure 8:  h(t) WAVEFORM DETERMINED WITH 20 SECOND 

SIMULATED EXPERIMENT WITH  100 50sin 2 10h t   AND 

 0.4 0.3sin 2 10t     

 

 

 

 

 

 

Table 2:  ACTUAL AND CALCULATED FILM COOLING PARAMETERS 

WITH  100 50sin 2 10h t   AND  0.4 0.3sin 2 10t   
 

FOLLOWING A 20 SECOND EXPERIMENT 

 
  h  (W/(m

2
 K)) 

Actual 
Values 0.4750 100 

Values calculated 
from measurement 0.4785 100.5831 

Legacy Technique 
that Assumes 

Constant h and . 0.4670 98.8744 
 

The next set of tested waveforms contains several terms 

including a triangle wave to test the algorithm with a non-

smooth function: 

 
100 10 (2 8 ) 30 sin(2 16 )...

10 cos(2 24 ) 5 sin(2 24 ) 5 cos(2 32 )

h triangle t t

t t t

 

  

      

          
W/(m2K) 

         

(34)
 
 

0.4 0.05 (2 8 ) 0.2 sin(2 8 )...

0.05 sin(2 40 ) 0.08 cos(2 32 )

triangle t t

t t

  

 

      

     
 (35) 

 

Again, the simulated experiment was run for 20 seconds with 

random temperature uncertainty of 0.1 K.  The algorithm 

properly determined the lowest frequency component to be 8 

Hz and produced the results depicted in Figures 9 and 10.  The 

actual value of   for this condition is  = 0.4034 and the 

actual value of h  is h = 100 W/(m
2
 K).  The values reported by 

analysis of the simulated measurements are  = 0.4068 and h

= 100.69 W/(m
2
 K). 

 

 
Figure 9:  (t) WAVEFORM DETERMINED WITH 20 SECOND 

SIMULATED EXPERIMENT WITH WAVEFORMS GIVEN BY EQS. (34) 
AND (35) 
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Figure 10:  h(t) WAVEFORM DETERMINED WITH 20 SECOND 

SIMULATED EXPERIMENT WITH WAVEFORMS GIVEN BY EQS. (34) 
AND (35) 

Another 20 second experiment was simulated with the 

following waveforms: 

 

100 30 (2 8 ) 10 sin(2 16 )...

10 cos(2 24 ) 5 sin(2 24 ) 5 cos(2 32 )

h triangle t t

t t t

 

  

      

          
W/(m2K) 

         
(36) 

0.4 0.2 (2 8 ) 0.04 sin(2 8 )...

0.05 sin(2 40 ) 0.08 cos(2 32 ) 0.01 cos(2 56 )

triangle t t

t t t

  

  

      

        
 (37) 

 

Figures 11 and 12 depict those waveforms and the 

experimentally determined waveforms.  The actual h(t) 

waveform contains a sharp discontinuity in its first derivative 

that manifests itself more harshly than in the case given by 

Eq.(34).  The result is that the h(t) waveform is more difficult 

for the algorithm to approximate as seen in Figure 12.  The 

approximated waveform follows the true waveform well; 

however, it contains more unnatural oscillations. 

 

 
Figure 11: (t) WAVEFORM DETERMINED WITH 20 SECOND 

SIMULATED EXPERIMENT WITH WAVEFORMS GIVEN BY EQS. (36) 
AND (37) 

 

 
Figure 12:  h(t) WAVEFORM DETERMINED WITH 20 SECOND 

SIMULATED EXPERIMENT WITH WAVEFORMS GIVEN BY EQS. (36) 
AND (37) 

HANDLING IMPERFECT STEP CHANGES 

In the preceding analysis, we assumed perfectly 

instantaneous placement of the film cooled model in the wind 

tunnel.  In a real experiment, there would be some amount of 

time that is required for the freestream temperature to reach its 

steady state value; a true step change is impossible to achieve in 

a laboratory.  We now consider how the experimentalist may 

account for this in the data processing. 

We assume that the model is held initially at the coolant 

temperature and coolant flows through the model at an already-

constant temperature.  Freestream air at a higher temperature is 
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turned on, but due to heat transfer taking place within the wind 

tunnel, the temperature ramps up to its final temperature over a 

finite period of time. 

As discussed in the introduction, the invariance of for a 

given set of flow conditions (identified through the Reynolds 

number and blowing ratio), irrespective of temperature, is a 

fundamental assumption in film cooling research.  In other 

words, η is a function of the flow conditions, not an 

experiment’s freestream and coolant temperatures.  These 

temperatures are chosen for experimental reasons, such as 

measurement uncertainty or equipment limitations, but they do 

not change .  This invariance of  allows measurements made 

in the laboratory at temperatures cooler than engine 

temperatures to have practical application.  Since  matches for 

the range of temperatures between a laboratory experiment and 

an actual engine, it certainly matches for small changes in T∞ 

that occur over the course of an experiment. 

Assuming the velocity field immediately assumes its 

steady-state periodic condition after test initiation, the (t) 

waveform must therefore also reach its steady-state periodic 

condition immediately, even though Taw(t) does not due to 

thermal transients.  In the special case of steady film cooling, 

this translates to a constant value of , but a value of Taw that 

asymptotically approaches its final value.  This assumption will 

not be completely accurate in a physical experiment because 

there is always a short amount of time during startup when the 

flowfield transitions to steady state.  However, the aerodynamic 

transition to steady freestream flow should be, and in most 

cases is, very fast compared to the temperature transition. 

In the discussion of the IFSAW algorithm earlier, we 

described a technique to find a periodic function Taw(t) that 

satisfies Eq. (27).  For the more general case described here in 

which T∞ is allowed to ramp up over time, Taw(t) is not a 

steady-state periodic function for the entire course of the 

experiment.  Instead, we must use the fact that (t) is at a 

steady-state periodic condition throughout.  This is an implicit 

advantage of using IFSAW over Eq. (16) for any time-varying 

flow conditions:  IFSAW does not require constant Taw, but 

only a velocity field which reaches periodic steady state 

quickly.  

To use IFSAW in this configuration, we generalize Eq. (1) 

to account for the sources of unsteadiness, including in T∞: 
 ( ) ( )

( )
( )

aw

c

T t T t
t

T t T
 







 (38) 

Equation (27) can then be rewritten, eliminating Taw: 

 

   ( ) ( ) ( ) ( ) ( ) ( )s c sq t h t T t t T t T T t      (39) 

We now wish to find the periodic function for (t) instead of 

Taw(t), using a procedure otherwise identical to that described 

earlier.  Just as high frequency Ts(t) measurements must be 

acquired, so too must T∞(t) measurements.  Similarly a filtering 

technique (such as Savitzky-Golay) would be appropriate for 

the T∞(t) measurements to mitigate the effects of noise. 

 

CONCLUSION 

In this study, we developed and demonstrated a novel 

experimental technique and data reduction algorithm to 

determine the (t) and h(t) waveforms from a transient film 

cooling experiment.  The conduct of the experiment itself is 

identical to that used by Ekkad et al. [4]; however, the 

temperature data acquisition rate must be high enough to 

resolve the unsteadiness that is of interest to the researcher.  

Traditional data processing techniques with transient film 

cooling experimental data yield only single values for  and h.  

This is perfectly acceptable only when the flow is steady.  The 

solution to the conduction equation used in the traditional 

technique assumes a constant convective boundary condition; 

any departure from that represents a misapplication of that 

technique.  The new technique developed here allows for 

periodic fluctuations in  and h.  Not only does the new 

technique allow for proper determination of h  and , but it 

also allows temporal resolution of approximate (t) and h(t) 

waveforms. 

The views expressed in this article are those of the authors 

and do not reflect the official policy or position of the United 

States Air Force, the Department of Defense, or the US 

Government. 

NOMENCLATURE 
C = resistance to surface temperature fluctuations, 

2
/ (2 )k c h   

c = specific heat, J/(kg K) 

f = frequency, Hz 

h = convective heat transfer coefficient,     

W / (m
2
 K) 

ˆ
nh , 

nh =  coefficients in Fourier series for h, see Eq. 

(28) 

k = thermal conductivity, W / (m K) 

M = blowing ratio, /c cU U    

N = number of summations in truncated Fourier 

series, see Eq. (28) and (29) 

n = Fourier series index 

q΄΄ = convective heat flux into a surface, W / m
2
 

t  = time, s 

T = temperature, K 
ˆ
nT , 

nT
 
= coefficients in Fourier series for Taw, see Eq. 

(29) 

x = distance into model material from surface, m 

Δqr = net heat flux reduction 

  = thermal diffusivity, / ( )k c , (m
2
/s) 

  = sum of the square of the errors or uncertainty 

  = unsteady coupled adiabatic effectiveness, 

' ' /f fh h     

  = adiabatic effectiveness, (T∞ - Taw)/(T∞ - Tc) 
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  = overall effectiveness, (T∞ - Ts)/(T∞ - Tc), taken 

as independent of time 

  = density, kg/m
3 

  = frequency, rad/s 

 

Subscripts 

0 =  without film cooling 

aw = adiabatic wall 

c = coolant 

f = with film cooling 

i = initial conditions 

s = surface 

∞ = freestream recovery 

 

Superscripts 

 = temporal average 

'  = zero mean fluctuating component 
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