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Constraints on Moving Strong 
Discontinuity Surfaces in Dynamic 
Plane-Stress or Plane-Strain 
Deformations of Stable Elastic-
ideally Plastic Materials 
For dynamic deformations of compressible elastic-ideally plastic materials in the 
practically important cases of plane stress and plane strain, we investigate the possible 
existence of propagating surfaces of strong discontinuity (across which components 
of stress, strain, or material velocity jump) within a small-displacement-gradient 
formulation. For each case, an explicit proof of the impossibility of such a prop
agating surface (except at an elastic wave speed) is achieved for isotropic materials 
satisfying a Huber-Mises yield condition and associated flow rule, and we show that 
our method of proof can be generalized to a large class of anisotropic materials. 
Nevertheless, we demonstrate that moving surfaces of strong discontinuity cannot 
be ruled out for all stable (i.e., satisfying the maximum plastic work inequality) 
materials, as in the case of a material whose yield surf ace contains a linear portion. 
A clear knowledge of the conditions under which dynamically propagating strong 
discontinuity surfaces can and cannot exist is crucial to the attainment of correct 
and complete solutions to such practical elastic-plastic problems as dynamic crack 
propagation, impact and rapidly moving load problems, high-speed forming, cutting, 
and other manufacturing processes. 

1 Introduction 
Since the monumental work of Hadamard (1903) on dis

continuity surfaces in continuum mechanics, this subject has 
attracted the attention of many researchers in mechanics and 
applied mathematics. Many of the early contributions are ref
erenced in the fine book by Courant and Friedrichs (1948), 
which deals mainly with nonlinear wave propagation in gas 
dynamics, but much of their work is also important to the 
study of moving strong discontinuity surfaces (i.e., shocks) in 
solids. Thomas (1961) and Hill (1961) extended Hadamard's 
(1903) work on general invariant-form compatibility condi
tions for discontinuity surfaces, and Hill (1961) deduced re
strictions on strong discontinuities in rigid-plastic materials 
under quasi-static conditions. Much of the ensuing work on 
moving strong discontinuities in elastic-plastic solids, which 
usually deals with special (often one-dimensional) situations, 
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is reviewed in Ting's (1976) paper on shock and weaker waves 
in elastic-plastic materials. 

The significance of this knowledge about possible discon
tinuities lies in its necessity for constructing the solutions of 
boundary value problems in solid mechanics and for dem
onstrating the possible existence and uniqueness of such so
lutions. Recent interest in the moving strong discontinuity 
problem is partly motivated by the analysis of stress and de
formation fields near a growing crack tip in elastic-ideally 
plastic material (see, e.g., the quasi-static crack growth analysis 
of Drugan and Chen (1989), and the dynamic crack growth 
analysis of Leighton et al. (1987)). 

Drugan and Rice (1984) and Drugan (1986) developed a new 
direct approach for analyzing moving strong discontinuity sur
faces in general three-dimensional deformations of quasi-stat-
ically deforming elastic-plastic solids. They employed a small-
displacement-gradient formulation of standard weak contin
uum mechanical assumptions coupled with merely skeletal con
stitutive assumptions which are believed to describe realistically 
a large class of elastic-plastic materials, and which subsume 
many specific elastic-plastic models that are frequently em
ployed. Among the results, they showed that the complete 
stress tensor must be continuous across quasi-statically moving 
surfaces for the general class of solids analyzed, and that jumps 
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Fig. 1 Portion of a propagating strong discontinuity surface 

in certain components of the strain tensor and the material 
velocity vector are possible only if specific conditions are met 
at the propagating surface. The special case of such discon
tinuities under quasi-static generalized plane stress was con
sidered separately, by Pan (1982) and Narasimhan and Rosakis 
(1987). 

Drugan and Shen (1987) deduced restrictions on dynamically 
propagating surfaces of strong discontinuity in very general 
elastic-plastic materials by generalizing the analyses of Drugan 
and Rice (1984) and Drugan (1986). In that paper, we derived 
one condition on jumps (termed here "Condition 1") by in
tegrating the maximum plastic work inequality along an ar
bitrary portion of the deformation path across a hypothetical 
moving discontinuity surface, and another condition (termed 
here "Condition 2") by seeking nontrivial solutions of the 
incremental stress-strain equations across a moving disconti
nuity (valid for materials with smooth yield surfaces). By first 
analyzing shock waves that produce no plastic straining, we 
proved that if a shock is to propagate at a speed other than 
an elastic wave speed, the yield condition must be satisfied 
throughout the stress path across the shock (this requirement 
also applies to Condition 2). Thus, a necessary condition for 
the existence of an elastic-plastic shock wave (moving strong 
discontinuity accompanied by plastic strain variation) results 
by requiring that any path in stress space experienced by a 
material point during shock passage satisfy all the restrictions 
just summarized (i.e., Conditions 1 and 2, and the yield con
dition). In addition to deriving these general restrictions on 
discontinuities in arbitrary three-dimensional deformations, 
Drugan and Shen (1987) were able to employ Condition 1 (their 
Equation (3.30)) together with the yield condition to rule out 
moving strong discontinuities that propagate at speeds other 
than an elastic wave speed for the special cases of antiplane 
strain and incompressible plane-strain deformations of ma
terials whose yield surfaces do not contain linear segments. 
Materials whose yield surfaces do have linear portions, such 
as ductile single crystals, were found to permit elastic-plastic 
shock waves under certain specific conditions. These results 
have already found practical application in the analysis of 
dynamic antiplane shear crack growth in elastic-ideally plastic 
single crystals by Nikolic and Rice (1988), who showed that a 
solution for the stress and deformation fields near a crack tip 
under such conditions must contain elastic-plastic shocks whose 
behavior is circumscribed by the Drugan and Shen (1987) con
ditions. Further confirmation of the aforementioned quasi-
static and dynamic small-displacement-gradient discontinuity 
analyses is provided by the very recent, rigorous finite defor
mation discontinuity analysis of Drugan and Shen (1990). 

Because Condition 2 (Equation (4.12) of Drugan and Shen, 
1987) is not utilized in analyzing the special cases of antiplane-

strain and incompressible plane-strain deformations, a natural 
question is whether that relation is independent of the other 
restrictions employed. If the answer is affirmative, that relation 
becomes yet another restriction on possible strong disconti
nuity waves, which should then allow us to rule out such waves 
in more general deformations. 

In the present work, we apply the general discontinuity re
strictions derived in Drugan and Shen (1987) to analyze the 
practically important cases of plane-stress and plane-strain 
deformations of compressible materials, within a small-dis
placement-gradient formulation. It is very difficult to assess 
the independence of these restrictions for a general material, 
but we do show that they are not naturally dependent on one 
another. We shall prove independence of these restrictions 
(thereby ruling out strong discontinuity surfaces moving at 
other than elastic wave speeds) first for isotropic materials 
with a Huber-Mises yield condition and associated flow rule, 
and then for certain classes of more general materials. We shall 
also further discuss the special cases of antiplane-strain and 
incompressible plane-strain analyzed by Drugan and Shen 
(1987). 

With reference to Fig. 1, let E be a portion of a regular 
surface of strong discontinuity that moves with speed V> 0 in 
its normal direction. A Cartesian coordinate system xu x2, x3 

moves with the surface and is oriented so that xx is in the 
direction of the normal while x3 is perpendicular to the plane 
of "plane stress" or "plane strain." u, e, and a denote the 
tensors of displacement, strain and stress, respectively. Values 
of a tensorial field quantity, say g (xu x2, x3< t) where t is time, 
directly ahead of and directly behind the moving surface E will 
be denoted as g± =lim g(xu x2, x}, ta T p), respectively, where 

ta is the time at which E arrives at a particular material point. 
The jump in such a field quantity across E will be denoted as 
[feD — g + _ g ~ - 1° t n e sequel, components of tensors with 
respect to the Cartesian coordinate system of Fig. 1 are in
dicated either by the Roman indices ij,k,l which have range 
1,2,3 or by the Greek indices a,(3,7,5 which have range 1,2 
only; both types of index follow the summation convention. 

2 Plane-Stress Case 
The plane-stress case is very special. Because of the ap

proximation implied in the concept of generalized plane stress, 
there is a possibility of "necking," i.e., a jump in u} and hence 
[[€331=0 may not be true (Hill, 1952; Pan, 1982). By "gen
eralized plane stress" is meant the assumptions that the field 
quantities u, e, a represent thickness averages, and that a3, = 0. 
For a thin sheet of material suitable for this type of description, 
in-plane components of stress and strain are assumed to be 
related by the constitutive equation 

dta& = dee
afi + d(Pa& = MafjySdcy6 + dA -—, (1) 

where M is the (constant) elastic modulus tensor, assumed to 
be positive definite and to possess the usual symmetries, / (a) = 0 
is the yield condition, e?A>0 is an unspecified parameter for 
the nonhardening materials to be considered, and superscripts 
e and p denote elastic and plastic part, respectively. Of course, 
we have assumed a smooth yield surface. 

The physical requirement of finite total plastic work in any 
finite subregion of the body traversed by E demands continuity 
of the in-plane components of displacement, ua. Assuming 
that dua/dxi3 exist in a neighborhood of E and tend to finite 
limits as Eis approached, a special result of Hadamard's (1903) 
lemma, known as Maxwell's (1873) theorem, is the compati
bility requirement 

|[duat/djc2D = 0. (2) 

(Recall that x2 is the in-plane coordinate directed parallel to 
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L.) Since £ is moving, continuity of ua leads also to Hada-
mard's (1903) kinematical condition of compatibility 

Ival=-Vldvijdx^. (3) 

In terms of the infinitesimal strain tensor, e„ = - (du/dx, + 
2 

du/dXj), equation (2) and equation (3) require 
tt"il= - fTfeiifl, ttuJI = --2Fl[€,2ll, tte22H = 0. (4) 

The conservation of linear and angular momentum requires 
(Kotchine, 1926) 

ttffi.Jl=-pH[i>«]l, (5) 
where p is the material density, which is treated as continuous 
within the small-displacement-gradient formulation, as is V, 
so that conservation of mass is identically satisfied. Since we 
employ a purely mechanical constitutive theory, the conser
vation of energy provides no useful additional jump restriction. 

It will prove convenient to combine equations (4) and (5) as 

H « n l l = ^ EffuB, l^il=~2 ttffidl, ffe22]l = 0. (6) 

As argued in Drugan and Shen (1987), a purely mechanical 
description of shock waves requires equation (6) to be true for 
any subdivision of the shock transition zone, which leads to 

* n = - r s dan, del2=: 
1 

• da,2, de„ = 0. 

These equations must be satisfied throughout the stress and 
strain paths experienced by a material point during shock pas
sage. 

Before analyzing a shock that produces plastic straining, we 
first investigate the case in which the stresses remain below 
yield across the shock, and hence dA = 0. Substituting equation 
(7) into equation (1) in this case, we must have for nonzero 
doap (clearly a necessity for nonzero fl>a/3I]) 

det 
( M l 1 " - ^ ) 

^ 2 2 1 1 

M211 

^ 1 1 2 2 

M2222 

Mm2 

2Mlm 

2M2212 

( 2 M - - ^ ) 

= 0 (8) 

which can be used to determine the elastic strong discontinuity 
wave speeds. We will show that these speeds may differ from 
those for the three-dimensional case, due to our assumption 
of plane stress. 

When plastic deformation accrues during shock passage, 
Drugan and Shen (1987) proved that the entire stress path 
across the shock must remain at yield. (This is easily seen here 
by observing that equation (8) permits purely elastic stress 
changes only when V equals an elastic wave speed.) For plane 
stress of elastic-ideally plastic material, the yield condition has 
the form fl \ n /n^ 

/ ( a n , a22, a12) = 0 (9) 
(assumed to depend symmetrically on CT,2 and <r21). Combining 
equations (1), (7), and the yield condition (9) in differential 
form (Prager's consistency condition) gives 

where this equation serves to define the matrix K and the vector 
dS. 

Thus, a necessary condition for an elastic-plastic shock to 
exist takes the form 

det(K) = 0. (11) 
This equation, although it might be identified as the afore
mentioned Condition 2, cannot be directly deduced from equa
tion (4.12) of Drugan and Shen (1987) because de33 is always 
required to be zero across shocks in that (general three-di
mensional) derivation. As mentioned in Section 1, like the yield 
condition, equation (11) is to be satisfied throughout the pas
sage of the shock since we are discussing a shock propagating 
at a speed V different from the elastic wave speeds. Observe 
that since equation (11) effectively requires an elastic-plastic 
shock to propagate at a plastic wave speed, the usual shock 
stability condition is identically satisfied. 

There are two other conditions restricting the existence of 
elastic-plastic shock waves: one is the undifferentiated form 
of the yield condition, equation (9); the other is the plane-
stress version of the aforementioned Condition 1. This con
dition is obtained by integrating the maximum plastic work 
inequality along any part of any admissible deformation path 
(one along which all governing equations are satisfied) across 
a hypothetical moving strong discontinuity surface: 

Oty-o-X/e^O. (12) 

Here, (F represents any value of the plastic strain on an ad
missible path between tp+ and <?~, and a" is any fixed stress 
state that is at or below yield. Equation (12) can be explicitly 
evaluated by employing a3i = o°3j = 0, the first equation of 
equation (1), the elastic part of the second equation of equation 
(1), and equation (7), in the manner illustrated in Drugan and 
Shen (1987). Doing this for the choices a° = a+ and o° = o (the 
a - value corresponding to (?, the endpoint of integration in 
equation (12)), the resulting restriction is 

<oXa> <ala> -pV2<oafi>Moll37i,<<jSy> = 0 (13) 

where < g > = g - g + , and here g represents any g-value on 
an admissible path between g+ and g . 

In most cases, the stresses under restrictions of equations 
(9) and (11) cannot satisfy equation (13) unless <<r> = 0 , 
i.e., when there are no stress jumps. That is to say, equations 
(9), (11), and (13) are mutually independent except on some 
isolated points in (an, a22, on) space. Geometrically, the sur
faces defined by these three equations in (cru, ff22.

 ffi2) space 
cannot share a common intersecting curve from <r+ to a that 
would facilitate a strong discontinuity. This independence can 
be explained by noting that the plastic part of equation (11) 
corresponds to the normality rule resulting from the maximum 
plastic work inequality (increments of plastic strain are normal 
to the yield surface), a local property of the material, while 
equation (13) is a result of integration along a finite path in 
stress space, a global property of the material during shock 
transition. Another form of equation (13) is < a > : < tp > 
= 0 which can be easily derived. Although in deriving equation 

( M l 1 " - ^ ) 

Mr. 

My. 

dan 

Mmi 

M2222 

M, 1222 

M. 
da22 

2Mm2 

2M2212 

(w»"-j^) 

2f 
da„ 

dj_ 

do22 

dj_ 
dan 

0 

r™ "•Tj 

dau 

da22 

da n 

dA 

mm em 

- [K][dS]=0, (10) 

Journal of Applied Mechanics SEPTEMBER 1990, Vol. 57 / 571 
Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



(11) we have employed the differential form of equation (13) 
(d<r:dep = 0) and that of equation (9) (df=0), equation (11) 
replaces neither (9) nor (13) because neither one can be simply 
reverted to its original form via (10). 

Actually proving the independence of equations (9), (11), 
and (13) is very difficult (if possible at all) for a general ma
terial. Our approach will be to prove this first for isotropic 
elastic-ideally plastic materials with a Huber-Mises yield con
dition; although this seems to be the simplest case possible, it 
is also very important because most theoretical solutions for 
the plane-stress case are for this material model. We will then 
show how our proof can be generalized to include certain 
classes of material anisotropy. 

When the material is isotropic, the elastic moduli are 

M; 
1 

mi - 4 G (M,/+« - 2G(2G + 3X)U«"*/ r5,A (14) 

where G and X are the Lame elastic constants and 5,y is the 
Kronecker delta. 

The Huber-Mises yield condition in the plane-stress case is 

/=-(of, + o\2~ ff11a22) + -((jf2-l-af1)- k2 = 0, (15) 

where k is the yield stress in shear. 
When there is no plastic straining across a moving shock, 

equation (8) can be used to calculate the elastic shock wave 
speeds. For isotropic materials, two such speeds result: 

K 2 = G O T K 2 = 4 G ( G + X) 

P 
(16) 

p(2G + X) 

Here the dilatant shock wave speed differs from the value for 

general three-dimensional deformations ( V ( '(2G + X)/p be

cause of the aforementioned reason that de3i is allowed to be 
nonzero across the shock. 

When the yield condition equation (15) is continuously sat
isfied across a moving shock (as Drugan and Shen (1987) 
showed it must be for a shock to propagate at any speed other 
than an elastic wave speed), equation (11) applies, and can be 
expanded to give: 

(G pv2) [ 
1 _ (5G + 3X) 

pV2 G(2G + 3X)J 
a1, 

4 (5G + 3X) 

PV2~G(2G + 3\\ 

36 

°22 + 
4 (8G + 3X) 

~pK2 +G(2G + 3X). C11022 I 

/2G + X G + X\ , 

he—T^H=0- (17) 
G(2G + 3X) V 4G 

Another condition is equation (13), which for an isotropic 
material becomes 

1 -
pV2(G + \) 

G(2G + 3X) 

_pV2(G + \) 

~G(2G + 3X) 

< < 7 l 1 > " + - Pv2\ 
G(2G+3X) 

<an> < < J 2 2 > 

<a 2 2 >^ + (-S) <<712>2 = 0. (18) 

In the stress space of on, (j22, and <x12, as shown in Fig. 2 
(for simplicity, equation (18), which depicts a cone centered 
at a point on (15), is not drawn in the figure), (15) represents 
an ellipsoid, and (17) is a cone (unless V is one of the elastic 
wave speeds given in (16), in which case it degenerates into a 
pair of planes). It can be easily proved that when the propa
gation speed Kis smaller than the elastic wave speeds, the axis 
of the cone lies in the OH-CT22 plane. (In fact, this is true as 
long as V is smaller than the dilatant elastic wave speed; if V 
is greater than that speed, equation (18) can only be satisified 
by zero stress jumps.) The intersection of (15) and (17) is two 
closed curves; we can see from these equations (or Fig. 2) that 

(") 

(15) 

——"/"" 

• />*' 
Jr? 

°i2A 

'^.s'".;9> 

—-A- z ' 
/y\ 
*~-y ' Intersections of 
~/~-_ / (15) and (17) 

Fig. 2 Intersection of the surfaces representing two of the trans-shock 
stress path restrictions for the plane-stress case 

if (<jn, a22, a12) is on one of the curves, then (ffH, <r22, -al2) 
must fall on the same curve. Thus, if one of the curves falls 
on the surface described by (18), the curve should include (<ju, 
°22> C12) a n d (aii> °22> ~ffi2) simultaneously. This means that 
if equation (18) passes through one of these critical curves then 
(18), with — (712 substituted for <712, should pass through the 
same curve. Since both equations from (18) (with CT12 or - <r12) 
pass through that curve, any linear combination of these two 
different versions of (18) passes through the same curve. Sub
tracting these two versions gives 

A\ 
(19) (l--^-)ffi2ff12 = 0> 

which applies for all states a[2 (including ai2 = an) o n an 
admissible path from an to an. 

We have already assumed p V2^ G; thus, for a shock to exist 
equation (19) requires ai2 = 0. (If an = 0 and there is some 
on ^ 0 on the path from a+ to a~, we may choose that <J12 

as a new a\2 and start from there to get a12 = 0, then au = 
0 by continuity, showing <r12 = 0 in this case as well.) That is, 
the curve of intersection between equations (15) and (17) must 
lie on the an — a12 plane, which is impossible unless either the 
curve degenerates to a point, which means no stress changes 
are possible; or an = an = 0, which also leads to no possible 
stress changes because then equations (15) and (17) can only 
be satisfied by constant an and <r22. 

Therefore, we have proved that there is no common inter
secting curve for the three surfaces of equations (15), (17), 
(18), and hence that there is no stress path that can be followed 
to produce an elastic-plastic stress jump across a propagating 
surface in the material. 

One question that may arise is: could equation (18) pass 
through a pa/-/of a curve of intersection of (15) and (17)? This 
would require that at some points (at least those points at 
which the curve and the surface begin to separate) the tangential 
direction of the curve or the normal direction of the surface 
or their derivatives are discontinuous. This is impossible for 
the nice equations (15), (17), and (18) (with the exception of 
the vertices of the cones, but evidently the center of (17) does 
not lie on (15)). 

We have proved that there can be no elastic-plastic shock 
waves in a material satisfying the Huber-Mises yield condition 
and associated flow rule, but the possibility of shock waves in 
the plane-stress case cannot generally be ruled out. In fact, for 
a yield condition with a linear portion (possible for a single 
crystal, for example), it is easy to show that an elastic-plastic 
shock wave is possible. When the yield condition equation (9) 
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has a linear portion in (a n , <r22, <J\2) space, (11) becomes an 
equation involving the coefficients of the stresses in equation 
(9), while equation (13) remains unchanged. In most situations, 
equations (9) and (13) intersect on a curve in (a n , CT22, a{2) 
space; equation (11) merely specifies the possible elastic-plastic 
shock speeds in terms of the coefficients in equation (9), the 
elastic moduli, and the material density. 

It should be pointed out that for a shock wave to exist at 
one of the permissible speeds derived above, it is necessary 
that there be a jump in e33) i.e., necking must occur and move 
with the shock wave to be compatible with the plane stress 
requirement that 033 = 0. If there is no necking present, the 
problem becomes much easier. 

When there is no necking present, in addition to the equa
tions we have discussed ((9), (11), and (13) or their simpler 
forms when there is no plastic straining during shock passage), 
we can use restrictions involving e33 to eliminate shock waves 
for most plane-stress cases. One such restriction is the plastic 
incompressibility condition which is true for most of the ma
terials under discussion, and can be expressed as (Drugan and 
Shen, 1987) 

< a, 1 > - p V2Mjhi < a7s > = 0 (20) 

where here we have only three nonzero stresses. This equation 
can be rewritten as 

[l-pV\Mlm + M2m + Mmi)}<on>-pV2(Mn22 + M2Z11 

+ M3322)<o22> -2pV2(Mlm + M2212 + Mm2)<al2> =0 

(21) 

which is a linear relation between an, a22, and a12. When 
equation (21) is substituted into (13), the latter takes the form 

A<a22>
2 + B<a22> <ff12> + C<cr1 2>2 = 0 (22) 

where A, B, C are constants whose complicated forms are 
omitted here. Now, all the restrictions imposed by equations 
(13) and (21) are maintained by enforcing (22) and (21). Equa
tion (22) requires a22 to be linear in ff12. As we reviewed earlier, 
the yield condition (equation (9)) must be satisfied throughout 
the shock transition. Thus, linearity of equations (21) and (22) 
requires that < a > = 0 unless (9) contains a straight-line 
segment in stress space that is representable by some combi
nation of (21) and (22). The conclusion is that except for this 
special situation, dynamic plane-stress deformation of elastic-
ideally plastic solids cannot sustain propagating shocks unless 
they move at an elastic wave speed or they move with a neck 
for which equations (9), ( / / ) , and (75) happen to have a 
common intersection on a continuous set of points. It should 
be pointed out that equation (11) does not provide an additional 
restriction if the yield condition is the linear surface defined 
by equations (21) and (22) in stress space. 

3 Plane-Strain Case 

The plane-strain case is more complicated. Drugan and Shen 
(1987) considered it for fully incompressible materials; here, 
we treat the more general situation involving elastic compress
ibility. All the restrictions derived in the general three-dimen
sional analysis of Drugan and Shen (1987) apply here, but the 
restrictions now involve only four nonzero stress components: 
°ii> 2̂2i ff33» and er12, since on = o23 = 0 by assuming symmetry 
of the material and deformation about all planes x3 = constant. 
These restrictions are: 

(a) yield condition: 

/ ( f f 11^22.033.^12) = 0 (23) 

(assumed to depend symmetrically on <r12 and <T21); 

(b) plastic incompressibility: 

<ou>-p V2Mm < akl > = 0; (24) 

(c) Condition 1 (as described in Section 1): 

Journal of Applied Mechanics 

<au> <au> -pV2<au>MiJkl<<jk,> =0; (25) 

(d) Condition 2 (also described in Section 1): 

p\^- V2)(c\- V2)(cl- V2) - (£- gi^ . j , , ( c 2 - V2)(cl- V2) 

+ T\I<A ~ vlM - yl) + tttf - V2){c\ - F2)] = 0, (26) 

where gu = MjJk) (3//3aw) = gn, c, are the elastic wave speeds, 
and t)j = (qW gji)2, where qf!) are the eigenvectors of Mj[k\ 
corresponding to c,. 

In most cases, the four equations (23)-(26) should be in
dependent of one another, with possible exceptions occurring 
at some isolated points in (on, a22, a}3, o12) (hyper) space, and 
hence there can be no admissible stress path to facilitate an 
elastic-plastic moving strong discontinuity. The independence 
of these equations can be reasoned by observing that each of 
them describes a different aspect of the mechanical properties 
of the material during shock wave passage. It is very difficult 
mathematically to prove the independence of these equations 
for a general material (especially if the yield condition form 
is unspecified). Thus, we intend first to approach the problem 
for an isotropic material with a Huber-Mises yield condition. 
This material model is very important for many theoretical 
investigations. Also, the proof for one specific type of material 
should make it clear that these four equations are not naturally 
mutually dependent. 

When the material is isotropic and obeys the Huber-Mises 
yield condition, we have 

Mm=G ( « « & + W + HA/ (27) 
and 

f^n,a22,a3i,C!i2)=- (<72 l+02 !2+ < r33_ < 7 l lC r22 

- a22a3} - <733<7„) + - (o\2 + 4 ) - k2 = 0. (28) 

Now, the elastic wave speeds are c\ = (2G + X)/p and c\ -

c\ = G/p, so that equations (24), (25) and (26) become 

/ PV2 \ pV2 

(1-2^T3^j<(7">-2^^ (<CT-> + < ^ > ) = 0' (29) 

< f f l l > 2 + < f f ' 2 > 2 -^ 2 [G(^ [ ( G + X)(<5">2 

+ <a22>
2+ < O - 3 3 > 2 ) - X ( < C T U > <a22> + <a22> <ai3> 

+ <a 3 3 ><f f I 1 >) ]+ - < f f , 2 > 2 j = 0 , (30) 

(G- / 0F2)(2G + X-pK2)A:2-^G(G-pK2)(4 (r
2

1-4ff11a22 

- 4a, l f f j 3 + a\2 + o\3 + 2a22an) - G(2G + X - p V2)^ = 0. (31) 

Here we have four unknowns in four equations (28)-(31). It 
is easier to deal with only three unknowns in three equations 
by eliminating one of the variables. Because we can do this by 
linear combination and direct substitution, the properties of 
the possible intersecting curves do not change. 

Substitution of equation (29) into (30) serves to eliminate 
o-„: 

GPG^-pK2)2 ( " KP»*>a-3(G + X)p»*+ (G + X) 

x (2G + 3X)]( < a22 >
2 + < a33 >

2) + [ - (p V2)2 + 2Gp V2 

+ X(2G + 3X)]<a2 2><ff3 3>) + n - ^ j < ( T 1 2 > 2 = 0. 

(32) 
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Fig. 3 Intersection of the surfaces representing two of the trans-shock 
stress path restrictions for the plane-strain case 

Next, 3 x equation (31) + 4G(G-pV2) X equation (28) gives 
another relation without a n : 

G(G-p K2)(a^2 + 4 , - 2<722<733) - G(2G + 3 A + p V2)a\2 

+ (.G-pV2)(2G + 3\-3pV2)k2 = 0. (33) 

One more equation may be obtained by substituting equation 
(29) into (31) to eliminate on and by rearranging: 

(G-pV2)(2G + \-pV2)k2-^G(G-pV2) {(\-2h)(<o22> 

+ < (T33 > ) - [2ff+ - (<72+ + ff3+)] ] 2 - G(2G + X - p V2)a\2 = 0 

(34) 

where 

pV2 

h = 2G + 3X-PV2 • ( 3 5 ) 

Equations (32), (33) and (34) are the restrictions on the three 
variables CT22> °33> a n d an> by including any one of equations 
(28)-(31), we get four equations (e.g., (31)-(34)) that can re
place equations (28)-(31) without changing the subspace de
fined by them. Thus, we can use equations (31)-(34) to identify 
the intersection problem. 

Equation (32) is an elliptic cone centered at (a22, a33, O^) in 

(ff22. ff33. 1̂2) subspace; when pV2 < (2G/3) + X, the axis of 
the cone is parallel to the ai2 coordinate; when (2G/3) + X 
<pV2< G (which requires Poisson's ratio <0.125), the axis 
of the cone is perpendicular to the cr12-coordinate and parallel 
to the line bisecting the a22 and CT33 directions. Equation (34) 
is an elliptic cylinder whose axis lies in the CT22

 _ °33 plane, and 
perpendicular to the line bisecting the a22 and a33 directions 
(see Fig. 3, where equation (33) is not drawn). 

When pV2 < (2G/3) + X, if we exchange the positions of 
<<T2 2> and <cr33>, equations (32) and (34) remain un
changed. Therefore, exchanging <a22> and <ff33> does not 
alter the intersecting curve of equation (32) and (34). Besides, 
such an exchange will remain on the same curve if there is 
more than one intersection, as can be seen from the geometry 
(also note that there are points on the intersection other than 
(a22, <73

+
3, (TJ2) that pass through the {a22) = <"33> plane). 

If equation (33) passes through one of the curves defined 
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by (32) and (34), it must stay on the same curve when an 
exchange of <a22> and <CT33> is made in (33). 

Let us rewrite equation (33) as 

G(G-pK2)(<722-,733)2+p = 0 

where we use p to represent the last two terms of (33); the 
above equation can also be written as 

G (G - p V2){ < a22> - < (733 > + cr2
+
2 - ff3

+
3)

2 +p = 0. (36) 

When <ff22> and <a33> are exchanged, we obtain 

G(G-pV2)(- <a22> + <a33>+a2\-a3\f+p = 0. (37) 

Since both equations (36) and (37) pass through the same 
curve, their linear combination must include that curve as well. 
Subtraction of equation (37) from (36) gives 

G(G-pV2){a2
+

2- ffj+X< (T22> - < ff33>) = 0. (38) 

Here we do not consider pV2 = G. Then equation (38) depicts 
a plane 

<(T2 2>-<(T33>=0. (39) 

{a22 - ff3
+3 = 0 will also lead to cr22 - a3i = 0, and hence 

<a 2 2 > - <°33> = 0 by an argument similar to that adopted 
in the plane-stress case following equation (19)). As can be 
seen geometrically in Fig. 3, the curve produced by the inter
section of equations (32) and (34) cannot be on such a plane. 
This can also be easily seen from equation (33) because < <J22> 
- <a 3 3 > = 0 leads to constant an, which further leads to 
constant a22 and <733 through equations (34) and (39). 

Thus, we have proved for pV2 < (2G/3) + X that there is 
no common intersection curve of these equations. For (2G/3) 
+ X < p K 2 < G , a similar scheme can be adopted by utilizing 
the symmetry of equations (33) and (34) with respect to the 
<T22 —ff33 plane. Since now a22 = 033 is the plane of symmetry 
of equation (33) that does not touch the hyperbolic cylinder, 
one can subtract versions of (32) with ± cr12 to eliminate the 
possibility of common intersection curves among the three 
equations. The overall conclusion is: The solution space con
sists only of discrete points, and hence (in the four-dimensional 
stress space) there can be no admissible stress path to produce 
a moving elastic-plastic stress jump. 

The above proof may not be valid if a surface were to pass 
through only part of a curve of intersection between the other 
two surfaces. That would require at least two points on the 
curve at which either the curve or the surface has discontinuous 
derivatives. This can not happen for the well-behaved equa
tions (28) through (31) or (31) through (34). 

As observed earlier, the possibility of shock waves cannot 
generally be ruled out. With a yield condition possessing a 
linear portion, for example, it is easy to show that an elastic-
plastic shock wave is possible. When yield condition equation 
(23) is linear in (an, tr22> °33> 1̂2) space, (26) becomes an equa
tion of the coefficients of the stresses in equation (23), while 
(24) and (25) remain unchanged. We can then substitute equa
tion (23) into (24) and (25) to eliminate au. In most situations, 
an intersection between those two surfaces in (CT22, a3i, <r12) 
subspace will exist, and equation (26) will merely specify pos
sible elastic-plastic shock wave speeds in terms of coefficients 
of stresses in equation (23), elastic moduli, and the material 
density. 

4 Generalization to Anisotropic Materials 

In the previous sections we have proved that in the plane-
stress and plane-strain cases, there can be no propagating jumps 
in stresses (except at elastic wave speeds) for isotropic materials 
with a Huber-Mises yield surface and associated flow rule. To 
obtain the same conclusion for a general material seems to be 
too difficult mathematically, but generalizing what we have 
done thus far is possible. 
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Plane Stress. For the case of plane stress, if the yield con
dition can be written as 

f^g(an,a22) + C(o\1 + a2
2i)-k

2 = Q (40) 

where C is a constant and the equation is a closed convex 
surface, the same proof we applied in Section 2 is still valid 
as long as the intersection of the yield condition and the new 
equation (17) contains an and -an on the same curve. A 
typical example is a yield condition of the form 

f=A(a1
n + o2

21) + Bana22 + C((j\1 + o2
2l)-k

2 = Q (41) 

which forms a closed (ponvex) surface, where A, B, C are 
constants. An argument similar to that in Section 2 goes through 
because, in this case, if we cannot prove that an and - o-12 are 
on the same curve, we can still use the property that when 
- ou and - ff22 are substituted for ou and a22 simultaneously, 
they stay on the same curve. This facilitates the proof because 
equation (18) cannot be symmetrical about the ff12-coordinate 
(except when a^2 - 0, in which case if a jump is assumed, a 
a[2 ^ Oon the path from a+ to o~ can be chosen as a new 
<jJ2, as discussed earlier). This strategy may also be applied to 
problems with elastic anisotropy, having the property that 
Mnl2 = M22i2 = 0 (so that coupling between <r12 and either 
an or a22 is precluded in the discontinuity restrictions). 

Plane Strain. For the plane-strain case, it is a special sit
uation that our proof can go through to reduce the four-
dimensional problem of independence to three dimensions 
without losing certain symmetry properties (interchangeability 
of < a22 > and < <r33 > in two of the restrictions) that are crucial 
to our method of proof. But we still have space for some 
generalization. The following seems to be the most general 
quadratic yield condition to which our method of proof ap
plies: 

f=A(a2
n + <T22<j3i - a33an - aua22) + B(o\2 + < 3̂ - 2<J22O-33) 

+ C(o2
l2 + a1

2l) -k
2 = 0, (42) 

which forms a closed (convex) surface in stress space and 
satisfies plastic incompressibility, where A, B, C are constants; 
note that the Huber-Mises yield condition is a special case of 

equation (42) when A = B = -, C = - . For this form of yield 

condition, we can directly use equation (32) and the new equa
tion (33); a new equation (34) is obtained by first linearly 
combining the new equations (28) and (31) so that the o\2, 
033 and O22033 terms appear in the form (o22 + 0-33)2, then 
eliminating an through the substitution of equation (29). It 
can be shown that the same proof applied in Section 3 is still 
valid. The most obvious example is the case A = B, for which 
the proof of Section 3 applies directly. 

Another possible way to prove the independence of the equa
tions when the yield condition is quadratic (and the elastic 
moduli may be anisotropic) would be to reduce the problem 
to three quadratic equations. If two of them intersect on one 
curve which is not on a plane, the problem then becomes a 
linear independence one. 

5 Discussion 

Although we have not given a proof for general stable elastic-
ideally plastic materials, our "plane-stress" and "plane-strain", 
analyses indicate that there can be no strong discontinuities 
traveling at speeds other than the elastic wave speeds unless 
there is an unusual combination of the elastic moduli and yield 
condition that make the aforementioned equations dependent 
on a continuous set of points. 

In Drugan and Shen (1987), we discussed the special case 
of antiplane shear deformation, showing that there can be no 
strong discontinuity wave with speed other than one of the 

elastic wave speeds unless the yield condition has a linear por
tion in ffi3, <T23 space (equation (3.34) of Drugan and Shen, 
1987). We can prove further than when the yield condition 
coincides with equation (3.34) of Drugan and Shen (1987), 
Condition 2 will be naturally satisfied. Therefore, for the an
tiplane shear case, Condition 2 does not provide an additional 
restriction when the yield surface is that linear one. But when 
the yield surface is nonlinear, the condition is meaningful (al
though redundant in the simple antiplane strain case for elim
inating strong discontinuity waves); in fact, the derivation in 
the Appendix of Drugan and Shen (1987) makes use of all 
these equations. 

For the incompressible plane-strain case, Drugan and Shen 
(1987) reached a similar conclusion that there can be no prop
agating (elastic-plastic) stress jumps unless the yield condition 
contains a special straight line segment (defined by equations 
(3.42) and (3.45) in Drugan and Shen, 1987). We can prove 
that if the yield condition is indeed a linear one that contains 
the line segment defined by those two equations, equation (26) 
here will be naturally satisfied. In fact, for all the special cases 
mentioned in this work, an elastic-plastic shock wave is possible 
whenever there is a linear portion on the yield surface. The 
difference is: for antiplane and incompressible plane-strain 
cases (and plane stress without necking), a linear portion on 
a yield surface is a must for existence of an elastic-plastic shock 
wave; whereas for plane stress and compressible plane strain, 
other possibilities for elastic-plastic shock waves, though not 
very likely, have not been eliminated. 

We take this opportunity to note that equation (3.45) in 
Drugan and Shen (1987) was printed incorrectly; it should read: 

( M 1 1 l l + M 3 3 3 3 - 2 M U 3 3 ) < S U > 2 + 2(M1 122 + M 3 3 3 3 - M 1 1 3 3 

-A/2233) < 5 i l > < 5 2 2 > + 4 ( M 1 1 I 2 - M 3 3 1 2 ) < 5 u > < 5 1 2 > 

+ (M2222 + M3333 - 2 M 2 2 3 3 ) < s 2 2 >
 2 + 4 (M 2 2 i 2 - M 3 3 i 2 ) 

x <5 2 2 ><5 1 2 > + UMm2-—A <sl2>
2 = 0, (43) 

or in more concise form, having employed equation (3.41) of 
Drugan and Shen (1987): 

( M l m - M U 3 3 ) < 5 1 | > 2 + (2M1122-M1133-M2233)<.Sii> 

X <s 2 2 > + (4Mlu2-2Mm2)<sn> <s 1 2 > + (M2222-M2233) 

X < s 2 2 > 2 + (4M2 2 1 2-2M3 3 1 2)<s2 2><s l 2> 

+ (4Mm2--^)<sl2>
2 = 0. (44) 
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