
Model-based Test Suite Generation for Function Block Diagrams
using the UPPAAL Model Checker

Eduard Paul Enoiu, Daniel Sundmark, and Paul Pettersson
Mälardalen Real-Time Research Centre (MRTC)

Mälardalen University
Västerås, Sweden

eduard.paul.enoiu@mdh.se, daniel.sundmark@mdh.se, paul.pettersson@mdh.se

Abstract—A method for model-based test generation of
safety-critical embedded applications using Programmable
Logic Controllers and implemented in a programming lan-
guage such as Function Block Diagram (FBD) is described.
The FBD component model is based on the IEC 1131 standard
and it is used primarily for embedded systems, in which
timeliness is an important property to be tested. Our method
involves the transformation of FBD programs with timed
annotations into timed automata models which are used to
automatically generate test suites. Specifically we demonstrate
how to use model transformation for formalization and model-
checking of FBD programs using the UPPAAL tool. Many
benefits emerge from this method, including the ability to
automatically generate test suites from a formal model in order
to ensure compliance to strict quality requirements including
unit testing and specific coverage measurements. The approach
is experimentally assessed on a train control system in terms
of consumed resources.

Keywords-function block diagram; plc; model-based testing;
timed automata; test-suite generation; structural coverage;

I. INTRODUCTION

Failures of safety critical software can cause serious
damage, making testing of such software a required step
to assure software quality. Industrial safety-critical systems
implemented in Programmable Logic Controllers (PLCs)
are widely used in avionics and railway domain. One of
the programming languages defined by the International
Electrotechnical Commission (IEC) [1] for PLCs is the
Function Block Diagram (FBD), a component model most
widely used to implement safety-critical software [2]. FBD
programs are developed and transformed into program code,
which is compiled into machine code automatically by using
specific engineering tools provided by PLC vendors. FBD
program testing has been under scientific study for some
time, and relies mostly on manual functional testing or
simulation methods [3], [4]. Although functional testing,
simulation methods, and structural testing are not always
complementary to each other, it is compulsory that all are
applied on the FBD programs, due to safety requirements
[5].

There has been little research and practice on rigorously
applying automated model-based testing approaches for

FBD programs in industrial practice. We focus on model-
based test generation as a way of improving the effectiveness
of testing PLC programs, and moreover doing this on an
automatic way. The model-based testing approach is based
on functional and timing behavior models and uses a model-
checker to automatically generate test suites. In this paper,
we define a model as a formal description of the system
under test. In this scenario test suites are created from the
FBD program and executed on a test platform in order to
ensure structural coverage and safety requirements. In this
context, we propose a method for integrating PLCs and
model-based test generation techniques, tailored for FBD
programs with both safe and timed behavior. We provide
a methodology for producing test suites for FBD programs
using a model checker’s ability to generate diagnostic trace
witnessing a submitted test property or coverage criteria.
This is achieved by using the UPPAAL [6] model checker
to perform symbolic reachability analysis of FBD programs
modeled as a network of timed automata.

The contribution of this paper is threefold:

• We propose a transformation of FBD programs into
timed automata models.

• We define an FBD tailored test generation approach
using the UPPAAL model-checker in the context of a
model-based approach towards unit testing and specific
coverage requirements.

• The applicability of our method is demonstrated on a
real world train control and management software, for
the railway industry. We illustrate several implications
when generating test suites in this context.

The paper is organized as follows. Section II briefly
overviews PLC software, the IEC 61131-3 standard, and
timed automata framework. Section III introduces the mod-
eling approach for functional specification, and the transfor-
mation scheme into the UPPAAL tool input model. Section
IV presents the test generation process. Next, we apply our
method on a case study in Section V. In Section VI we
compare to related work, before concluding the paper in
Section VII and presenting future works in Section VIII.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357386007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TON

IN Q

PT ET

AND

LT

OR

FAULTEN

I FLT

E BLK

FAULTEN 1

XUV_BAT

XV_BAT

P2

VLT_LOW_6

DC_WARN

P1T

BAT_V_LOW

BAT_C_OP

TRUE

Figure 1. A small FBD program part of a battery control system showing the graphical nature of the language.

II. PRELIMINARIES

In the railway and avionics domain digital systems are
controlled by software usually implemented on PLCs. In
order to test PLCs described using FBD programs, we have
to take into consideration the software usage particularities
and the specific test purposes used for the generation of test
suites. In the next section we briefly overview FBD programs
and the TA semantics as a basis for describing our method
and tool support.

A. FBD and IEC 61131 Component Model

PLCs are widely used in different control systems from
nuclear power plants to traffic control systems. A PLC is an
industrial real-time computer, integrated with a processor,
a main memory, linked together by a common bus. On
PLCs programs execute in a loop in which the iteration
follows the “read-execute-write” semantics. This ensures
that a PLC reads all inputs, executes the computation, and
then writes to its output, all without interruption. FBD, a
PLC programming language standardized by IEC 61131-3
[1], is widely used because of its graphical notations and its
usefulness in applications with a high degree of data flow be-
tween control components. An example of an FBD program
depicting a small part of a Battery Control System
is shown in Figure 1. An FBD program is composed of
Functional Elements (FE) defined as Function Blocks (FB)
and Functions (FUNC). Independent of the PLC choice
language for IEC 61131-3, FUNCs and FBs are the base
for a well structured and hierarchical FBD program. They
are supplied by the manufacturer, defined by the developer,
or predefined in a library. Both FE types cannot be recursive,
i.e., self calling is not allowed. This is specific to the IEC
61131-3 standard because the amount of memory required

to hold the program at run-time can be determined off-line
[1].

An FE can be defined as the following tuple:

FE ::= 〈typename, Port, B〉,

where typename is the name identifier, Port is the set ports,
defined as the union of input (IP) and output ports (OP)
and B is the behavior description of the FE. For instance
in Figure 1 the system consists of some basic logic, timer,
state functions such as AND, OR, and a function block named
FAULTEN. A FUNC does not have any internal state and its
output is determined only by the current inputs. This is the
case for AND and LT in Figure 1. Differently, TON is an FB
because it maintains an internal state and produces outputs
based on this state and inputs.

Basically FBD programs and instrumentation points are
shown in a circuit diagram fashion. Assume an FBD pro-
gram defined as the following tuple:

FBDProgram ::= 〈FE,V, P,Con〉,

where FE is the set defined as the union of FUNC and
FB instances, V is the variables set, defined as the union of
input (VI) and output (VO) variables, P is the parameters
set, defined as the parameters used internally by the program,
and Con is the set of connectors between all the functional
elements (e.g., FB and FUNC). Con is a subset of the
reunion of cartesian products and is defined as follows:

Con ::= (V I×FE.IP)∪(FE.OP×FE.IP)∪(FE.OP×VO).

When activated and executed, the program in Figure
1 consumes one set of input data and then executes to
completion. It should also be noted that depending on how
FUNCs and FBs are defined, we can describe more complex

FBD programs. For example, a program can be ”populated“
with FBs, which can be similarly composed until very
simple behaviors are directly described.

The IEC 61131 component model proposes a hierarchical
software architecture for structuring and running any FBD
program. This architecture specifies the syntax and seman-
tics of a unified control software based on a PLC configu-
ration, resource allocation, task control, program definition,
function and function block repository, and program code
[7], [8]. The PLC software is represented as a configuration
that communicates with other IEC configurations of different
PLC systems with well-defined component interfaces. Rep-
resenting configurations, one or more resources are provided
in order to support PLCs with features needed by the FBD
program. The interfaces of a resource are described as
input/output channels between the FBD program and the
physical PLC defined environment. Covering the events in
an FBD program, a task corresponds to a set of programs
that either are executing periodically or upon the occurrence
of a specified event [7]. An FBD program can have intra-
program data flow communication and when activated, a
program consumes one set of input data and then executes
to completion. The PLC code is generated from the FBD
program, which is used on a specific PLC and is the actual
application code. For example, an application generator is
utilized for the model-to-code transformation by assuming
that each FE is translated to a C compliant program with
its own thread of execution. More specifically, the FBD
program code is mapped from FEs and program constructs
into executable C code [8]. The resulting FBD program code
is generally self contained and self-referencing.

We assume the PLC programs written in FBD to be
verified, well-formed according to the IEC 61131-3 standard
[1], and logically correct satisfying the following particular
assumptions:

• A1: Execution Order. Each FE is executed in prede-
termined order based on the control flow dependency.
This predetermined order directly dictates the data
dependency.

• A2: Port-Variable Assignation. Ports in Port and
variables in V must be unique and should be connected
in a well formed program according to the IEC 61131-3
standard.

• A3: Timing Annotations. To express timing con-
straints within one FE, we need to correctly support
timing elements according to IEC 61131-3 standard.

B. Timed Automata

The timed automata model was introduced by Alur and
Dill [9] and has gained a lot of attention as a suitable model
for timed systems. We give here a short description for
readers unfamiliar with this concept.

Let X be a finite set of clocks and B(X) the set of guards,
which are finite conjunctions of atomic guards of the form
x ./ n, where x ∈ X , n ∈ N, and ./ ∈ {<,≤,=,≥,>}.

A timed automaton (TA) over clocks X and actions Act
is a tuple 〈L, l0,E, I〉 where L is a finite set of locations, l0
is the initial location, E ⊆ L×B(X)×Act×L is the set of
edges and I : L→ B(X) assigns invariants to locations.

In the case of and edge 〈l,g,a,r, l′〉 ∈ E, we write l
g,a,r−−→ l′

where the label g is a guard of the edge, r is the data- or
clock reset assignments of the edge, and a is the action of
the edge. TA semantics is defined as a transition system over
states (l,u), with the initial state (l0,u0), where u0 assigns
all clocks in X to zero. Formally, there are two kinds of
transitions:

• delay transitions: (l,u) d−→ (l,u⊕ d), where u⊕ d is
the result obtained by incrementing all clocks of the
automata with the delay amount d such that for any
0≤ d′ ≤ d, the invariant of l holds.

• discrete transitions: (l,u) a−→ (l′,u′), corresponding to
taking an edge l

g,a,r−−→ l′ for which the guard g is
satisfied by u. The clock valuation u′ of the target state
is derived from reseting u according to updated r.

A trace σ of a TA is a sequence of alternating delays and
discrete transitions:

σ = (l0,u0)
a1−→ (l1,u1)

a2−→ ...
an−→ (ln,un).

Properties of TA can be expressed as logical formulae in
the Timed Computational Tree Logic (TCTL) [10]. In this
paper we focus on properties of the form:

∃ ♦ p,

called reachability properties, where ∃ is the existential
quantifier, and ♦ is the temporal operator. A reachability
property states that there is a path in which the p location
in the TA is reached.

A network of TA T1 ‖ ... ‖ Tn is a composition of n TA over
X and Act, synchronized actions (i.e., a! is complementary
with a?) and shared (global) variables. We refer the reader
to [11] for more information on the theory of TA.

III. TRANSFORMING FUNCTION BLOCK DIAGRAMS TO
TIMED AUTOMATA

In this section, we describe how our approach enables the
transformation of FBD programs to TA models, being one
step away from test suite generation with the UPPAAL tool.

The model transformation, from an FBD program to a
TA network is depicted in Figure 2. The transformation
maps to a TA model all the interface elements FE,V, P,
and Con alongside the existing timing annotations within
the FBD program. This timing annotations are based on the
specifications used from structure and behavioral elements

FBD Program

FB

F
F

F

FB

FBD Timed Automata

F FB

FB

F

F

FBD Timed AutomataFBD Timed Automata

F FB

FB

F

F

PLC Cycle Scan &
Enviroment

Structural and
Interface Information

FBD Timed Automata

F FB

FB

F

F

R1 R2 R3 R4

PLC Cycle Scan &
Enviroment

Structural and
Interface Information

PLC Cycle Scan &
Enviroment

Figure 2. Function Block Diagram to Timed Automata Transformation Process.

as defined in the FBD language. The timed behavior of
an FBD program is defined as a TA, extended with data
input and output variables. We first perform an automatic
transformation of the FBD program to a TA model that
obeys the read-execute-write semantics, hence preserving the
semantics of FBDs without altering its structure. Next, we
specify the execution of each FE in TA, and construct a
complete PLC cycle and environment model by the parallel
composition of local behaviors.

We describe a set of transformation rules which define
the formal construction. The transformation process shown
in Figure 2 is applied as follows:

1) R1 - FBD Program Declaration: We create a TA
system description, place templates of FE instantiations, and
list the composed TA network representing the FBD Timed
Automata FE1 ‖ ... ‖ FEn.

2) R2 - PLC Cycle Scan & Environment Generation:
An FBD program is executed in a loop, in which the iteration
follows the run-to completion semantics, corresponding to
the TA model in Figure 3. We generate an automaton that
contains a clock variable for modeling a delay between
the cycles. A cycle starts when the automaton enters the
ReadInputs state and ends in UpdateScanTime state.
When applying R2, V Is and VOs variable instances are
defined. The IN and OUT counters represent the number
of the variable and ensure that variables are evaluated one
by one. For the FBD program to be testable, we also need to
generate an environment model for controlling the program
throughout all of its states.

3) R3 - FEs Execution Order Generation: We use
the execution order of each FE automatically according to
the general rules included in the IEC standard [1]. We use
the notion of precedence to describe such dependencies on
the convention of reading such FBD programs in a top-
to-bottom, left-to-right fashion. For each FEs we assign
a precedence priority to the corresponding TA model. In
Figure 3 the counter N represents the number of the FE and

ensures that the FEs are executed one by one. After the last
FE is evaluated, the counter is reset to repeat the scan cycle.

4) R4 - FEs Behavior Generation: For standard FEs
we assign a TA behavior model. Each FE has its own
logical execution and no internal concurrency, therefore it
can be straightforwardly mapped to a TA model. We assign
one TA model per FE (e.g., TON and FAULTEN in the
FBD program shown in Figure 1). A rather straightforward
model of the TON element with timing properties is shown
as a TA model in Figure 4. The FBD program interacts
with other TA via execute? action. TON is modeled by
a standard time on timer that sets the output TON1 to true
if AUX_BCV_S_DcSdWrn input variable is true at least as
long as the time P1T . Thus, we obtain an FB that returns
different outputs despite having the same inputs over time.
The timed behavior is specified using the TA semantics; in
this procedure, we comply with the standard specification
of the FB and the structural definition of the program.
The TA model encapsulates the internal behavior with both
functional and timing FBD properties. Also, every instance
of the TON needs to contain all the variables listed in the
declaration description. For this reason it is necessary to
give each instance of the TON behavioral model a unique
identifier.

As a result of the transformation we compose such local
automata in parallel to a TA network FE1 ‖ ... ‖ FEn.
The purpose of the final phase of the transformation is
to construct a target model by filling the TA with the
corresponding FE behavior as explained in R4. Since FBD
programs allows the use of behavioral notations, we exploit
this, and specify the behavior by assigning a TA model to
each element mapped from its corresponding FBD program.

IV. TEST GENERATION

In the context of testing FBD programs we assume that
the test specification is given as a closed network of TA
as shown in Figure 5. This model can be seen as two

OUT++

N=1, OUT=1, IN=1

N=1, OUT=1, IN=1

IN<InputVariables

OUT<OutputVariables

N<FunctionIndex
OUT==OutputVariables

N==FunctionIndex

IN==InputVariables

UpdateOutputsUpdateScanTime

ExecuteProgramReadInputs
Waiting

read!

write!

execute!

Figure 3. Timed Automata Model for a PLC Cycle Scan and Environment.

ET=0

TON1=1, N++

execute?

execute?

execute?

Waiting

TON1=0, N++

Running

ET=0

AUX_BCV_S_DcSdWrn==0 && N==2

ET<=P1t

execute?

AUX_BCV_S_DcSdWrn==1 && N==2

ET==P1t && AUX_BCV_S_DcSdWrn==1 && N==2

AUX_BCV_S_DcSdWrn==0 && N==2

Figure 4. Timed Automata Behavioral Model for a TON element.

sub-networks, one modeling the FBD Program and the
other one modeling its PLC Cycle Scan. The program
operates in a specific environment that takes into account
the A1-A3 assumptions. Obviously we can consider a com-
pletely unconstrained environment that allows all possible

interactions between the TA network elements. For all
environments we assume that the test specification is used
to control the FBD diagram via read?, execute?, and
write! actions.

FBD Program PLC Cycle Scan & Enviroment
read?

execute?

write!

Figure 5. Test TA Network for a FBD Program.

UPPAAL is a model-checker using TA as a modeling
language 1 . It supports dense clocks and different data types
like bounded integers and arrays. The verification language
supports properties such as safety, liveness, and reachability.
We describe here a methodology to produce test sequences
for FBD programs using UPPAAL, making use of UPPAAL’s
ability to generate diagnostic traces witnessing a submitted
reachability property [12]. Currently UPPAAL supports three
options for diagnostic trace generation: some trace leading
to a goal state, the shortest trace with the minimum number
of transitions, and fastest trace with the shortest time delay.
Whereas UPPAAL is a viable tool for model checking, it is
tedious and not tailored to test suite generation in practice.
We demonstrate how to automatically generate test cases
from an FBD program described in TA. Specifically we show
how to generate test suites for FBD programs using specific
test requirements or from various coverage criteria.

Let us assume a TA network model of an FBD program
together with its PLC cycle scan and environment shown in
Figure 5. A test sequence produced by the model checker
for a given reachability property defines the sequence of
actions executed on the FBD test specification. An example
of a diagnostic trace has the following form:

(FBD0,PLC0)
A1−→ (FBD1,PLC1)

A2−→ ...
An−→ (FBDn,PLCn),

where (FBDk,PLCk) are states of the FBD program and PLC
cycle scan with environment constraints, respectively, and Ak
are either internal synchronization actions, time-delays or
read?, execute?, and write! global synchronizations.
For our test specification the sequence represents only the
global synchronizations shown in Figure 5. From the PLC
cycle scan point of view the trace is obtained only by taking
into account the observable actions read?, execute?, and
write!.

Generation of test suites for an FBD program starts with
the process of first manually formulate a set of informal test

1The UPPAAL tool is available at www.uppaal.org.

properties and continues with formalization of these such
that the model can be used to generate test suites for each
test property. In this context, a test requirement is a specific
test property that the tester would like to formulate. For
using the test generation capability of the UPPAAL model-
checker, the test property must be formulated using the CTL
logics and checked by the test specification.

For the example in Figure 1, two test properties can be
directly transformed into simple CTL reachability properties:
• TP1: The Battery Contactor is tripped due to low

battery.
• TP2: Battery Contactator is open when Battery Voltage

is valid.
For example TP1 can be formulated as the following CTL
reachability property:

∃ ♦ plc.UpdateScanTime and BAT_V_LOW==1,

where the property can be read as follows: there exists
an execution path such that, eventually, the PLC cycle
scan automaton enters location UpdateScanTime and the
battery is low. Generating a diagnostic trace based only
by using observable actions results in the following test
sequence:

(IN1, ..., IN6)
read!−−−→ (FE1, ...,FE6)

execute!−−−−→ (OUT1,OUT2)
write!−−−→ .

A. Test Suite Generation

Obviously a single test case cannot be obtained for every
test purpose or criterion. By using PLC scan cycle shown in
Figure 3 we allow the test suite to be implemented as one or
more test sequences separated by resets. To introduce resets
in the model, we allow the PLC scan cycle to perform a
reset which is encoded by adding a reset transition leading
to the initial ReadInputs location. On this transition all
variables and parameters (excluding encoded variables used

for coverage-based test suite generation) are reset to their
default value. This reset is hardcoded into the PLC scan
cycle for any modeled FBD program in UPPAAL, being an
atomic communication between all the TA models.

B. Coverage-based Test Suite Generation

There is often the case that we are interested in a test
suite that ensures that the FBD program is covered in several
ways. This ensures that a certain level of thoroughness has
been achieved in the test generation process. Structural test
criteria are used for evaluating the adequacy reached by
a certain test suite. A test criterion is formulated using
so called coverage items. These items should be exercised
during testing in order for the criterion to be satisfied. For
example, in node coverage, nodes are coverage items [13].
Usually, testers describe the extent to which a criterion is
exercised by using the ratio between the number of coverage
items exercised in testing and the overall number of coverage
items in the software under test. The work by Hessel et al.
[14] explains how to apply coverage criteria to TA models,
but is based on different structures and state verification
methods from this work. Here we give the details of our FBD
model coverage approach on how to automatically generate
test suites using coverage analysis. A large number of cov-
erage criteria has been investigated in last couple of years,
such as statement, transition, definition-use coverage, and
MCDC, each with its own merits and application domain.
We propose the usage of coverage analysis directly on the
FBD programs. We describe next the following structural
coverage criteria:
• FC: Function Coverage. It analyzes FEs in an FBD

program. Full FC indicates that each FE in a program
has been executed at least once. To determine the
number of execution paths traversed by the program
we introduce an auxiliary boolean variable fi in the TA
model for each FE to be covered and formulate the
following reachability property:

∃ ♦ (f0 == 1 and f1 == 1 ... and fk == 1).

• DC: Decision Coverage. It analyzes every decision
points in the FBD program. Full DC indicates that
each FE in a program has taken every outcome at least
once. We implement a mechanism to facilitate this by
specifying a set of DC parameters. We annotate the
TA model with an auxiliary boolean variable vi for
each decision di to be covered. For every edge with
destination di : l

g,a,r−−→ di, vi is added to r assignment.
The reachability property for full DC will require that
all vi to be true.

• CC: Condition Coverage. It analyzes FEs that output
the logical combination of their inputs. A test suite
achieves full CC when it causes each input in to each
instance of an FE in the FBD program and each con-

dition ci on a transition to be true at least once during
the execution, and false at least once. For generating
test sequences for CC we check whether an auxiliary
boolean variable v′i is covered for each condition in the
program as follows:

∃ ♦ (c0 == 1 and c1 == 1 ... and ck == 1).

V. EXPERIMENTS

In the previous section we presented our approach towards
automatically generating test suites for FBD programs. In the
following, we show some relevant experiments in order to
show the performance of this technique and the tool support.
We take into account quantitative measures related to model-
checking including test suite length, generation time, and
memory usage.

In our work we make use of the PLC software develop-
ment tools for the MITRAC Train Control and Management
System (TCMS) provided by Bombardier Transportation
AB within the ATAC research project [15]. TCMS is a
distributed system, built on open standard IP-technology
that allows easy integration of control and communication
functions for high speed trains. The Central Computing
Units (CCUs) contain all FBD programs controlling the
train. The PLC development tools used for developing these
programs are based on the MULTIPROG software. For the
rest of the paper we will refer to FBD programs created
using PLC development tools used for TCMS. The TCMS
involves over 800 FBD programs and approximately 122,000
lines of generated C code. In our experiments we used only a
part of the TCMS system. More precisely, the battery control
was used as the system under test.

In the next next sections we give an overview of the
results and experiences we had in building the TA model
and generating test suites from it. We touch on the practical
lessons learned for the system below, while we do not give
tips to the practitioner here.

A. Train Battery Control System

The Battery Control System (BCS) is part of the TCMS
distributed system which contains over 30 FBD programs
and 5,000 lines of generated C code. The system supplies
the units on the train with power when auxiliary power is not
present. When auxiliary power is present, the batteries are
charged. There are two completely redundant battery buses
with two redundant batteries (including chargers) connected
to each bus. Every unit can be supplied via any bus. The
battery charger charges and supervises the battery and sends
information to TCMS over the IP network. The main battery
contactor connects the battery to the battery buses when
closed and load shed contactors supply loads of different
priority to the batteries.

A TA network that modeled the entire BCS was devel-
oped and subsets were extracted for testing FBD program

Table I
STANDARD TIMED AUTOMATA MODELS DEVELOPED FOR THE BCS

SYSTEM

Library Standard Models Manufactured Supplied Models

ARITHMETIC (ADD, MUL,
SUB, DIV, MODE)

FAULTEN

BITWISE (AND, OR, XOR,
NOT)

FAULTDLY

BITWISE (AND, OR, XOR,
NOT)

OSC T

SELECTION (SEL, MAX, MIN,
LIMIT, MUX)

MEM1 R

COMPARISON (GT, GE, EQ,
LT)

DELAY

BISTABILE (SR, RS) TOOGLE

EDGE (SR, RS) MEM1 BO

COUNTERS (CTU, CTD,
CTUD)

DELAY BO

TIMERS (TP, TON, TOF, RTC) OSC

requirements; however, the model is used as a relative small
system, but well beyond the scale of academic exercises.
We concentrated on the standardized PLC functionality and
modeled manually in UPPAAL tool over 35 library detailed
models compliant with the IEC standard and MITRAC
supplied library. A list of the modeled TAs is found in
Table I. For more information on the standard PLC functions
please refer to [1].

We are using the UPPAAL model-checker 2 for generating
test suites. The tools for building, editing, and analyzing the
models are included in the UPPAAL model checker.

B. Results and Evaluation

The experiments reported here are based on a model
of a BCS starting from the original program stored in an
XML-document, which is used for the transformation to
the UPPAAL input language 3 as described in Section III.
We developed a reader and parser to analyze the programs
and elements of the FBD standard language. In this way
we deal only with programs that are strictly IEC 61131-
3 standard compliant. We use the transformation tool to
automatically derive a TA model of the BCS. To see how our
technique performs, we generate test suites based on some
train-related test properties. The train is in many ways the
ultimate test environment since it is the environment where
BCS will ultimately end up in. However, the train should be
used as little as possible since it is so expensive to use.
The generated test suites are executed on the softTCMS

2We are using the following version of the UPPAAL model checker: 4.1.7
(rev. 4934) under MAC OS X version 10.7.4

3The XML syntax describing the element definitions
from the Document Type Definition is available at
http://people.cs.aau.dk/ adavid/utap/syntax.html

Table II
TEST SEQUENCE DERIVATION ON THE BCS SYSTEM

Test Properties Generation Time Test Suite length Memory

TP1 0.09 s 48 4 MB

TP2 0.09 s 50 5 MB

TP3 0.07 s 50 4 MB

TP4 0.03 s 38 5 MB

TP5 0.03 s 40 4 MB

TP6 0.03 s 38 6 MB

platform, developed by CrossControl 4. This allows us to
run our test suite on the simulated environment, without the
need to change the PLC code and platform. To perform
the actual testing process, a complete test interface was
built that supports automated generation of tests. This test
interface and the transformation are independent of UPPAAL
and could be used in similar model checkers supporting other
automata models.

UPPAAL takes as input the FBD program together with
a test requirement, and generates ready-to-use test suites.
The test suite is ready to be executed by a test execution
environment. Testing FBD programs is done in isolation
from the rest of the TCMS software in a controlled simulated
environment, making the component tests a good target
for coverage-based test generation and therefore a potential
benefit to automatic evaluation of test cases.

The results, listed in Table II, show that this particular
example scales well in terms of generation time (in seconds),
memory usage (in MB), and the test suite length (in number
of transitions in the TA model)5. As described in Section
IV the test suites are generated from different test properties
transformed into simple CTL reachability properties. TP1-
TP6 test properties are included in the BCS unit test speci-
fication, provided by TCMS test experts. The properties are
briefly described in Section IV and Table III.

We made no simplification of the TA model, and we
used test specifications prepared by testing professionals in
entirety. The test suites in Table II are generated by using
only the observable actions. Each test suite in Table II is
a set of two test cases that begins with the ReadInputs
state and ends with the UpdateScanTime state.

We also generated coverage-based test suites which en-
sures that BCS is covered in a certain way. Here we make
use of the FBD structural criteria defined in Section IV.
Table IV shows the generation times (in seconds) for test
suites generated from different coverage criteria and the
length (number of transitions) of the generated test suite.
We notice that DC and CC require many interactions (trace

4softTCMS simulation platform implements mock libraries specific to
the PLC platform and simulates the hardware and communication devices
on the actual train.

5Experiments were executed on a machine with 2.4 Ghz Intel Core i5
and 8 GB 1333 Mhz DDR3.

Table III
EXAMPLE OF TEST PROPERTIES FOR BCS UNIT TEST SPECIFICATION

Test Property Description

TP3 Battery Contactor is closed when the BatCtClInd is
set to 0.

TP4 The Battery Charger shall be considered charging
when Battery charger is supplied with power.

TP5 Signal SYS NOTOKMODE shall be set to 1 when
Battery Charger is considered faulty.

TP6 Signal SYS NOTOKMODE shall be set to 0 when
Battery Charger is working properly.

Table IV
RESULTS FOR VARIOUS COVERAGE CRITERIA ON THE BCS SYSTEM

Coverage Criterion Generation Time Test Suite length

FC 0.15 s 49

DC 0.53 s 102

CC 0.47 s 100

of length up to 102) and contains four test cases. In contrast
to the results in Table II, the generation time for coverage
criteria are between 0.15 and 0.531 seconds.

Although this is not surprising, it can be seen that is
much cheaper to compute test suites for test purposes than
obtaining coverage for FBD programs. Obviously the PLC
cycle scan and environment can pose restrictions on our
results. This means that the generation of test suites has
to evaluate all possible behaviors in case of a more unre-
stricted environment resulting in more expensive test suites
with regard to generation time and used memory. Still the
experimental results show how our test case generation for
FBD programs scale up for different models and coverage
criteria.

VI. RELATED WORK

Previous contributions in testing of FBD programs range
from a simulation-based approach [16] to verification of
the actual FBD program code [17]. The technique in [17]
is based on Petri Nets models and supports the entire
development process. In comparison to our work, they are
not coping with the internal structure of the PLC language
aspects. It is our opinion that testing FBD programs can be
complemented by using model-checkers as presented in this
paper.

Similar to our work and strictly related to lower levels of
testing, there have been some attempts to focus on FBD
program testing [18], [19]. These works are focusing on
structural testing techniques and are proposing a solution
based on the logical aspects of the FBD program.

Also related to this work but outside the PLC-based
software development community, the most notable efforts
has been focusing on test coverage for data flow languages.
For example, for the Lustre language there are contributions

[20], [21], [22] describing an activation condition concept
that can be used when data flow from an input edge to an
output edge may occur.

Research of the usage of model-checkers for verifying
and testing FBD programs is not new. Soliman et al. [23]
are using UPPAAL model checker for verification of FBD
safety applications including the safety libraries. Silva et al.
[24] are generating TA models from FBD programs and are
testing their specifications using UPPAAL TRON tool. These
two approaches are using a different transformation process
and are considerably different in the way of formulating
test properties. In contrast to the online model-based testing
approach used in [24] we are generating test suites for offline
execution on the system under test.

However, to our knowledge, not much theoretical and ex-
perimental data is available about the usage of model-based
test generation for realistic PLC industrial sized systems.
More case studies are needed to form a strong methodology
and support for improving FBD program testing.

VII. CONCLUSIONS

We presented an approach to generate test suites for
PLC software using UPPAAL model checker. Therefore, a
transformation from PLC software written in FBD language
to a TA model has been introduced, which allows also timing
informations into the test suites. For the translation of an
FBD program into a TA model, a set of rules have been
presented. On the basis of this model, a model checker has
been used for generating consistent test suites.

The applicability of our approach has been demonstrated
on a train control and management system used in the
railway industry. The test generation technique and the
coverage criteria used have industrial validity as complete
test suites have been generated for an industrial application
for unit level testing of FBD programs. We developed a
prototype tool to extract the FBD programs, to translate
them into a TA model, and to enable test suite generation
by using a model checker. We believe that this technique
is useful for transforming and testing component models of
other industrial safety-critical embedded systems similar to
PLCs.

VIII. FUTURE WORK

We are currently investigating this approach on a larger
design process. In addition, we want to extend the scope
of the test generation to enable support for integration and
system level testing. We believe that using the right model-
based test generation technique for PLC software constitutes
the necessary basis for a framework used in automated
test generation and verification. By using a model for both
requirements of the system and coverage criteria, test results
can be thoroughly evaluated based on how precise and
detailed is the system is modeled.

IX. ACKNOWLEDGMENTS

This work was supported under grant agreement number
2011-01379, from VINNOVA, the Swedish Governmental
Agency for Innovation Systems, within the ATAC project.
Special thanks to Cristina Seceleanu and Raluca Marinescu
from Mälardalen University for the valuable feedback.

REFERENCES

[1] K. John and M. Tiegelkamp, “IEC 61131-3: Program-
ming Industrial Automation Systems: Concepts and Program-
ming Languages, Requirements for Programming Systems,
Decision-Making Aids,” 2010.

[2] W. Bolton, “Programmable Logic Controllers.” Newnes,
2009.

[3] M. Younis and G. Frey, “Formalization of existing PLC
programs: A survey,” Proceedings of CESA, pp. 0234–0239,
2003.

[4] G. Hassapis, “Soft-testing of Industrial Control Systems Pro-
grammed in IEC 1131-3 languages,” ISA transactions, vol. 39,
no. 3, pp. 345–355, 2000.

[5] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Railway
Applications - Communications, Signaling and Processing
Systems - Software for Railway Control and Protection Sys-
tems,” Electrical equipment and systems for railways, 2011.

[6] K. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a Nut-
shell,” International Journal on Software Tools for Technology
Transfer (STTT), vol. 1, no. 1, pp. 134–152, 1997.

[7] M. Öhman, S. Johansson, and K. Årzén, “Implementation As-
pects of the PLC standard IEC 1131-3,” Control Engineering
Practice, vol. 6, no. 4, pp. 547–555, 1998.

[8] J. Thieme and H. Hanisch, “Model-based Generation of
Modular PLC code using IEC61131 Function Blocks,” in Pro-
ceedings of the IEEE International Symposium on Industrial
Electronics, vol. 1. IEEE, 2002, pp. 199–204.

[9] R. Alur and D. Dill, “Automata for Modeling Real-time
Systems,” Automata, languages and programming, pp. 322–
335, 1990.

[10] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking in
Dense Real-time,” Information and computation, vol. 104,
no. 1, pp. 2–34, 1993.

[11] R. Alur, “Timed Automata,” in Computer Aided Verification.
Springer, 1999, pp. 688–688.

[12] A. Hessel, K. Larsen, M. Mikucionis, B. Nielsen, P. Pet-
tersson, and A. Skou, “Testing Real-time Systems using
UPPAAL,” Formal Methods and Testing, pp. 77–117, 2008.

[13] H. Zhu, P. Hall, and J. May, “Software unit test coverage and
adequacy,” ACM Computing Surveys (CSUR), vol. 29, no. 4,
pp. 366–427, 1997.

[14] A. Hessel, K. Larsen, B. Nielsen, P. Pettersson, and A. Skou,
“Time-Optimal Real-Time Test Case Generation Using UP-
PAAL,” Lecture Notes in Computer Science, Formal Ap-
proaches to Software Testing, pp. 114–130, 2004.

[15] ATAC- ITEA2 Consortium. (2012). [Online]. Available:
http://www.testautomation.fi/atac-dev/

[16] S. Richter and J. Wittig, “Verification and Validation Process
for Safety IC Systems,” Nuclear Plant Journal, vol. 21, no. 3,
pp. 36–36, 2003.

[17] L. Baresi, M. Mauri, A. Monti, and M. Pezze, “PLCTools:
Design, Formal Validation, and Code Generation for Pro-
grammable Controllers,” 2000 IEEE International Conference
on Systems, Man, and Cybernetics, vol. 4, pp. 2437–2442,
2000.

[18] E. Jee, J. Yoo, S. Cha, and D. Bae, “A Data Flow-based
Structural Testing Technique for FBD Programs,” Information
and Software Technology, vol. 51, no. 7, pp. 1131–1139,
2009.

[19] E. Jee, S. Kim, S. Cha, and I. Lee, “Automated Test Cov-
erage Measurement for Reactor Protection System Software
implemented in Function Block Diagram,” Computer Safety,
Reliability, and Security, pp. 223–236, 2010.

[20] A. Lakehal and I. Parissis, “Automated Measure of Structural
Coverage for LUSTRE Programs: a Case Study,” Automation
of Software Test, 2007. AST’07. Second International Work-
shop on, pp. 12–12, 2007.

[21] ——, “Lustructu: A Tool for the Automatic Coverage Assess-
ment of Lustre Programs,” 16th IEEE International Sympo-
sium on Software Reliability Engineering, 2005., pp. 10–pp,
2005.

[22] ——, “Structural Test Coverage Criteria for Lustre Pro-
grams,” in Proceedings of the 10th international workshop
on Formal methods for industrial critical systems. ACM,
2005, pp. 35–43.

[23] D. Soliman, K. Thramboulidis, and G. Frey, “Function Block
Diagram to UPPAAL Timed Automata Transformation Based
on Formal Models,” Information Control Problems in Manu-
facturing, vol. 14, no. 1, pp. 1653–1659, 2012.

[24] L. da Silva, L. de Assis Barbosa, K. Gorgônio, A. Perku-
sich, and A. Lima, “On the Automatic Generation of Timed
Automata Models from Function Block Diagrams for Safety
Instrumented Systems,” 34th Annual Conference of IEEE
Industrial Electronics, 2008. IECON 2008., pp. 291–296,
2008.

