
Two Perspectives on Change and Institutions

Tim Fernando
Trinity College Dublin, Ireland

Abstract

The contrast between internal and external perspectives on
change, discussed within applied ontology in recent years by
Galton, is linked to the difference between finite automata
and their runs. The link is based on a finite approximability
hypothesis, under which granularities are bounded by signa-
tures in institutions, as defined by Goguen and Burstall. How
abstract types, described internally, are realized externally as
concrete particulars is complicated by differences in signa-
tures and by competing processes with related signatures.

1 Introduction
One of many ways perspectives can differ, dubbed
SNAP/SPAN in Grenon and Smith 2004, is that between
synchronic snapshots of continuants (or endurants) at fixed
times and diachronic accounts of occurrents (or perdurants)
spanning temporal stretches. A twist on SNAP/SPAN pro-
posed by Antony Galton pulls processes away from events
towards objects

SNAP SPAN
objects events

processes

EXP HIST
objects events

processes
(Galton 2008, page 332) for a contrast described in Lyons’
semantics textbook between, on the one hand, the “experen-
tial” (EXP)

given by someone who is personally involved in what
he is describing . . . dynamic, deictic, subjective

and, on the other hand, the “historical” (HIST)
presented dispassionately with the minimum of subjec-
tive involvement . . . static, non-deictic, objective

(Lyons 1977, page 688). Galton elevates this contrast to
(†) a fundamental ontological distinction between EXP, the

dynamic experiential world of objects and processes as
they exist at one time, and HIST, the static historical
overview populated by events that are generated by the
ongoing processes in EXP

(Galton 2008, page 323). Two descriptions of time in Mc-
Taggart 1908 illustrate the distinction: a tensed A-series of

Copyright c� 2015 for this paper by its authors. Copying permitted
for private and academic purposes.

moments from the future turning to the present and then the
past (constituting EXP), and a tenseless B-series ordered by
a binary relation <, pronounced “earlier than” (constituting
HIST). An A-series judgment Past(') is interpreted in tem-
poral logic relative to a time x (marking now, if you will)
that changes in the righthand side of the clause

x |= Past(') () y |= ' for some y < x

to a time y earlier than x (Prior 1967). Various choices for
x, |=, ' and < are explored in the present paper, under a
finite approximability hypothesis, motivated by computa-
tional and cognitive considerations. That hypothesis links
EXP/HIST to the distinction between finite automata and
their runs, up to bounded granularities, formulated as sig-
natures in institutions (Goguen and Burstall 1992).

For orientation, consider the language a

+
b accepted by

the finite automaton A with three transitions

q0start q2 q1
a

a

b

over the initial state q0 and final (or accepting) state q1. A
run of A is a sequence of transitions that A makes, such as
q0

a! q2
b! q1, in the course of which, the finite automaton

A changes its current state from q0 to q2 to q1. How does
this picture fit with Galton’s proposal (†)? The automaton A
coupled with its current state (initialized to q0) is an EXP-
process; a run is a HIST-event which describes change but
does not itself change. Understood as accurate records of a
past that is settled, HIST-events cannot change.1 As contin-
uants, EXP-processes may change and indeed, as described
by HIST-events, do.

The relationship between EXP and HIST is complicated
by processes that need not run to completion; sentences (1)
to (4) are from Dowty 1979 (page 133).

(1) John was drawing a circle.
(2) John drew a circle.
(3) John was pushing a cart.

1In practice, of course, history does change, falling far short of
an accurate record of the past. Revisions of HIST lie just outside
the scope of the present paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357386082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(4) John pushed a cart.

(3) implies (4), but (1) may hold without (2) holding. How
(1) can be true even if no circle was ever drawn by John
is what Dowty calls the Imperfective Paradox, for which
he appeals to inertia worlds that need not be actual. Par-
sons 1990 eschews non-actual worlds, attributing the differ-
ence between (2) and (4) to a notion of culmination over
and above holding. While the debate between intensional
and extensional accounts of the progressive continues (e.g.,
Klinedinst 2012), there is no shortage of linguistic construc-
tions that have invited calls for non-actual worlds, such as
counterfactuals (5), and non-veridical uses of before (6).

(5) John would have drawn a circle, had Al not stopped him.

(6) Al interfered before John drew a circle.

The moral for EXP/HIST, analyzed in terms of finite au-
tomata and their runs, is clear: any number of processes may
run concurrently, not all of which may get completed.

The contrast between (3) implying (4) and (1) failing to
imply (2) has often been adopted as the litmus test for pro-
cesses versus events (e.g., Parsons 1990, page 183). (2) de-
scribes an event that culminates, whereas (4) describes a
process that is dissective (Galton and Mizoguchi 2009, page
74), making the event-process contrast analogous to count-
mass (e.g., Bach 1986). This count/mass analogy is orthog-
onal to the event/process distinction drawn in Galton 2012,
under which some processes culminate (the repeatables) and
other processes are dissective (the continuables). The thrust
of Galton 2012 is instead to

regard processes as abstract patterns of behaviour
which may be realised in concrete form as actually oc-
curring states or events

(page 35). It is this contrast that is targeted in the characteri-
zation below of EXP-processes as abstract types, and HIST-
events as concrete particulars.

EXP-processes/automata HIST-events/runs
abstract types concrete particulars

The complication raised by (1)-(6) above is that while EXP-
processes are typically conceived in isolation, they can be
run, as HIST-events, alongside other EXP-processes that
may interfere with them. What abstract types are manifested
in concrete particulars can be tricky, making it tempting to
focus on the concrete particulars and set aside abstract types
to the extent that is possible.

Concentrating on concrete particulars, we will neverthe-
less avail ourselves of rudimentary forms of abstract types
expressed by temporal propositions, called fluents for short.
The particulars are analyzed at bounded granularities given
by finite sets ⌃ of fluents. We keep the sets ⌃ finite in or-
der to represent the runs by finite strings, enlarging ⌃ to
lengthen the strings (refining the grain). The idea is famil-
iar from the representations of a calendar year at various
granularities. If the set ⌃ = {Jan, Feb, . . ., Dec} of months
suggests the string

s⌃ := Jan Feb · · · Dec

of length 12, enlarging ⌃ with days d1,d2,. . .,d31 refines s⌃
to the string

Jan,d1 Jan,d2 · · · Jan,d31 Feb,d1 · · · Dec,d31

of length 366 for a leap year. We draw boxes (instead of the
usual curly braces { and }) around sets qua symbols for a
film strip. While it is irresistible to call the boxes SNAP-
shots, a change in ⌃ can cause a box to split, as Jan in s⌃

does (30 times) with the addition of d1,d2. . .,d31

Jan  Jan,d1 Jan,d2 · · · Jan,d31

SPANning 31 boxes. Similarly, a common Reichenbachian
account of the progressive puts a reference time R inside the
event time E,2 splitting E into 3 boxes

E  E E,R E

(one before, one simultaneous, and one after R). We can also
encode runs of an automaton as strings; for example, q0

a!
q2

b! q1 above as a, q2 b, q1 , leaving out the automaton’s
initial state q0.

Encoding runs as strings is useful for expressing the lan-
guages accepted by finite automata in Monadic Second-
Order logic (MSO), one half of Büchi’s theorem (e.g.,
Libkin 2010, Theorem 7.21, pp 124-126). Strings are con-
strued as models of predicate logic, associating a finite set ⌃
with a signature ⌃

S

specifying a unary relation symbol P
a

,
for each a 2 ⌃, alongside a binary relation symbol S. The
intent is that S express the successor relation between string
positions, and P

a

pick out the positions where a occurs. For
instance,

9x9y(S(x, y) ^ P

a

(x))

says a occurs before the end of the string. Confining our
attention to finite models of size n � 0,3 we write [n] for the
set of integers from 1 to n

[n] := {1, 2, . . . , n}

(with [0] = ;) and S

n

for the successor relation on [n]

S

n

:= {(i, i+ 1) | i 2 [n] and i < n}

(with S1 = S0 = ;). A ⌃
S

-model M = h[n], S
n

{PM

a

}
a2⌃i

interprets S as S

n

and each P

a

as a subset PM

a

of its do-
main [n] (for some n � 0). In the terminology of Kripke
semantics, h[n], S

n

i is a frame, while {PM

a

}
a2⌃ defines the

⌃-valuation v ✓ [n]⇥ ⌃ such that

v(i, a) () i 2 P

M

a

for all i 2 [n] and a 2 ⌃. We can also view M as the finite
automaton A

M

with initial state 1, final state n, and set of
transitions

{(i, S, j) | (i, j) 2 S

n

} [ {(i, a, i) | a 2 ⌃ and i 2 P

M

a

}
2See Moens and Steedman (1988), pp. 22 and 28 (footnote 3).
3We follow Libkin 2010 in allowing a model to have the empty

set as its domain (universe).



over the alphabet ⌃[{S}. For each i 2 [n], let us collect all
a 2 ⌃ such that i 2 P

M

a

in

↵

i

:= {a 2 ⌃ | i 2 P

M

a

}.
Then A

M

accepts the language
↵

⇤
1S↵

⇤
2S · · ·S↵⇤

n

of strings s1Ss2S · · ·Ss
n

2 (⌃ [ {S})⇤ where s

i

2 ↵

⇤
i

for i 2 [n]. What’s more, there is a bijection between ⌃
S

-
models M and strings ↵1 · · ·↵n

over the powerset 2⌃ of ⌃,
as the equivalence

i 2 P

M

a

() a 2 ↵

i

goes from M to ↵1 · · ·↵n

and back. Thus, a string
↵1 · · ·↵n

2 (2⌃)⇤ can serve as both a ⌃
S

-model
against which to interpret predicate logic formulas such as
9x9y(S(x, y) ^ P

a

(x)) and a Kripke model against which
to interpret, in combination with a position i 2 [n], modal
logic propositions such as ⌃a (where a 2 ⌃). The following
table describes the idea.4

predicate logic modal logic
McTaggart B-series A-series

Lyons/Galton HIST EXP
perspective external internal

model ↵1 · · ·↵n

↵1 · · ·↵n

, i

Table 1
Table 1 makes no mention of ⌃ (on the understanding ⌃
is fixed in the background) and derives EXP-automata A

M

from HIST-strings M . But variations in ⌃ are useful to
cope with the open-endedness of ontologies, and many fi-
nite automata do not have the form A

M

. In order to ana-
lyze variations in ⌃ and conceptions of EXP that are not
reducible to the purely temporal realm HIST (automata be-
ing arguably prior to their runs), we adopt the framework of
institutions from Goguen and Burstall 1992. We form insti-
tutions around strings ↵1 · · ·↵n

based on MSO in the next
section, section 2, and institutions around languages (as op-
posed to strings) for automata in section 3. Relations be-
tween the various institutions are explored in section 4.

2 HIST-events as strings
The formulas ' of Monadic Second-Order Logic (MSO) are
generated through seven clauses

' ::= S(x, y) | P

a

(x) | X(x) | ' ^ '0 |
¬' | 9x' | 9X'

from three disjoint infinite sets Var1, Var2 and ⇥ of first-
order variables x, y 2 Var1, second-order variables X 2
Var2, and fluents a 2 ⇥, respectively. The vocabulary
voc(') of ' is the finite subset of ⇥ occurring in '

voc(S(x, y)) = voc(X(x)) = ;
voc(P

a

(x)) = {a}
voc(' ^ '0) = voc(') [ voc('0)

voc(¬') = voc(9x') = voc(9X') = voc(').
4The external/internal divide in Priorean tense logic is dis-

cussed at length in Blackburn 2006.

An MSO-sentence is understood to be an MSO-formula in
which all variable occurrences are bound. We let Fin(⇥) be
the set of finite subsets of ⇥, and for every ⌃ 2 Fin(⇥), put
every MSO sentence with vocabulary contained in ⌃ into the
set MSO(⌃)

MSO(⌃) := {' | ' is an MSO-sentence and voc(') ✓ ⌃}.
The notion of a ⌃

S

-model M satisfying a sentence ' 2
MSO(⌃), written M |=⌃ ', is defined in the usual Tarskian
manner. The ⌃

S

-model h[n], S
n

, {PM

a

}
a2⌃i is identified

with the string ↵1 · · ·↵n

where ↵
i

is {a 2 ⌃ | i 2 P

M

a

}
for each i 2 [n]. Thus, for each ⌃ 2 Fin(⇥), ⌃-satisfaction
is a binary relation

|=⌃ ✓ (2⌃)⇤ ⇥ MSO(⌃)

between (2⌃)⇤ and MSO(⌃). To describe how |=⌃ varies
as ⌃ ranges over finite subsets of ⇥, we define the function
⇢⌃ : (2⇥)⇤ ! (2⌃)⇤ that intersects a string in (2⇥)⇤ com-
ponentwise with ⌃ for its ⌃-reduct

⇢⌃(↵1 · · ·↵n

) := (↵1 \ ⌃) · · · (↵
n

\ ⌃)

in (2⌃)⇤. For example, ⇢{E}( E E,R E ) = E E E .

Proposition 1 For all ⌃ 2 Fin(⇥), ' 2 MSO(⌃) and s 2
(2⌃)⇤,

s |=⌃ ' () ⇢

voc(')(s) |=voc(') ' .

With Proposition 1, the relations {|=⌃}⌃2Fin(⇥) become an
institution (Goguen and Burstall 1992) provided we

(i) construe Fin(⇥) as a category of signatures with mor-
phisms (⌃,⌃0) whenever ⌃ ✓ ⌃0 2 Fin(⇥)

(ii) extend the map ⌃ 7! MSO(⌃) to pairs (⌃,⌃0) such that
⌃ ✓ ⌃0 2 Fin(⇥), setting MSO(⌃,⌃0) to the inclu-
sion MSO(⌃) ,! MSO(⌃0) mapping ' 2 MSO(⌃) ✓
MSO(⌃0) to itself

(iii) define a contravariant functor Mod from Fin(⇥) so that
whenever ⌃ ✓ ⌃0 2 Fin(⇥), Mod(⌃) is (2⌃)⇤, while
Mod(⌃0

,⌃) : MSO(⌃0) ! MSO(⌃) is the restriction of
⇢⌃ to Mod(⌃0)

Mod(⌃0
,⌃)(s) = ⇢⌃(s) for all s 2 (2⌃

0
)⇤.

One may expect that for every sentence ' 2 MSO(⌃), the
set {s 2 (2⌃)⇤ | s |=⌃ '} is a regular language, in view
of Büchi’s theorem, BT, mentioned in the introduction. The
problem, however, is that BT interprets ' 2 MSO(⌃) rel-
ative to strings over ⌃, not 2⌃ as above. To establish the
regularity of {s 2 (2⌃)⇤ | s |=⌃ '} via BT, we can translate
' 2 MSO(⌃) to '] 2 MSO(2⌃) homomorphically, treating
P

a

as the union of P⌃0 ’s for a 2 ⌃0 ✓ ⌃

P

a

(x)] :=
_

{P⌃0(x) | ⌃0 ✓ ⌃ and a 2 ⌃0} for a 2 ⌃.

To invert the translation, we map  2 MSO(2⌃) to  
]

2
MSO(⌃) with

P⌃0(x)
]

:=
^

{P
a

(x) | a 2 ⌃0} ^
^

{¬P
a

(x) | a 2 ⌃� ⌃0} for ⌃0 ✓ ⌃.



An advantage in interpreting MSO(⌃) relative to strings over
2⌃ is Proposition 1 above, the satisfaction condition for an
institution (Goguen and Burstall 1992).

A string s is understood to come with a fixed granular-
ity given by a signature ⌃ such that s 2 (2⌃)⇤. ⌃-reducts
preserve string length. But as hinted by the discussion in the
introduction of

s⌃ := Jan Feb · · · Dec

and

Jan,d1 Jan,d2 · · · Jan,d31 Feb,d1 · · · Dec,d31

we should expect the length of a string to grow as we en-
large ⌃. To accommodate this growth, we implement “Mc-
Taggart’s dictum that ‘there could be no time if nothing
changed”’ (Prior 1967, page 85) by working with strings
↵1↵2 · · ·↵n

that are stutterless in that ↵
i

6= ↵

i+1 for i from
1 to n� 1. Given a string s, let bc(s) be the stutterless string
obtained from s by compressing blocks ↵n of n > 1 con-
secutive occurrences in s of the same symbol ↵ to a single
↵, leaving s otherwise unchanged

bc(s) :=

(
bc(↵s0) if s = ↵↵s

0

↵ bc(�s0) if s = ↵�s

0 with ↵ 6= �

s otherwise.

The restriction of bc to any finite alphabet is computable by
a finite-state transducer, as are, for all ⌃0 2 Fin(⇥) and ⌃ ✓
⌃0, the composition ⇢⌃; bc for bc⌃

bc⌃(s) := bc(⇢⌃(s)) for s 2 (2⌃
0
)⇤.

For example, if ⌃ is {Jan,Feb,. . .,Dec}, bc⌃ maps

Jan,d1 Jan,d2 · · · Jan,d31 Feb,d1 · · · Dec,d31

to s⌃. Without the compression bc in bc⌃, we are left with
the map ⇢⌃ that leaves the ontology intact (insofar as the
domain of an MSO-model is given by the string length),
whilst restricting the vocabulary (for ⌃-reducts). The insti-
tution described by Proposition 1 can be adjusted to another
institution in which
- the models are stutterless strings5

- the reducts ⇢⌃ are replaced by bc⌃, and
- the satisfaction relations |=0

⌃ are given by explicitly refer-
ring to the sentence’s vocabulary

s |=0
⌃ ' () bc

voc(')(s) |=voc(') '.

Compressing strings via bc⌃ can be inverted to lengthen
strings. The inverse limit IL(⇥, bc) of ⇥, bc consists of func-
tions a : Fin(⇥) ! Fin(⇥)⇤ that respect the projections bc⌃

a(⌃) = bc⌃(a(⌃
0)) whenever ⌃ ✓ ⌃0 2 Fin(⇥).

5Apart from applying bc, a string can be made stutterless
also by adding a fluent, turning, for instance, a a a into
a,tic a a,tic . The crucial point is that stutterlessness ensures

the vocabulary is large enough to express the distinctions of inter-
est (insofar as they lengthen a string).

The prefix relation on strings

s prefix s

0 () s

0 = sŝ for some ŝ

lifts to maps a and a0 in IL(⇥, bc) by universal quantification
for an irreflexive relation

a � a0 () a 6= a0 and (8⌃ 2 Fin(⇥)) a(⌃) prefix a0(⌃)

that is tree-like on IL(⇥, bc) — i.e., transitive and left linear:
for every a 2 IL(⇥, bc), and all a1 � a and a2 � a,

a1 � a2 or a2 � a1 or a2 = a1.

In other words, time branches at the inverse limit IL(⇥, bc).
Working with the functions ⇢⌃, we can decompose a

string s 2 (2⌃[⌃0
)⇤ as

s = ⇢⌃(s) & ⇢⌃0(s)

where superposition & forms the componentwise union of
strings of sets with the same length

(↵1 · · ·↵n

) & (�1 · · ·�n) := (↵1 [ �1) · · · (↵
n

[ �
n

)

inducing a relation of subsumption D

sD s

0 () s&s

0 = s

(Fernando 2004). Subsumption is componentwise contain-
ment ◆ between equally long strings of sets ↵

i

and �
i

↵1 · · ·↵n

D �1 · · ·�m () n = m and
�

i

✓ ↵

i

for i 2 [n]

and extends naturally to a relation with languages L, under-
stood as disjunctions and interpreted by existential quantifi-
cation

sD L () (9s0 2 L) sD s

0
.

For example, a string s has length � 2 iff sD +. We can
reconstruct the Vendler classes described in Dowty 1979 and
variants thereof by representing an event e at granularity ⌃
as a string str⌃(e) 2 (2⌃)+, relative to which we define e

to be

- ⌃-dynamic if bc(str⌃(e))D +

- ⌃-durative if bc(str⌃(e))D +

- ⌃-telic if str⌃(e) D ¬' +
' for some fluent ' 2 ⌃

(marking the culmination of e).

The choice of vocabulary ⌃ determines what a string can
represent; it is linked in Fernando 2015 to, among other
things, the event nucleus in Moens and Steedman 1988 (as-
sociating a preparatory phase, a culmination and a conse-
quent state with an event, not all of which may be repre-
sented in a string). Up to granularity ⌃, the string str⌃(e)
gives a completely deterministic picture of the event e. For
non-determinism at ⌃, we must look to a language (over the
alphabet 2⌃) with more than the one string str⌃(e).



3 EXP-processes as sets of strings
Moving from strings ↵1↵2 · · ·↵n

to finite automata, let us
recall from the introduction the deterministic automaton
A

M

that accepts the language ↵⇤
1S↵

⇤
2S · · ·S↵⇤

n

over the al-
phabet ⌃ [ {S} and note that a transition in A

M

labeled
by a 2 ⌃ does not move time forward (unlike one labeled
by S). Whereas the previous section decomposes ↵1 · · ·↵n

through subsets of ⌃, the present section decomposes a state
also through the transitions from it, treating some of the
transitions as fields that make up a record, and other tran-
sitions as specifications of types (including singletons for
tokens). Take the famous example (7) of event modifica-
tion/predication in Davidson 1967 (page 81).

(7) Jones did it slowly, deliberately, with a knife
We associate (7) with the record

(8)
2

6666664

who =
h
jones

i

how =
2

664

slow
deliberate

with =
h
knife

i

3

775

3

7777775

which we analyze presently as a minimal deterministic au-
tomaton accepting the four strings who jones, how slow, how
deliberate and how with knife.

Automata can be formed from languages using a notion of
derivative connected with the Myhill-Nerode theorem (e.g.,
Hopcroft and Ullman 1979). Given a language L and a string
s, the s-derivative of L is the set

L

s

:= {s0 | ss0 2 L}

of strings that put after s belong to L (Brzozowski 1964).
The Myhill-Nerode equivalence ⇠

L

between strings that
have the same continuations in L is equality of derivatives

s ⇠
L

s

0 () L

s

= L

s

0
.

The chain of equivalences

a1a2 · · · an 2 L () a2 · · · an 2 L

a1

() · · · () ✏ 2 L

a1···an

(from a1 · · · an to the empty/null string ✏) means that L is
accepted by the deterministic automaton with
- s-derivatives L

s

as states
- initial state L = L

✏

- a-transitions from L

s

to L

sa

(for every symbol a)
- final states L

s

such that ✏ 2 L

s

.
The Myhill-Nerode theorem says that a language L over a
finite alphabet A is regular iff the set {L

s

| s 2 A

⇤} of
derivatives of L is finite. Note that L

s

is non-empty precisely
if s is the prefix of some string in L. Moreover, if L

s

is empty
then so is L

sa

for every symbol a. That is, ; is a sink state
that we may safely exclude from the states of the automaton
above, at the cost of making the transition function partial.
Let us define an A-state to be a non-empty subset q of A⇤

that is prefix-closed (i.e., for all sa 2 q, s 2 q). An A-state q

can then make an a-transition to its a-derivative q
a

precisely
if a 2 q.

Now, let us fix an infinite set Act of symbols that will play
a role analogous to ⇥ in section 2 . For A 2 Fin(Act), let
sen(A) be the set of formulas generated from a 2 A accord-
ing to

' ::= > | ¬' | ' ^ '0 | hai'

(Hennessy and Milner 1985). We interpret these formulas
over A-states q, treating > as a tautology, ¬ as negation, ^
as conjunction, and hai as a diamond modal operator for a-
transitions

q |= hai' () a 2 q and q

a

|= '.

We extend hai' from a 2 A to strings s 2 A

⇤, defining
h✏i' := ' and hasi' := haihsi' so that

ha1 · · · ani' = ha1i · · · hani'.

and

q |= hsi' () s 2 q and q

s

|= '.

Next, given a string s 2 Act⇤ and a set A 2 Fin(Act), we
compute the longest prefix of s that belongs to A

⇤ by the
function ⇡

A

: Act⇤ ! A

⇤ defined by ⇡
A

(✏) := ✏ and

⇡

A

(as) :=

⇢
a⇡

A

(s) if a 2 A

✏ otherwise.

The A-restriction of a language q ✓ Act⇤ is the image of q
under ⇡

A

q �A := {⇡
A

(s) | s 2 q} .

If q is an Act-state, then its A-restriction, q �A, is an A-state
and is just the intersection q \ A

⇤ with A

⇤. A-restrictions
are interesting because satisfaction |= of formulas in sen(A)
can be reduced to them.

Proposition 2 For every A 2 Fin(Act), ' 2 sen(A) and

Act-state q,

q |= ' () q �A |= '

and if, moreover, s 2 q �A, then

q |= hsi' () (q �A)
s

|= '.

Proposition 2 is proved by a routine induction on ' 2
sen(A).

There is structure lurking around Proposition 2 that is
most conveniently described in category-theoretic terms. For
A 2 Fin(Act), let Q(A) be the category with
- A-states q as objects
- pairs (q, s) such that s 2 q as morphisms from q to q

s

,
with identities (q, ✏) and composition as concatenation

(q, s) ; (q
s

, s

0) := (q, ss0).



To turn Q into a functor from Fin(Act)op (with morphisms
(A0

, A) such that A ✓ A

0 2 Fin(Act)) to the category Cat of
small categories, we map a Fin(Act)op-morphism (A0

, A) to
the functor Q(A0

, A) : Q(A0) ! Q(A) sending an A

0-state
q

0 to the A-state q

0 � A, and the Q(A0)-morphism (q0, s0)
to the Q(A)-morphism (q0 � A,⇡

A

(s0)). The Grothendieck
construction for Q is the category

R
Q where

- objects are pairs (A, q) such that A 2 Fin(Act) and q is
an A-state

- morphisms from (A0
, q

0) to (A, q) are pairs

((A0
, A), (q0 �A, s))

of Fin(Act)op-morphisms (A0
, A) and Q(A)-morphisms

(q0 �A, s) such that (q0 �A)
s

= q.

(e.g., Tarlecki, Burstall and Goguen 1991).
R
Q integrates

the different categories Q(A) (for A 2 Fin(Act)), lifting a
Q(A)-morphism (q, s) to a (

R
Q)-morphism from (A0

, q

0)
to (A, q

s

) whenever A ✓ A

0 and q

0 �A = q.
Given a small category C, let us write |C| for the set of

objects of C. Thus, for A 2 Fin(Act), |Q(A)| is the set

|Q(A)| = {q ✓ A

⇤ | q 6= ; and q is prefix-closed}

of A-states. Next, for (A, q) 2 |
R
Q|, let Mod(A, q) be the

full subcategory of Q(A) with objects required to have q as
a subset

|Mod(A, q)| := {q0 2 |Q(A)| | q ✓ q

0}.

That is, |Mod(A, q)| is the set of A-states q0 such that for all
s 2 q, q0 |= hsi>. The intuition is that q is a form of record
typing over A that allows us to simplify clauses such as

q

0 |= hsi' () s 2 q

0 and q

0
s

|= ' (†)

when s 2 q ✓ q

0 (making s a path through a record; Cooper
2012, page 284). The second conjunct in the righthand side
of (†), q0

s

|= ', presupposes the first conjunct, s 2 q

0. We can
lift that presupposition out of (†) by asserting that whenever
s 2 q and q ✓ q

0,

q

0 |= hsi' () q

0
s

|= '.

This comes close to the equivalence in Proposition 2, except
that A-restrictions are missing. These reducts appear once
we vary A, and step from Q(A) to

R
Q. Taking this step, we

turn the categories Mod(A, q) to a functor Mod from
R
Q to

Cat, mapping a
R
Q-morphism � = ((A0

, A), (q0 � A, s))
from (A0

, q

0) to (A, q) to the functor

Mod(�) : Mod(A0
, q

0) ! Mod(A, q)

sending q

00 2 |Mod(A0
, q

0)| to the s-derivative of its A-
restriction, (q00 �A)

s

, and a Mod(A0
, q

0)-morphism (q00, s0)
to the Mod(A, q)-morphism (q00 �A,⇡

A

(s0)).
The syntactic counterpart of Q(A) is sen(A), which we

turn into a functor sen matching Mod. A basic insight from
Goguen and Burstall 1992 informing the present approach
is the importance of a category Sign of signatures which

the functor sen maps to the category Set of sets (and func-
tions) and which Mod maps contravariantly to Cat. The def-
inition of Mod above suggests that Signop is

R
Q.6 A

R
Q-

morphism from
R
Q-objects (A0

, q

0) to (A, q) is determined
uniquely by a string s 2 q

0 �A such that
q = (q0 �A)

s

and A ✓ A

0
. (‡)

Let (A, q)
s! (A0

, q

0) abbreviate the conjunction (‡),
which holds precisely if ((A0

, A), (q0 � A, s)) is a
R
Q-

morphism from (A0
, q

0) to (A, q). Now for (A, q) 2 |
R
Q|,

let sen(A, q) be sen(A) (ignoring q), and when (A, q)
s!

(A0
, q

0), let
sen(�) : sen(A) ! sen(A0)

send ' 2 sen(A) to hsi' 2 sen(A0). To see that an institu-
tion arises from restricting |= to |Mod(A, q)| ⇥ sen(A), for
(A, q) 2 |

R
Q|, it remains to check the satisfaction condi-

tion:
whenever (A, q)

s! (A0
, q

0) and q

00 2 Mod(A0
, q

0) and
' 2 sen(A),

q

00 |= hsi' () (q00 �A)
s

|= '.

This follows from Proposition 2, as s must be in q

0 �A and
thus also in q

00 �A.
Returning to sentence (7), let Act contain the finite set
A := {who, jones, how, slow, deliberate, with, knife}

so that if q is the A-state {who, how, how with,, ✏} then
q [ {who jones, how slow, how deliberate, how with knife}
is an (A, q)-model corresponding to the record (8) that (hav-
ing a non-empty s-derivative for every s 2 q) has record type
q. Records and types are employed extensively in Cooper
2012 as linguistic resources that, as argued in Cooper and
Ranta 2008, characterize natural language. The relevance of
this to EXP/HIST is expressed concisely by

EXP
HIST

⇡ automata
runs

⇡ resources
uses

⇡ types
tokens

where, in the simplest case, a token is a string, while a type
is a language (to which the string may or may not belong).

4 EXP/HIST and connections
Having likened EXP/HIST to modal/predicate logic in Table
1 (from the introduction), we brought out notions of granu-
larity in sections 2 and 3 through signatures ⌃, organized
into a category Sign, from which institutionally,

(i) a functor sen : Sign ! Set assigns a set sen(⌃) of ⌃-
sentences

(ii) a contravariant functor Mod : Signop ! Cat assigns a set
|Mod(⌃)| of ⌃-models, and
6That said, we might refine Sign, requiring of a signature (A, q)

that q be a regular language. For this, it suffices to replace
R
Q byR

R where R : Fin(Act)op ! Cat is the subfunctor of Q such
that R(A) is the full subcategory of Q(A) with objects regular
languages. We can make this refinement without requiring that A-
states in Mod(A, q) be regular, forming Mod(A, q) from Q (not
R).



(iii) satisfaction relations |=⌃ relate ⌃-models and ⌃-
sentences smoothly across different signatures (made pre-
cise by the satisfaction condition).

Institutions were formed from a large set ⇥ of fluents in sec-
tion 2 and a large set Act of symbols in section 3, as outlined
in the table below.

HIST EXP
signature ⌃ 2 Fin(⇥) (A, q) where q ✓ A

⇤

model (2⌃)⇤-string A-language ◆ q

sentence MSO⌃ Hennessy-Milner over A

Table 2
In HIST, a ⌃-model is a (2⌃)-string (where an X-string is a
string over the alphabet X), while in EXP, an (A, q)-model
is an A-language that contains q (where an X-language is a
set of X-strings). A comparison of Tables 1 and 2 raises the
question: what has become of the clear difference between
a HIST-model ↵1 · · ·↵n

and an EXP-model ↵1 · · ·↵n

, i in
Table 1, consisting of a string position i 2 [n]?

A string ↵1 · · ·↵n

can be paired with a string position
i 2 [n] within the institution built around MSO in sec-
tion 2 with sentences expressive enough to capture Priorean
tense logic (using second-order quantification for the transi-
tive closure < of S). Indeed, for any 2⌃-string ↵1 · · ·↵n

and
set I ✓ [n] of string positions (including singletons {i} for
i 2 [n]), we can encode the pair ↵1 · · ·↵n

, I as the 2⌃[{a}-
string ↵0

1 · · ·↵0
n

, for some fluent a 2 ⇥� ⌃, where

↵

0
j

= :=

⇢
↵

j

[ {a} if j 2 I

↵

j

otherwise

for j 2 [n]. The stutterless restriction on strings in section 2
(left out of Table 2 for simplicity) points to a conception of
time as a container (containing what happens during it) that
equates a stretch of time with the set of EXP-processes run-
ning over that stretch. Making a bounded granularity explicit
reduces the implausibility of modeling an EXP-process as a
finite automaton. But the complication discussed in the in-
troduction relating to the Imperfective Paradox remains:

(?) over any stretch of time, any number of EXP-processes
may run, some interfering with others.

Competition between processes deepens the EXP/HIST di-
vide, moving away from the simple picture in Table 1
of EXP-processes reducible to HIST-runs. The primacy of
timelines is challenged by a causal realm that provides rules
and regulations over and above episodic instances recorded
in a timeline (Carlson 1995, Steedman 2005).

If EXP is not reducible to HIST, might HIST be reducible
to EXP? This depends on what EXP-processes are available
for reducing HIST-strings to. For any string s, the single-
ton {s} is a regular language, embedding HIST-models triv-
ially into EXP-models. But implicit in the complication (?)
above is a view of the timeline as combining many sepa-
rate EXP-processes, conceived largely in isolation and po-
tentially clashing when run alongside other EXP-processes.
That is, given a HIST-timeline s and an EXP-language m,
we should ask not so much whether s 2 m (m being just one
of the processes running in s, and thus too small to account

for all of s) but rather whether there is a string s

0 2 m that,
for example, s subsumes (i.e., sDs

0), or perhaps sD ⇤
s

0 ⇤

(allowing s to extend before and/or after s0). Indeed, under
(?), the string s

0 2 m may not run to completion in s, sug-
gesting a further weakening of the condition sD ⇤

s

0 ⇤. Let
R be some such condition between s and s

0, on the basis of
which we link s and m, defining

s

0
R-connects (s,m) () sRs

0 and s

0 2 m.

We can explore different instantiations of R in HIST, by
expanding a signature ⌃ with a copy ⌃0 that is disjoint,
⌃ \ ⌃0 = ;, and forming model pairs (e.g., Keisler 1977,
page 71) in MSO(⌃[⌃0) via superposition & (as defined in
section 2).

Proposition 3 Given two disjoint finite sets ⌃ and ⌃0
,

L ✓ (2⌃[⌃0
)⇤ is a regular language iff there is an

✏-free finite-state transducer that computes the relation

{(⇢⌃(s), ⇢⌃0(s)) | s 2 L}.

An example of a relation described by Proposition 3 is sub-
sumption D, with the symbols renamed for disjoint copies.
String pairs (s, s0) in which sD s

0 pick out parts s0 of s that
are of interest, often leaving some string positions empty.
In the terminology of Carnap-Montague intensions, the in-
dex s provides a context for the denotation s

0. The pair may
fall outside subsumption D, as in the case (1) and not (2) of
the Imperfective Paradox (where the event s0 of John draw-
ing a circle may not be fully realized in the index s). The
disjoint vocabularies for string pairs (s, s0) distinguish what
is actual according to the index s from what the denotation
s

0 describes, allowing the strings to branch away from each
other. Iterating the construction (and multiplying vocabular-
ies), we can form any finite number of alternatives within
HIST.

The sets of strings that serve as EXP-models in section
3 need not be finite. The strings in these sets may range
over HIST-timelines if we take Fin(⇥) to be the set Act
of symbols, finite subsets of which serve as the alphabets
A from which EXP-signatures (A, q) are formed. Implicit
in the simple membership s

0 2 m in the definition of s

0

R-connects (s,m) is the assumption that Act is essentially
Fin(⇥). But different choices of Act are suitable for different
applications. To describe record types (which have proved
useful in linguistic semantics; e.g., Cooper 2012), it is help-
ful to close the set sen(A) of sentences ' under the construct
⇤

B

', for every B ✓ A, with

q |= ⇤
B

' () (8s 2 q \B

⇤) q
s

|= '

for every A-state q. (The arguments in section 3 carry over
with this modification.) Exactly what sentences we asso-
ciate with EXP is crucial if we are to relate EXP and
HIST in the manner ontologies are related in, for exam-
ple, Kutz, Mossakowski and Lücke 2010. The notion of s0
R-connecting (s,m) above takes a semantic approach that
needs to be supplemented on the syntactic side. Much work
remains to be carried out, not the least of which is an account
within EXP of how to map choices of Act such as that made



above for Davidson’s (7) to the HIST-timelines represented
in section 2 as Fin(⇥)-strings. Are there, an anonymous ref-
eree asks, institution comorphisms between EXP and HIST?

5 Conclusion
Behind the institutions above are the correspondences

EXP-process
HIST-event

⇡ internal mechanism
external timeline

⇡⌃
automata

string
.

A HIST-timeline is where different EXP-processes, framed
largely in isolation, go out to meet and be seen, as HIST-
events. A finite approximability hypothesis attaches the sub-
script ⌃ on ⇡, ranging over signatures that by bounding
granularity, allow us to formulate the HIST-timelines as
strings and the EXP-processes as finite automata. Structured
as a category, the signatures provide a guide for exploring
the forces that constitute the causal realm EXP, and their tor-
tuous manifestations as events in the temporal realm HIST.

Acknowledgments I am grateful to my anonymous ref-
erees for comments, and to Science Foundation Ireland’s
ADAPT Centre for funding,

References
Emmon Bach 1986. The algebra of events. Linguistics and
Philosophy 9: 5–16.

Patrick Blackburn 2006. Arthur Prior and Hybrid Logic.
Synthese 150(3):329–372.

Janusz A. Brzozowski 1964. Derivatives of Regular Expres-
sions. J.ACM 11:481–494.

Greg N. Carlson 1995. Truth conditions of generic sen-
tences: two contrasting views. In The Generic Book, pp.
224–237. University of Chicago Press.

Robin Cooper 2012. Type theory and semantics in flux. In
Handbook of the Philosophy of Science. Volume 14: Philos-
ophy of Linguistics. pages 271–323

Robin Cooper and Aarne Ranta 2008. Natural languages as
collections of resources. In Language in Flux: Dialogue Co-
ordination, Language Variation, Change and Evolution, pp.
109–120. College Publications.

Donald Davidson 1967. The logical form of action sen-
tences. In N. Rescher (ed.) The Logic of Decision and Ac-
tion, pp 81–95, University of Pittsburgh Press.

David R. Dowty 1979. Word Meaning and Montague Gram-
mar. Reidel.

Tim Fernando 2004. A finite-state approach to events in
natural language semantics. J. Logic and Computation
14(1):79–92.

Tim Fernando 2015. The semantics of tense and aspect: a
finite-state perspective. In S. Lappin and C. Fox, editors,
Handbook of Contemporary Semantic Theory, second edi-
tion, Wiley-Blackwell.

Antony Galton 2008. Experience and history: processes
and their relation to events. J. Logic and Computation
18(3):323–340.
Antony Galton 2012. The ontology of states, processes and
events. In Mitsuhiro Okada and Barry Smith (editors), In-
terdisciplinary Ontology, Vol. 5, Proceedings of the Fifth
Interdisciplinary Ontology Meeting, Tokyo. Keio Univer-
sity, Open Research Centre for Logic and Formal Ontology,
pages 35–45.
Antony Galton and Riichiro Mizoguchi 2009. The Water
Falls but the Waterfall does not Fall: New perspectives on
Objects, Processes and Events. Applied Ontology 4(2):71–
107
Joseph Goguen and Rod Burstall 1992. Institutions: abstract
model theory for specification and programming. J.ACM
39(1):95–146.
Pierre Grenon and Barry Smith 2004. SNAP and SPAN:
Towards dynamic spatial ontology. Spatial Cognition and
Computation 4(1):69–103.
Matthew Hennessy and Robin Milner 1985. Algebraic laws
for non-determinism and concurrency. J.ACM 32(1): 137–
161.
John Hopcroft and Jeffrey Ullman 1979. Introduction to
Automata Theory, Languages, and Computation. Addison-
Wesley.
H. Jerome Keisler 1977. Fundamentals of model theory,
in Handbook of Mathematical Logic, pp 47–103 North-
Holland.
Nathan Klinedinst 2012. Intensionality and the Progressive.
UCL Working Papers in Linguistics 2012, pp 21–26.
Oliver Kutz, Till Mossakowski, and Dominik Lücke 2010.
Carnap, Goguen, and the hyperontologies: Logical plural-
ism and heterogeneous structuring in ontology design. Log-
ica Universalis 4(2):255–333.
Leonid Libkin 2010. Elements of Finite Model Theory,
Springer.
John Lyons 1977. Semantics, Volume 2. Cambridge Univer-
sity Press.
John McTaggart 1908. The Unreality of Time. Mind 17:457–
473.
Marc Moens and Mark Steedman 1988. Temporal on-
tology and temporal reference. Computational Linguistics
14(2):15–28.
Terence Parsons 1990. Events in the Semantics of English:
A Study in Subatomic Semantics. MIT Press.
Arthur N. Prior 1967. Past, Present and Future. Clarendon
Press, Oxford.
Mark Steedman 2005. The Productions of Time, Draft,
http://homepages.inf.ed.ac.uk/steedman/papers.html.
Andrzej Tarlecki, Rod Burstall and Joseph Goguen 1991.
Some fundamental algebraic tools for the semantics of com-
putation: Part 3. Indexed categories. Theoretical Computer
Science 91:239–264.


