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DMITRY DOLGOPYAT AND BASSAM FAYAD

Abstract. We study the Kronecker sequence {nα}n≤N on the torus Td where α is uniformly
distributed on Td. We show that the discrepancy of the number of visits of this sequence to a
random box normalized by lndN converges as N →∞ to a Cauchy distribution. The key ingredient
of the proof is a Poisson limit theorem for the Cartan action on the space of d + 1 dimensional
lattices.

1. Introduction

1.1. Equidistribution of Kronecker sequences of Td. It is known that the orbits of a non
resonant translation on the torus Td = Rd/Zd are uniformly distributed. A quantitative measure
of uniform distribution is given by the discrepancy function: given a set B ⊂ Td let

DB(x, α,N) =
N−1∑
n=0

χB(x+ kα)−Nµ(B)

where (x, α) ∈ Td × Td, µ is the Haar measure on the torus and χB is the characteristic function
of the set B. Uniform distribution of the sequence x+ kα on Td is equivalent to the fact that, for
regular sets B, DB(x, α,N)/N → 0 as N → ∞. A step further in the description of the uniform
distribution is the study of the rate of convergence to 0 of DB(x, α,N)/N .

Already with d = 1, it is clear that if α ∈ T−Q is fixed, the discrepancy DB(x, α,N) displays
an oscillatory behavior according to the position of N with respect to the denominators of the
best rational approximations of α. A great deal of work in Diophantine approximation has been
done on estimating the discrepancy function in relation with the arithmetic properties of α ∈ T,
and more generally for α ∈ Td. It is of common knowledge that in studying the discrepancies in
dimension 1 the continued fraction algorithm provides crucial help, and that the absence of an
analogue in higher dimensions makes the study of discrepancies much harder.

In particular, let

D(α,N) = sup
C∈B

DC(0, α,N)

where the supremum is taken over all sets B in some natural class of sets B, for example balls
or boxes. The case of (straight) boxes was extensively studied, and growth properties of the
sequence D(α,N) were obtained with a special emphasis on their relations with the Diophantine
approximation porperties of α. In particular, following earlier advances of [8, 6, 15, 11, 19] and
others, [1] proves that for arbitrary positive increasing function φ(n) the ratio

D(α,N)

(lnN)dφ(ln lnN)

is bounded for almost every α ∈ Td iff
∑

n φ(n) <∞. In dimension d = 1 this result is the content
of Khinchine theorems obtained in the early 1920’s [11] and it follows from the almost independence
of the partial quotients of α. The higher dimensional case is signifivantly more difficult and the
cited bound was only obtained in the 1990s.
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The bound on D(α,N) focus on how bad can the discrepancy become along a subsequence of
N for a fixed α in a full measure set. In a sense, they deal with the worst case scenario and do
not capture the oscillations of the discrepancy.

On the other hand, the restriction on α is necessary, since given any εn → 0 it is easy to see that
for α ∈ T sufficiently Liouville, the discrepancy (relative to intervals) can be as bad as Nεn. It is
conjectured that for any α the discrepancy can be as bad as (lnN)d but not much is known better
than the general lower bound (lnN)d/2 that holds for every sequence on Td ([16]). Here again,
due to the use of continued fractions the latter conjecture can be easily verified in dimension 1 (cf.
discussion in [1]).

In another direction, but still studying the discrepancy for a fixed α and along subsequences of
N , [7] obtains a Central Limit Theorem in the one dimensional case of circle rotations. The results
of [7] apply either for a set of α of zero measure (so called badly approximable numbers) and the
set of times of large density, or for all α but for small set of times.

By contrast, if one lets α and x be random then it is possible to obtain asymptotic distributions
of the adequately normalized discrepancy for all N .

This is the approach adopted by Kesten in [9, 10] (see also [2]) where he studied the distribution
of the discrepancies related to circular rotations as α and x are randomly distributed over the
circle. He proved the following result.

Theorem [9, 10]. Let DN(x, α) =
∑N−1

n=0 χ[a,b](x+ kα)−N(b− a). There is a number ρ = ρ(b− a)

such that if (x, α) is uniformly distributed on T2 then DN
ρ lnN

converges to the standard Cauchy

distribution, that is,

mes((x, α) :
DN

ρ lnN
≤ z)→ tan−1 z

π
+

1

2
.

Moreover ρ(b− a) ≡ ρ0 is independent of b− a if b− a 6∈ Q and it has non-trivial dependence on
b− a if b− a ∈ Q.

Our goal is to extend this result to higher dimensions, and as in the case of other results related to
discrepancies of Kronecker sequences, the main difficulty will come from the absence of a continued
fraction algorithm that was also the main tool in Kesten’s proof.

Before we describe our approach, let us mention that there are two natural counterparts to
intervals in higher dimension: balls and boxes. In [5] we considered the case where C is analytic and
strictly convex and showed that DC(x, α,N)/N (d−1)/2d has a limiting distribution (which however
depends on C).

Here we address the case where C is a box and show that DC(x, α,N)/(lnN)d converges to a
Cauchy distribution. To avoid the irregular behavior of the limiting distribution as the function
of the considered box, as is the case in Kesten’s result for example, we introduce an additional
randomness to the parameters, by letting the lengths of the box’s sides fluctuate. For a reason that
will be explained in the sequel we have also to apply (arbitrarily small) random affine deformations
on the boxes.

More precisely, for u = (u1, . . . , ud) with 0 < ui < 1/2 for every i, we define a cube on the
d-torus by Cu = [−u1, u1] × . . . [−ud, ud]. Let η > 0 and MCu be the image of Cu by a matrix
M ∈ SL(d,R) such that

M = (aij) ∈ Gη = {|ai,i − 1|, for every i and |ai,j| < η for every j 6= i}.

For a point x ∈ Td and a translation frequency vector α ∈ Td we denote ξ = (u,M, α, x) and
define the following discrepancy function

D(ξ,N) = #{1 ≤ m ≤ N : (x+mα) mod 1 ∈MCu} − 2d (Πiui)N.
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Fix d segements [vi, wi] such that 0 < vi < wi < 1/2∀i = 1, . . . , d. Let X = (u, α, x, (ai,j)) ∈
[v1, w1] × . . . [vd, wd] × T2d × Gη. We denote by λ the normalized restriction of the Lebesgue ×
Haar measure on X.

Theorem 1. Let ρ = 1
d!

(
2
π

)2d+2
. For any z ∈ R we have

(1) lim
N→∞

λ{ξ ∈ X /
D(ξ,N)

(lnN)d
≤ z} = C(ρz)

where C is the standard Cauchy cumulative distribution function

C(z) =
1

π

∫ z

−∞

1

1 + a2
da =

tan−1 z

π
+

1

2
.

Our proof of Theorem 1 shows that for typical α a quenched limit (that is, with fixed α and x
uniformly distributed on Td) of DC(x, α,N) does not exist even if we would allow the normalizing
sequence UN to depend on α. The reason is that the main contribution to discrepancy comes from
a small set of so called small denominators and, at different scales, different small denominators
become important. We note that the absence of quenched limits is often observed in zero entropy
systems [3, 5, 14].

1.2. Plan of the paper. We now give a description of the paper’s content and of the main
ingredients in the proofs.

Section 2 contains preliminaries and reminders. In Section 2.1 we recall the representation of the
Cauchy distribution in terms of a Poisson process. In section 2.2 we present Rogers formulas that
allow to compute the average and higher moments for the number of points of a random lattice in
a given domain.

In Section 3, harmonic analysis of the discrepancy’s Fourier series allows to bound the frequencies
that have essential contributions to the discrepancy and show that they must be resonant with
α. After eliminating a small measure set of vectors α, for which the resonances are too strong we
obtain that the good normalization for the discrepancy is (lnN)d. The main result of Section 3 is
Theorem 5 that reduces the proof of the main theorem to establishing a Poisson limit theorem for
the distribution of small denominators and the corresponding numerators.

Apart from section 3, all our proofs are identical in any dimension and in the 2-dimensional case.
We therefore present the proof of the Poisson limit theorem in dimension 2 in order to improve
the readability of the paper. Thus in sections 4–6 we assume that d = 2 and use the notations
(x, y), (u, v), (α, β) instead of (x1, x2), (u1, u2), (α1, α2) and

Ma1b1a2b2 ∈ Gη = { |a1 − 1|, |b2 − 1|, |a2|, |b1| < η; a1b2 − b1a2 = 1}.
In dimension two we need to prove the Poisson limit theorem for the set{(

ln2N(a1k + b1l)(a2k + b2l)
∥∥kα + lβ

∥∥, {N(kα + lβ)}, {(a1k + b1l)u},

{(a2k + b2l)v}, {kx+ ly})} (?)

when (k, l) range over the resonant frequencies for (α, β) that contribute to the discrepancy
D(ξ,N), namely

|a1k + b1l| > 1, |a2k + b2l| > 1, |(a1k + b1l)(a2k + b2l)| < N,

(a1k + b1l)(a2k + b2l)
∥∥kα + lβ

∥∥ < 1

ε ln2N
.

In section 4, we reduce the Poisson limit of the first coordinate of (?) to the Poisson limit
theorem (Theorem 10) for the number of visits to a cusp by orbits of the Cartan action on M =
SL3(R)/SL3(Z).
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The proof of Theorem 10 is given in Section 6. Poisson limit theorems for dynamical systems
is a popular subject. The most relevant for our purposes is paper [4] where the Poisson Limit
Theorem is proven for partially hyperbolic systems assuming that the images of local unstable
manifolds became equidistributed at sufficiently fast rate.

In the present setting there are two new difficulties. First, the geometry of the cusp is quite
complicated (especially for large d), in the sense that we do not know which k and l contribute
to the resonances in (?). However Rogers identities provide sufficiently strong control to handle
this issue. Secondly, in the higher rank case (we need to consider the action of the full diagonal
subgroup of SL3(R) because, for a typical resonance, a1k+b2l and a2k+b2l have very different sizes)
there is no notion of ”unstable manifold” because there is no notions of ”future” and ”past” and
going to infinity in different Weyl chambers gives different expanding and contracting directions.
At the present setting we are able to prove the Poisson limit theorem using the fact the long leaves
of the Lyapunov foliations become uniformly distributed at a polynomial rate, except for a set of
small measure.

The relevant equdistribution results for unipotent subgroups of SL3(R) acting on the space of
three dimensional lattices are presented in Section 5.

Unfortunately, a possible existence of small exceptional sets, requires us to introduce additional
parameters in the form of small affine deformations of the box, because we can only prove Poisson
Limit Theorem if the initial lattice has a smooth density on M whereas if we work with the straight
boxes we only get a positive codimension submanifold of M.

To prove the Poisson limit for all components of (?) we need to show that the other components
are asymptotically independent of the first one. This requires an extra work but the argument is
similar to the original analysis of Kesten.

In section 7 we discuss the discrepancy for the number of visits to boxes of small size N−γ,
γ < 1/d, and we obtain a similar result to the case γ = 0 that corresponds to the main theorem
1. The case γ = 1/d was studied in [13] where a limit distribution is obtained without any
normalization. As for the case γ > 1/d, it is vacuous since most orbits do not visit a ball of size
N−γ before time N .

Finally, in Section 8 we discuss the continuous time case, that is, we study the discrepancies
corresponding to linear flows on the torus. We show that in case of boxes the discrepancy is
bounded in probability since the indicator function of a box is a coboundary with probability
one. We actually get convergence in distribution of the discrepancies without any normalization.
However, our proof of Theorem 1 implies a Cauchy limit theorem for continuous discrepancies
relative to balls, and this only in dimension d = 3. Indeed, the latter is in sharp contrast with
the higher dimension case obtained in [5] that states that for d ≥ 4 the continuous discrepancies
relative to balls converge in distribution after normalization by a factor T (d−3)/2(d−1).

2. Preliminaries.

2.1. Poisson process. The proofs of the facts listed below can be found in monographs [17, 18].
Let (X,µ) be a measure space. Recall that a Poisson process associated to (X,µ) is a point

process with values in X such that
(a) if N(A) is the number of points in A ⊂ X then N(A) has Poisson distribution with parameter
µ(A) and
(b) if A1, A2 . . . Ak are disjoint subsets of X then N(A1), N(A2) . . . N(Ak) are mutually indepen-
dent.

If X ⊂ Rd and µ has a density f with respect to the Lebesgue measure we say that f is the
intensity of the Poisson process.

Lemma 2.
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(a) If {Θj} is a Poisson process on X and ψ : X → X̃ is a measurable map then Θ̃j = ψ(Θj)

is a Poisson process. If X = X̃ = R and if {Θj} has intensity f and if ψ is invertible, then the

intensity of Θ̃ is

f̃(θ) = f(ψ−1(θ))
1

|ψ′(ψ−1(θ))|
.

(b) Let (Θj,Γj) be a point process on X×Z such that {Θj} is a Poisson process on X and {Γj}
are Z-valued random variables which are i.i.d. and independent of {Θk} then (Θj,Γj) is a Poisson
process on X × Z.

(c) Conversely if (Θj,Γj) is a Poisson process on X × Z with measure µ × ν where ν is a
probability measure then Θj is a Poisson process with measure µ and Γj are iid independent of Θs
and having distribution ν.

(d) If in (b) X = Z = R then Θ̃ = {ΓjΘj} is a Poisson process. If {Θj} has intensity f then Θ̃
has intensity

f̃(θ) = EΓ

(
f

(
θ

Γ

)
1

|Γ|

)
.

Lemma 3.
(a) If {Θj} is a Poisson process on R with intensity cθ−2 then

lim
δ→0

1

ρ

∑
δ<|Θj |

Θj

has a standard Cauchy distribution, with ρ = cπ.
(b) If {Θj} is a Poisson process on R with constant intensity c and if Γj are iid random variables

having a symmetric distribution with compact support then

lim
M→∞

1

ρ

∑
|Θj |<M

Γj
Θj

has a standard Cauchy distribution with ρ = cE(|Γ|)π.

The proof of Lemma 3 (b) follows from Lemma 3 (a) and parts (a) and (d) of Lemma 2.

2.2. Rogers identities. The following identities (see [13, 20]) play an important role in our
argument. Denote

c1 = ζ(d+ 1)−1, c2 = ζ(d+ 1)−2, where ζ(d+ 1) =
∞∑
n=1

n−(d+1)

is the Riemann zeta function.

Lemma 4. Let f, f1, f2 be piecewise smooth functions with compact support on Rd+1. For a lattice
L ⊂ Rd+1 let

F (L) =
∑

e∈L, prime

f(e), F̄ (L) =
∑

e1 6=±e2∈L, prime

f1(e1)f2(e2).

Then

(a)

∫
M

F (L)dµ(L) = c1

∫
Rd+1

f(x)dx,

(b)

∫
M

F̄ (L)dµ(L) = c2

∫
Rd+1

f1(x)dx

∫
Rd+1

f2(x)dx.
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(c) Consequantly∫
M

F 2(L)dµ(L) = c1

∫
Rd+1

f 2(x)dx+ c1

∫
Rd+1

f(x)f(−x)dx+ c2

(∫
Rd+1

f(x)dx

)2

.

3. Estimating the contribution of non-resonant terms.

The goal of this section is to reduce of the proof of the main Theorem 1 to proving a Poisson
limit distribution of a point process related to the resonant terms to the discrepancy function
(Theorem 5). The subsequent Sections 4–6 will be dedicated to the proof of Theorem 5.

3.1. Recall the definition

X = {(u, α, x, (ai,j)) ∈ [v1, w1]× . . . [vd, wd]× T2d ×Gη}

Let Φm(ω) := sin(2πmω)
m

. For ξ ∈ X and k ∈ Zd, we use the notation

(2) k̄i = ai,1k1 + · · ·+ ai,dkd

Let

Uk(ξ,N) = AΠiΦk̄i(ui)
sin(πN(k, α))

sin(π(k, α))
cos(2π(k, x) + ϕk,N,α))

where ϕk,α,N = π(N − 1)(k, α)/2, A = 1
πd

and (k, x) :=
∑d

i=1 kixi. Writing the Fourier series of
the characteristic function of a box we get that

D(ξ,N) =
∑

k∈Zd−{0}

Uk(ξ,N) = 2
∑

k∈Zd−{0},k1>0

Uk(ξ,N)

3.2. Let

D1(ξ,N) =
∑

|ki|≤N,k 6=(0,...,0)

Uk(ξ,N)

We claim that there exists a constant C such that

‖D −D1‖2
2 ≤ C

where the L2 norm refers by default to functions of the variables (α, x) ∈ T2d. As a consequence
we can replace D by D1 in (1).

Proof of the claim. Assume ξ ∈ X given. Then for any q ≥ N and any q1, . . . , qd−1 ∈ N there
exists only finitely many k ∈ Zd such that kid = q and k̄ij ∈ [qj, qj + 1] for every j ∈ [1, d − 1],
where ij is some permutation of the indices 1, . . . , d. Since for any ω, |Φm(ω)| < min(2π|ω|, 1/m),
the contributions of the latter frequencies can thus be bounded as follows

‖D −D1‖2
2 ≤ C

∑
q≥N,q1,...,qd−1≥0

1

q2(q1 + 1)2 . . . (qd−1 + 1)2

∫
Td

(
sin(πN(k, α)

sin(π(k, α))

)2

dα

≤ C
∑

q≥N,q1,...,qd−1≥0

1

q2(q1 + 1)2 . . . (qd−1 + 1)2
N ≤ C. �
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3.3. Define S(ξ,N) = S((ai,j), N) := {k ∈ Zd : |ki| ≤ N, |k̄i| ≥ 1}. Then let

D2(ξ,N) =
∑
k∈S

Uk(ξ,N).

We want to show that it is possible to replace the study of D1 by that of D2. For a fixed matrix
(ai,j), we want to bound the contributions of frequencies k such that k̄id < 1 for at least one
index id ∈ [1, d]. Observe first that since (ai,j) is close to Identity then k̄i ≤ 2N for every i.
Moreover, there exists C(d) such that for every (q1, . . . , qd−1) ∈ [0, 2N ]d−1 there is at most C(d)
vectors k ∈ [−N,N ]d such that |k̄id | ≤ 1 and |k̄ij | ∈ [qj, qj + 1] for every j ∈ [1, d − 1], where
ij is some permutation of the indices 1, . . . , d. We call Kq1,...,qd−1

the latter set of k. We then
exclude the translation vectors α for which there exists (q1, . . . , qd−1) ∈ [0, 2N ]d−1 with at least
one k ∈ Kq1,...,qd−1

satisfying |Πd−1
i=1 (qi + 1)|

∥∥(k, α)
∥∥ ≤ ε/(lnN)d−1. The excluded set EN((ai,j)) has

Lebesgue measure of order ε.
We claim that

‖D2 −D1‖2
L2((Td−EN )×Td) = O

(
(lnN)2(d−1)

ε

)
.

Therefore we can replace D1 by D2 in (1).

Proof of the claim. Let

Bp ((q1, . . . , qd−1), (ai,j)) = {α ∈ Td : ∃k ∈ Kq1,...,qd−1
((ai,j)),

pε/(lnN)d−1 ≤ |Πd−1
i=1 (qi + 1)|

∥∥(k, α)
∥∥ ≤ (p+ 1)ε/(lnN)d−1}

then Leb (Bp ((q1, . . . , qd−1), (ai,j))) ≤ C ε
(q1+1)...(qd−1+1)(lnN)d−1 . Hence

‖D2 −D1‖2
L2((Td−EN )×Td) ≤

C
∑

q1,...,qd−1∈[0,2N ]d−1

∑
p≥1

ε

(q1 + 1) . . . (qd−1 + 1)(lnN)d−1

(lnN)2(d−1)

ε2p2

≤ C
(lnN)2(d−1)

ε
. �

3.4. Let S̄(ξ,N) := {k ∈ Zd : Πd
i=1|ki| ≤ N, |k̄i| ≥ 1}. Then let

D3(ξ,N) =
∑
k∈S̄

Uk(ξ,N).

We claim that there exists a constant C > 0 such that

‖D3 −D2‖2
2 ≤ C(lnN)d−1.

Therefore we can replace D2 by D3 in (1).

Proof of the claim. Denote K(k) = Πd
i=1k̄i. We have that

‖D3 −D2‖2
2 ≤

∑
k∈S,|K(k)|≥N

1

K(k)2

∫
Td

(
sin(πN(k, α))

sin(π(k, α))

)2

dα

≤
∑

k∈S,|K(k)|≥N

N

K(k)2

Let

As = {k ∈ S : |K(k)| ∈ [2sN, 2s+1N ]}
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and observe that #As ≤ C2sN(lnN + s)d−1. Thus

‖D3 −D2‖2
2 ≤ C

∞∑
s=0

2sN(lnN + s)d−1 N

(2sN)2
≤ C lnNd−1. �

3.5. Define T (ξ,N) = T ((ai,j), α,N) by

T (ξ,N) :=

{
k ∈ S̄((ai,j), N) : |Πd

i=1k̄i|
∥∥(k, α)

∥∥ ≤ 1

ε(lnN)d

}
and let

D4(ξ,N) =
∑
k∈T

Uk(ξ,N).

We claim that
‖D4 −D3‖L2((Td−EN )×Td) ≤ C

√
ε(lnN)d

therefore to prove (1), we can study the limiting distribution as N →∞ of D4/(lnN)d.

Proof of the claim. Since k ∈ S̄ and (ai,j) is close to Identity we have that 1 ≤ |k̄i| ≤ 2N for every
i. Now, for every q1, . . . , qd ∈ [1, 2N ]d there are at most C(d) vectors k ∈ [−N,N ]d such that
|k̄i| ∈ [qi, qi + 1]. We denote the latter set of vectors K(q1, . . . , qd). We have that

‖D4 −D3‖2
L2((Td−EN )×Td) ≤ C

∑
(q1,...,qd)∈[1,2N ]d

AK(q1,...,qd)

where

AK(q1,...,qd) =
∑

k∈K(q1,...,qd)

∫
Td

1

(Πd
i=1qi

∥∥(k, α)
∥∥)2

χ
Πdi=1qi

∥∥(k,α)

∥∥≥1/ε(lnN)d
dα.

Consider for each k ∈ AK(q1,...,qd) and p ∈ N the sets

Bk,p =

{
α ∈ Td :

p

ε(lnN)d
≤ Πd

i=1qi
∥∥(k, α)

∥∥ < p+ 1

ε(lnN)d

}
.

We have that LebTd(Bk,p) ≤ 1/(εΠd
i=1qi(lnN)d). Thus

AK(q1,...,qd) ≤ C
1

εΠd
i=1qi(lnN)d

∞∑
p=1

ε2(lnN)2d

p2
≤ Cε

(lnN)d

Πd
i=1qi

and the claim follows as we sum over (q1, . . . , qd) ∈ [1, 2N ]d. �

3.6. Let δ = ε4. Define W (ξ,N) = W ((ai,j), α,N) by

W (ξ,N) :=
{
k ∈ Zd : |Πd

i=1k̄i| < N1−δ,

∀i = 1, . . . , d, |k̄i| ≥ 1, |Πd
i=1k̄i|

∥∥(k, α)
∥∥ ≤ 1

ε(lnN)d

}
and let

D5(ξ,N) =
∑
k∈W

Uk(ξ,N).

Let

FN((ai,j)) = EN
⋃{

α ∈ Td : ∃k ∈ T such that

|Πd
i=1k̄i|

∥∥(k, α)
∥∥ < ε

(lnN)d

}
.
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Since for any q1, . . . , qd ∈ [1, 2N ]d there are at most C(d) vectors k ∈ S̄ such that k̄i ∈ [qi, qi + 1]
we get that

LebTd(FN) ≤ LebTd(EN) +
∑

1≤q1,...,qd≤N

Cε

(lnN)dΠd
i=1qi

≤ Cε.

We claim that

‖D5 −D4‖L2((Td−FN )×Td) ≤ C
√
ε(lnN)d.

Therefore to prove (1) we can study the limiting distribution as N →∞ of D5/(lnN)d.

Proof of the claim. For every k ∈ Zd, we have that

Leb

{
α ∈ Td : |Πd

i=1k̄i|
∥∥(k, α)

∥∥ < 1

ε(lnN)d

}
≤ 1

|Πd
i=1k̄i|ε(lnN)d

.

Hence the contribution of the k ∈ T −W for α ∈ Td − FN can be bounded by

‖D5 −D4‖2
L2((Td−FN )×Td) ≤ ∑

k∈T,|Πdi=1k̄i|≥N1−δ

(lnN)2d

ε2

1

|Πd
i=1k̄i|ε(lnN)d

.

For s = 0, . . . , [δ lnN ], define

Ps = {k ∈ T : |Πd
i=1k̄i| ∈ [2sN1−δ, 2s+1N1−δ]}.

Then #(Ps) ≤ C2sN1−δ(lnN)d−1. Thus the terms in Ps contribute to ‖D5 −D4‖2
L2((T2−FN )×T2)

with less than

#(Ps)
(lnN)d

ε32sN1−δ ≤ C
(lnN)2d−1

ε3
.

Summing over s = 0, . . . , [δ lnN ] we get the required estimate. �

3.7. Observe that that given ε for each η > 0 there is a number n(η) such that

mes(ξ such that #(W (ξ,N)) > n(η)) < η

uniformly in N. Since the contributing terms in D5 satisfy
∥∥(k, α)

∥∥ ≤ 1
ε(lnN)d

, we can replace Uk
in the definition of ∆ by

Vk(ξ,N) = AΠiΦk̄i(ui)
sin(πN(k, α))∥∥(k, α)

∥∥ cos(2π(k, x) + ϕk,N,α))

and consider instead of D5 in (1)

D6(ξ,N) = 2
∑

k∈W,k1>0

Vk.

Next, we let

Z(ξ,N) = {k ∈ W (ξ,N), k1 > 0 : ∃m ∈ Z such that k1 ∧ . . . ∧ kd ∧m = 1

and
∥∥(k, α)

∥∥ = (k, α) +m
}

and we can replace the study of D6

(lnN)d
by

D7(ξ,N)

(lnN)d
=

2A

π

∑
k∈Z

Γk(ξ,N)

Θk(ξ,N)
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where

Θk(ξ,N) = Πd
i=1k̄i

∥∥(k, α)
∥∥(lnN)d

Γk(ξ,N) = φ
(
k̄1u1, . . . , k̄dud, N(k, α), (k, x) + ϕk,α,N

)
and

(3) φ(η1, . . . , ηd, ηd+1, ηd+2) =
∞∑
j=1

[
Πd
i=1 sin(2πjηi)

]
sin(πjηd+1) cos(2πjηd+2)

jd+1
.

Note that ‖∂ηiφ‖ ≤ C, for any i = 1, . . . , d + 2. The difference between D7 and D6 is that for
k ∈ Z, we comprise in D7 all its multiples whereas in D6 we take only multiples such that jk ∈ W .
This does not make any difference in the limit because

∑
1

jd+1 <∞ and because we can of course

add to D6 the multiples of k such that ‖j(k, α)‖ ≤ 1
ε′(lnN)d

with ε′ � ε which accounts for most of

the sum in φ.

3.8. By the general facts about Poisson processes listed in section 2.1, Theorem 1 follows from
the next result

Theorem 5. For any ε, δ > 0 we have that as N →∞ and ξ ∈ X is distributed according to the
normalized Lebesgue measure λ, the process{(

(lnN)dΠik̄i
∥∥(k, α)

∥∥, {N(k, α)}, {k̄1u1}, . . . , {k̄dud},
{(k, x) + ϕk,α,N})}k∈Z(ξ,N)

converges to a Poisson process on [−1
ε
, 1
ε
] × Td+2 with intensity 2d−1(1 − δ)dc1/d! where c1 =

1/ζ(d+ 1) is the constant from Lemma 4.

Note that by standard properties of weak convergence the result remains valid for ε = δ = 0.
That is, we get the following result which is of independent interest

Corollary 6. Let ξ ∈ X be ditributed according to the normalized Lebesgue measure λ. Then as
N →∞ the point process{(

(lnN)dΠik̄i
∥∥(k, α)

∥∥, {N(k, α)}, {k̄1u1}, . . . , {k̄dud},
{(k, x) + ϕk,α,N})}k∈Z∗(ξ,N)

where

Z∗(ξ,N) =
{
k ∈ Zd : |k̄i| ≥ 1, |Πik̄i| < N, k1 > 0,

|Πik̄i|
∥∥(k, α)

∥∥ ≤ 1

ε(lnN)d
,

∃m ∈ Z such that k1 ∧ . . . ∧ kd ∧m = 1 and
∥∥(k, α)

∥∥ = (k, α) +m
}

converges to a Poisson process on R× Td+2 with intensity 2d−1c1/d!.

3.9. Proof of Theorem 1. We have that (a) and (c) of Lemma 2 imply that {Θk(ξ,N)}k∈Z con-
verges to a Poisson process on [−1

ε
, 1
ε
] and that {Γk(ξ,N)}k∈Z are asymptotically iid independent

from the Θs and have a symmetric distribution with compact support. Hence Lemma 3 applies
and yields Theorem 1. Note that the limiting distribution of D7/(lnN)d has form 2

πd+1

∑
j

Γj
Θj
.

Observe that due to (3) we have E(Γ) = ζ(d+ 1)
(

2
π

)d+2
and hence

ρ =
2

πd
2d−1c1

d!
E(Γ) =

1

d!

(
2

π

)2d+2

.
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3.10. The case d = 2. Notations. Since the proof of Theorem 5 is the same for general d as
for the case d = 2, we specify in the sequel to the latter case. In our opinion, this will improve
the readability of the proof to which sections 4–6 are devoted. There, we will prove the following
version of Theorem 5 in the case d = 2.

Recall from the introduction the notations (x, y), (ū, v̄), (α, β) instead of x, u, α and

Ma1b1a2b2 ∈ Gη = { |a1 − 1|, |b2 − 1|, |a2|, |b1| < η; a1b2 − b1a2 = 1}.
Let

X = {((u, v), (α, β), (x, y), (ai,j)) ∈ [−ū, ū]× [−v̄, v̄]× T2 × T2 ×Gη}
We denote by λ the normalized Lebesgue measure on X.

Theorem 7. For each ε, δ > 0 the following holds. As N →∞ and ξ ∈ X is ditributed according
to λ, the process{(

ln2N(a1k + b1l)(a2k + b2l)
∥∥kα + lβ

∥∥, {N(kα + lβ)}, {(a1k + b1l)u},

{(a2k + b2l)v}, {kx+ ly + ϕl,k,α,β,N})}(k,l)∈Z(ξ,N)

converges to a Poisson process on [−1
ε
, 1
ε
] × T4 with intensity (1 − δ)2c1 where c1 = 1/ζ(3) is the

constant from Lemma 4. Here

Z(ξ,N) =
{

(k, l) ∈ Z2 : |a1k + b1l| ≥ 1, |a2k + b2l| ≥ 1,

|(a1k + b1l)(a2k + b2l)| < N1−δ, k > 0,

|(a1k + b1l)(a2k + b2l)|
∥∥kα + lβ

∥∥ ≤ 1

ε(lnN)2
,

∃m ∈ Z such that k ∧ l ∧m = 1 and
∥∥kα + lβ

∥∥ = kα + lβ +m
}

4. Reduction to dynamics on the space of lattices.

Denote M = [lnN ].
Introduce the following notations

I = (1, e], J = [−e,−1) ∪ (1, e], K =

[
− 1

εM2
,

1

εM2

]
,

(4) Λ =

 a1 b1 0
a2 b2 0
α β 1

 ,

 x
y
z

 = gt1,t2Λ

 k
l
m

 .

Define on the space M of unimodular lattices L the function

(5) Φ(L) =
∑

e∈L prime

1I(x(e))1J(y(e))1K(xyz(e)).

and on M× R define an R× T valued function

(6) Ψ(L, b) = (Ψ1(L),Ψ2(L, b)) = ∑
e∈L prime

1I(x(e))1J(y(e))1K(xyz(e))(M2xyz(e), bz(e) mod (2)).

Given N , suppose that ξ ∈ X is such that for every t1, t2 ∈ [0,M ] there exists at most one
(k, l) ∈ Z(ξ,N) such that

(7) et1 < L1 ≤ et1+1, et2 < |L2| ≤ et2+1
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where L1 = a1k + b1l, L2 = a2k + b2l. Note that if (7) holds then (k, l) ∈ Z iff Φ(gt1,t2Λ(ξ)) = 1.
Thus, for such ξ we have that the sequence

{M2(a1k + b1l)(a2k + b2l)||αk + βl||, N
∥∥kα + lβ

∥∥ mod (2)}k,l∈Z
is exactly

{Ψ(gtΛ(ξ), Ne−(t1+t2))}Φ(gtΛ(ξ))=1,t∈Π

with
Π = {t = (t1, t2) ∈ N2 : t1 + t2 < (1− δ)M}.

Hence, to show that the distribution of {M2(a1k+b1l)(a2k+b2l)||kα+lβ||, N
∥∥kα+lβ

∥∥ mod (2)}k,l∈Z
converges as N → ∞ to that of a Poisson process on [−1

ε
, 1
ε
]× R/(2Z) with intensity 2(1− δ)2c1

it is sufficient to have (a) and (b) of the following theorem.

Theorem 8. Assume that ξ ∈ X is distributed according to a probability measure with smooth
density with respect to the Lebesgue measure. We will denote by Λ the matrix Λ(ξ) as defined in
(4). Then

(a) For any t ∈ Π, P(Φ(gtΛ) > 1) = O(M−4).
(b) {Ψ(gtΛ, Ne−(t1+t2))}Φ(gtΛ)=1,t∈Π converges as N → ∞ to the Poisson process on [−1

ε
, 1
ε
] ×

R/(2Z) with intensity 2(1− δ)2c1.
(c) Let τ(t) = max(t1, t2) and let τ1 < τ2 < . . . < τs . . . be the set of points {τ(t) : Φ(gtΛ) =

1, t ∈ Π} listed in the increasing order. Then for each s

P(τj − τj−1 >
√
M for each j ≤ s)→ 1 as N →∞.

(d) Let τ ′(t) = min(t1, t2) and let τ ′1 > τ ′2 > . . . > τ ′s . . . be the set of points {τ ′(t) : Φ(gtΛ) =
1, t ∈ Π} listed in the decreasing order. Then for each s

P(τ ′s >
√
M)→ 1 as N →∞.

In order to get the full Poissonean limit in Theorem 7 we will also need the following fact.

Theorem 9. Let K > 0 be fixed. Given any s ∈ N, let (kN1 , l
N
1 ), . . . , (kNs , l

N
s ) be a sequence of s

2-tuples such that

(8) |(kNj , lNj )| > |(kNj−1, l
N
j−1)|e

√
lnN .

Suppose that (u, v, x, y) are distributed according to a density ρN such that

(9) ||ρN ||C1 ≤ K.

Then the distribution of the s 3-tuples

((a1k1 + b1l1)u, (a2k1 + b2l1)v, (k1x+ l1y + φl1,k1,α,β,N) . . .

(a1ks + b1ls)u, (a2ks + b2ls)v, (ksx+ lsy + φls,ks,α,β,N))

converges to the uniform distribution on T3s and the convergence is uniform with respect to N and
(a1, a2, b1, b2, α, β) and to the choices of s 2-tuples satisfying (8) and ρN satisfying (9).

Proof of Theorem 9. We need to show that given smooth functions f1, f2 . . . fs on T3 with zero
average we have∫

T4

s∏
j=1

fj
(
(a1kj + b1lj)u, (a2kj + b2lj)v, (kjx+ ljy + φlj ,kj ,α,β,N)

)
ρN(u, v, x, y)dudvdxdy → 0

uniformly in the parameters involved but this follows easily by considering the Fourier series of fj.
�
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Proof of Theorem 7. As mentioned before, (a) and (b) of Theorem 8 imply that {M2(a1k +
b1l)(a2k + b2l)||αk + βl||, N

∥∥kα + lβ
∥∥ mod 2}k,l∈Z converges as N → ∞ to a Poisson process

on [−1
ε
, 1
ε
] × R/(2Z) with intensity 2(1 − δ)2c1. Next, Theorem 9 and (c) of Theorem 8 imply

that
{(
{(a1k + b1l)u}, {(a2k + b2l)v}, {kx+ ly + ϕ′l,k,α,β,N}

)}
(k,l)∈Z(ξ,N)

converge to uniformly dis-

tributed iid’s on T3 independent of {M2(a1k+b1l)(a2k+b2l)||αk+βl||, N
∥∥kα+lβ

∥∥ mod (2)}k,l∈Z(ξ,N).
Lemma 2 hence yields the full Poissonean limit of Theorem 7. �

Before we close this section we use a last observation that allows us to complete the reduction
of our problem to a clear cut dynamics problem on the space of lattices, namely the following.

Theorem 10. Assume that L has a smooth density on M. Then
(a) For any t ∈ Π, P(Φ(gtL) > 1) = O(M−4).
(b) {Ψ(gtL, Ne−(t1+t2))}Φ(gtL)=1,t∈Π converges as N → ∞ to a Poisson process on [−1

ε
, 1
ε
] ×

R/(2Z) with intensity 2(1− δ)2c1.
(c) Let τ(t) = max(t1, t2) and let τ1 < τ2 < · · · < τs . . . be the set of points {τ(t) : Φ(gtL) =

1, t ∈ Π} listed in the increasing order. Then for each s

P(τj − τj−1 >
√
M for each j ≤ s)→ 1 as N →∞.

(d) Let τ ′(t) = min(t1, t2) and let τ ′1 > τ ′2 > · · · > τ ′s . . . be the set of points {τ ′(t) : Φ(gtL) =
1, t ∈ Π} listed in the decreasing order. Then for each s

P(τ ′s >
√
M)→ 1 as N →∞.

Proof that Theorem 10 implies Theorem 8.
Let η > 0 and define for an interval A = [a, b] the intervals A+ = [a(1 − η), b(1 + η)] and

A− = [a(1 + η), b(1− η)]. Fix some interval K̄ ⊂ K. Let Φ̄± be defined as in (5) with the intervals
I±, J±, K̄± instead of I, J,K. Next, given Λ = Λ(ξ) for some ξ ∈ X, define

Λ̃ =

 (1 + σ) 0 0
0 (1 + σ) 0
0 0 (1 + σ)−2

 1 0 c1

0 1 c2

0 0 1

Λ

where σ, c1 and c2 are random variables independent of each other and of (a1, b1, a2, b2, α, β) and
having uniform distribution on [0, η2]. The equivalence between Theorem 8 and Theorem 10 stems
from the straightforward observation that if M is sufficiently large, then for any n ∈ N it holds
that

Φ̄−(gt1+ln(1+σ),t2+ln(1+σ)Λ̃) ≥ n =⇒ Φ(gt1,t2Λ) ≥ n

=⇒ Φ̄+(gt1+ln(1+σ),t2+ln(1+σ)Λ̃) ≥ n

�
The rest of the paper will be devoted to the proof of Theorem 10.

5. Rate of equi-distirbution of unipotent flows.

Let M = SL3(R)/SL3(Z). Denote

gt1,t2 =

 e−t1 0 0
0 e−t2 0
0 0 et1+t2

 .

We shall use the fact that the action of gt on M is partially hyperbolic in the sense that

TM = E0 +
3∑
q=1

E+
q ⊕ E−q
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where E0 is tangent to the orbit of gt and E±q are invariant one dimensional distributions. The
corresponding Lyapunov exponents are ±λq where

λ+
1 = 2t1 + t2, λ+

2 = t1 + 2t2, λ+
3 = t1 − t2.

E±q are tangent to foliations W±
q which are orbit foliations for groups h±q where

h+
1 (u) =

 1 0 0
0 1 0
u 0 1

 , h+
2 (u) =

 1 0 0
0 1 0
0 u 1

 , h+
3 (u) =

 1 0 0
u 1 0
0 0 1


and h−q (u) are transposes of h+

q (u). Below we shall abbreviate Wq = W+
q .

Definition 5.1. Given s, r ≥ 0, we say that a function A : M → R is in Hs,r with ||A||s,r = K if
given 0 < ε ≤ 1 there are Hs-functions A− ≤ A ≤ A+ such that

||A+ − A−||L1(µ) ≤ ε and ||A±||s ≤ Kε−r.

Definition 5.2. Fix κ0 > 0. Let L > 0 and P be a partition of M into Wq-curves of length L and
denote γ(x) the element of P containing x. Given a finite or infinite sequence of integers {kn} and
a function A ∈ Hs,r, we say that P is κ0-representative with respect to ({kn}, A) if for any n

(10) µ

(
x :

∣∣∣∣ 1

Ln

∫
gknγ(x)

A(s)ds− Â
∣∣∣∣ ≥ KAL−κ0

n

)
≤ L−κ0

n

where Â =
∫
M
A(x)dµ(x), KA = ||A||s,r + 1, and Ln = Leλq(kn) is the length of the Wq curve

gknγ(x) that goes through gkn(x).
We call the points x such that

∀n :

∣∣∣∣ 1

Ln

∫
gknγ(x)

A(s)ds− Â
∣∣∣∣ ≤ KAL−κ0

n

representative with respect to (P , {kn}, A). Observe that if∑
n

(Ln)−κ0 ≤ ε

then the set of representative points has measure larger than 1− ε.

The goal of this section is to show the following.

Proposition 11. There exists s, κ0, ε0 > 0 such that for any 0 ≤ r ≤ s, 0 < ε ≤ ε0, and any
function A ∈ Hs,r, and any L and a sequence {kn} satisfying∑

n

(
Leλq(kn)

)−κ0 ≤ ε

then there exists a partition P of M into Wq-curves of length L that is κ0-representative with
respect to ({kn}, A).

The requirement that r ≤ s will only serve to maintain the exponent κ in the speed of equidis-
tribution in (10) bounded from below. Any upper bound on r would yield a lower bound on κ but
it will be sufficient for us in the sequel to consider functions in Hs0,s0 , since we will have to deal
with characterisitc functions of nice sets (cf. section 6.3).

Proof. Without loss of generality we will work with functions A having zero average, that is Â = 0.
We will first prove proposition 11 for A ∈ Hs and then generalize it to A ∈ Hs,r. Also, we will
give the proof for the case q = 3 the other cases being similar.
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By [12], Theorem 2.4.5 there exists s and constants C, c > 0 such that if A,B ∈ Hs and if

g =

 et1 0 0
0 et2 0
0 0 et3


where t1 + t2 + t3 = 0 then

(11) |µ(A(x)B(gx))− µ(A)µ(B)| ≤ C||A||s||B||se−cmax |tj |.

We claim that this implies that there exists C > 0 and κ > 0 such that

(12) |µ(A(x)B(h3(u)x))− µ(A)µ(B)| ≤ C||A||s||B||su−κ.
Indeed let θ be such that tan θ = e−2t and let

U(t) = R(θ)

 e−t 0 0
0 et 0
0 0 1

R(−θ)

where

R(θ) =

 cos θ sin θ 0
− sin θ cos θ 0
0 0 1

 .

A simple computation gives that U(t) = h3(u) with u = e2t + o(1), hence (12) follows from (11).
Now, assuming that µ(A) = 0, (12) implies that

|µ(A(x)A(h3(u)x))| ≤ CK2
Au
−κ

with KA = ||A||s, thus for SL(x) = 1
L

∫
A(h3(u)x)du we have

µ(SL) = 0, µ(S2
L) ≤ CL−κK2

A.

This implies that

(13) µ(x : |SL(x)| > KAL−κ/3) ≤ CL−κ/3.

Next let P̂ be an arbitrary partition of M into W3-curves of length L and let P̂u = h3(Lu)P̂ .
Then by (13)

µ̄

(
(x, u) :

1

L

∣∣∣∣∫
γ(x,u)

A(s)ds

∣∣∣∣ ≤ KAL−κ0

)
≤ CL−κ0

where µ̄ denotes the product of µ and the Lebesgue measure on [0, 1] and κ0 = κ/3. Thus we can

choose u so that P̂u satisfies

(14) µ

(
x :

1

L

∣∣∣∣∫
γ(x)

A(s)ds

∣∣∣∣ ≥ KAL−κ0

)
≤ CL−κ0

If L is large we can drop the constant C if we let κ0 be slightly smaller than κ/3. Likewise, if
{kn} is a finite or infinite sequence with∑

n

(
Leλ3(kn)

)−κ0 ≤ ε

then there exists a partition P that is representative with respect to ({kn}, A) as in definition 5.2.
To extend (14) to functions in Hs,r (that eventually have infinite Hs-norm), we use a standard

approximation argument. Note first that (13) still holds for non zero mean Hs-functions if we let

SÃL (x) =

(
1

L

∫
γ(x)

Ã(h3(u)x)du

)
− µ(Ã).
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On the other hand, we have that 0 ≤ Â+ ≤ ε, hence if KA = ||A||s,r + 1 we have that

µ
(
SAL (x) ≥ 2KAL−κ̃

)
≤ µ

(
SA

+

L (x) ≥ 2KAL−κ̃ − ε
)

So, if we choose ε and κ̃ such that ε = KAL−κ̃ ∼ KAε−rL−κ0 , that is ε ∼ L−κ̃ and κ̃ = κ0/(r + 1)
we get that

µ
(
SAL (x) ≥ 2KAL−κ̃

)
≤ µ

(
SA

+

L (x) ≥ ||A+||sL−κ0

)
≤ L−κ0 .

Using A− to bound µ
(
SAL (x) ≤ −2KAL−κ̃

)
we see that (14) and thus the rest of the proof extends

to Hs,r functions, provided the exponent κ0 is reduced. �

6. Poisson Limit Theorem in the space of lattices.

6.1. Multiple solutions.

Lemma 12. Assume that L has a smooth density on M. Let Φ be defined as in (5). Denote
Φt = Φ ◦ gt. Then we have as M →∞ and for any t, t′ ∈ Z2 − {0, 0}

(a) E(Φt) = O(M−2);

(a′) E(Φt) = c1
4

ε
M−2 +O(M−100) if min(t1, t2) ≥

√
M

(b) E((Φt)
2 − Φt) = O(M−4) and hence P(Φt(L) > 1) = O(M−4);

(c) P(Φt(L) 6= 0 and Φt(gt′L) 6= 0) = O(M−4).

Proof. Without loss of generality, we can assume in the proof of the inequalities (a), (b), (c), that
L is distributed according to the Haar measure on M , and by invariance of the Haar measure take
t = 0. The inequalities then follow from Roger’s equalities of Lemma 4. Indeed, (a) of Lemma
4 would then imply that E(Φ) = c1

4
ε
M−2, since

∫
R3 1I(x)1J(y)1K(xyz)dxdydz = 4

ε
M−2. On the

other hand, if for e = (x, y, z) ∈ L, we let f(e) = 1I×J×K(x, y, xyz), then since I is an interval of
positive numbers, we have that

Φ2(L)− Φ(L) =
∑

e1 6=e2∈L prime

f(e1)f(e2) =
∑

e1 6=±e2∈L prime

f(e1)f(e2)

and the first estimate of part (b) follows by Lemma 4(b). The second estimate follows from the
first by Markov inequality. As for (c) observe that if we define, for e = (x, y, z) ∈ L, g(e) =
1
e−t
′
1I×e−t

′
2J×et

′
1+t′2K

(x, y, xyz), then

E(ΦΦt′) =

∫
M

∑
e2 6=±e1∈L prime

f(e1)g(e2)dµ(L)

where the contribution of e2 = −e1 vanishes because both I and e−t
′
1I are positive intervals, while

the contribution of e2 = e1 vanishes since either I and e−t
′
1I or J and e−t

′
2J are disjoint. Applying

Lemma 4(b) we get (c). Since in the case L is distributed according to the Haar measure we have
that E(Φ) = c1

4
ε
M−2, then (a’) follows for a smooth density by exponential mixing of the geodesic

flow. �

Proof of Theorem 10(a). Part (a) of Theorem 10 is exactly the second part of (b) of Lemma 12. �
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6.2. Poisson limit for the visits to the cusp. Let

Π = {t : t1 > 0, t2 > 0, t1 + t2 < 1− δ}
Π = {t : t1 > 0, t2 > 0, t1 + t2 < M(1− δ)}

In this section we will prove the following result that will be extended in section 6.6 to yield
Theorem 10.

Theorem 13. {Ψ1(gtL), t1/M, t2/M}Φ(gtL)=1 converges to the Poisson process on [−1
ε
, 1
ε
]×Π with

intensity 2c1.

Proof. Similarly to the function Φ defined in (5), introduce for the rest of the paper the following
shorthand notation. Divide K into a finite number of intervals K1, K2 . . . Km1 and let

(15) ξt = Φ(gtL), ξt,p = Φp(gtL)

where Φp is defined by (5) with K replaced by Kp.

Also let Φ̂ be defined by (5) with K replaced by K̂ = {z : d(z, ∂K) ≤ M−100}. Last, consider
the following collection of functions

Φ = {Φ1 . . .Φm, Φ̂}.
Pick a small number δ̃ � δ. Divide Π into H squares C1, . . . , CH of sides δ̃M and one side

parallel to Kerλ1.
Fix k ∈ Z+. Pick k squares S1, S2 . . . Sk ⊂ {C1, . . . , CH} with centers t(q). We call the square

configuration δ̃-generic if their images under λ1 are distant by more than 3δ̃M . Also fix an index
iq ∈ {1 . . .m1} for each 1 ≤ q ≤ k.

To obtain Theorem 13, we shall prove

Lemma 14.
(a) P(∃t′, t′′ ∈ Π : ξt′ = ξt′′ = 1 and |λ1(t′)− λ1(t′′)| ≤ 3δ̃M)→ 0 as δ̃ → 0.
(b) If S1, S2 . . . Sk is generic then

P(ξt = 0 for t ∈ Π \
⋃
q

Sq and ∃t(q) ∈ Sq : ξt(q),iq = 1 while ξt = 0 for t ∈ Sq − t(q))

(2c1)kδ̃2k

(∏
q

|Kiq |

)
exp

(
−(1− δ)2

ε

)
(1 + oδ̃→0(1)).

Proof that Lemma 14 implies Theorem 13. Divide Π into subsets Π1,Π2 . . .Πm2 . Suppose that
we want to find the probability that for each (p, s) ∈ [1, . . . ,m1]× [1, . . . ,m2], there are lp,s points,
satisfying

t

M
∈ Πs,Ψ1(gtL) ∈ Kp.

We will apply Lemma 14 with k =
∑

p=1,...,m1;s=1,...,m2
lp,s. For each s, there are ns ≈ Area(Πs)

δ̃2

squares in MΠs.
By Lemma 14(a) the contribution of non-generic choices of k squares is negligible as δ̃ → 0. On

the other hand by Lemma 14(b) generic choices contribute (recall that Area(Π) = (1− δ)2)∏
p,s

[(
ns
lp,s

)(
2c1|Kp|δ̃2

)lp,s]
exp

(
−Area(Π)

ε

)

≈
∏
p,s

[
(2c1|Kp|Area(Πs))

lp,s

lp,s!
exp (−|Kp|Area(Πs))

]
which is exactly the result required by Theorem 13. �
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Proof of Lemma 14(a). By Bonferroni inequality

P(∃t′, t′′ ∈ Π : ξt′ = ξt′′ = 1 and |λ1(t′)− λ1(t′′)| ≤ 3δ̃M)

≤
∑

|λ1(t′)−λ1(t′′)|≤3δ̃M

P(ξt′ = ξt′′ = 1) = O(δ̃)

where the last inequality follows from Lemma 12. �

Remark. Define γM(t) = M + t1. The same argument as above actually yields that

P(∃t′, t′′ ∈ Π : ξt′ = ξt′′ = 1 and |v′ − v′′| ≤ 3δ̃M)→ 0 as δ̃ → 0

where v′ ∈ {λ1(t′), γM(t′)} and v′′ ∈ {λ1(t′′), γM(t′′)}. This will be useful in the proof of Theorem
10 that will be given in section 6.6.

Before we prove Lemma 14 in Section 6.4 we prove first a standard estimate on the Hs,s norms

of Φ,Φp and Φ̂.

6.3. Estimates of norms.

Lemma 15. For any s ≥ 0 we have that

(a) ||Φ||s,s = O(1), ||Φi||s,s = O(1), ||Φ̂||s,s = O(1).

(b) E(Φi) = 2c1|Ki|, E(Φ̂) = O(M−100)

Proof. (a) We shall prove the bound for Φ, the other estimates being similar. Let φ be a C∞

functions such that φ(z) = 1 for z ≤ 0, φ(z) = 0 for z ≥ 1 and 0 ≤ φ(z) ≤ 1 for 0 ≤ z ≤ 1. Given
an interval K = [k1, k2] let

I+
K,ε =

1

2

[
φ

(
z − k2

ε

)
− φ

(
z − k1 + ε

ε

)]
I−K,ε =

1

2

[
φ

(
z − k2 − ε

ε

)
− φ

(
z − k1

ε

)]
.

Then Φ−ε ≤ Φ ≤ Φ+
ε where Φ+

ε is defined by (5) with II , IJ and IK replaced by I+
I,ε, I

+
J,ε and

I+
K,ε, and Φ− is defined by (5) with II , IJ and IK replaced by I−I,ε, I

−
J,ε and I−K,ε. By Lemma 4(a)

||Φ+
ε − Φ−ε ||L1 ≤ Cε and ||Φ±ε ||s ≤ Cε−s.
(b) The result follows directly from Lemma 4(a). �

6.4. Proof of Lemma 14(b).

Proof. Let {Sq}q=1,...,k be a fixed δ̃-generic configuration of squares and let {iq} be a sequence of
indices with values in {1, . . . ,m1}. Projecting our squares into the real line by λ1 we obtain 2k
points which divide [0, 2(1 − δ)M ] into 2k + 1 segments. The segments which are projections

of Sq have length δ̃M while complimentary segments are longer. Subdividing the complimentary

segments into segments of length δ̃M we obtain a partition of the segment1 [0, 2(1−δ)M ] by points

0 = ζ0 < ζ1 < · · · < ζn = 2(1− δ)M.

We call segments which are projections of one of the squares type A segments and the remaining
segments type B segments. Let Πj = λ−1

1 [ζj−1, ζj]. These strips have common boundaries. To

1We can always adjust δ̃ to make sure there are no rests and that the squares are completely contained in the
strips Πj .
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create some independence we let ζ̄j = ζj−1 +
√
M and let Π̄j = λ−1

1 [ζ̄j, ζj]. Lemma 12(a) implies
that P(ξt ≥ 1) = O(M−2), hence

P(∃t ∈ Π \
⋃
j

Π̄j : ξt ≥ 1) = O(1/
√
M).

Accordingly we can concentrate on the contributions of t ∈
⋃
j Π̄j. Similarly, we may assume that

min(t1, t2) ≥
√
M .

We say that Π̄j is of type A if [ζj−1, ζj] is of type A and that Π̄j is of type B if [ζj−1, ζj] is of
type B. If Π̄j is of type B we say that it is compatible if ξt = 0 for all t ∈ Π̄j. If Π̄j is of type A
we say that it is compatible if for q such that Sq ⊂ Π̄j, there exists t ∈ Sq such that ξt,iq = 1 and
ξt̄ = 0 for t̄ ∈ Π̄j − {t}. Denote

pj = P(Π̄l are compatible for l ≤ j).

We shall show that if Π̄j+1 is of type A then

(16) pj+1 = 2c1|Kiq |δ̃2pj(1 + o(1)) +O
(

1

lnM

)
and if Π̄j+1 is of type B then

(17) pj+1 = pj

(
1− 2c1

ε

Area(Π̄j+1)

Area(Π)
(1 + o(1))

)
+O

(
1

lnM

)
.

Combining (16) and (17) for all j we obtain part (b) of Lemma 14. We shall prove (16), (17) is
similar.

Let Pj be a sequence of increasing partitions of size L = (eζjM100)−1 such that Pj is κ0-
representative with respect to (t,Φ) for every t ∈ Π̄j+1. This is possible by Proposition 11 since
Φ ⊂ Hs,s and ∑

t∈Π̄j+1

(
Leλ1(t)

)−κ0 � 1.

Given t ∈ Π̄j+1 we also take partitions P tj of size Lt = (eλ1(t)M100)−1 which are representative
with respect to ({t̄ ∈ Πj+1 : λ1(t̄) > λ1(t) + R lnM},Φ). We can assume that P tj refines Pj by
adding the endpoints of Pj to P tj .

Observe that
∑

t,t̄∈Πj+1,λ1(t̄)>λ1(t)+R lnM

(
Lte

λ1(t̄)
)−κ0

= O(M−1000). Thus, if we let Ej be the set

of L that are representative for (t,Pj,Φ) for every t ∈ Π̄j and are representative for (t̄,P tj ,Φ) for

every couple t, t̄ ∈ Π̄j+1 such that λ1(t̄) > λ1(t) +R lnM , then P(Ec
j ) = O(M−1000) by Section 5.

Let Fj denote the σ algebra generated by Pj. Note that the set {Π̄1 . . . Π̄j are compatible}
can be modified on a set of measure O (M−98) so that the new set is Fj measurable. (Indeed,
if 1Π̄1...Π̄j are compatible is not constant on the element of Pj containing L then gt(L) passes in the

O(M−100) neighborhood of the boundary of the set defining Φ for some t ∈
⋃
j̄≤j Π̄j̄.) Hence

(18) pj+1 = P(Π̄1 . . . Π̄j are compatible and Π̄j+1 is compatible)

= E(1Π̄1...Π̄j are compatibleP(Π̄j+1 is compatible |Fj)) + o(M−98).

Our goal for the rest of this section is to prove that outside of a set of negligible measure we
have

(19) P(Π̄j+1 is compatible |Fj)) = 2c1|Kiq |δ̃2(1 + o(1)).

We let
ηt = ξt1ξt=1, ηt,p = ξt,p1ξt,p=ξt=1.
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(Note that, in fact, ηt = 1ξt=1, and ηt,p = 1ξt,p=ξt=1 but we use a more complicated definition above
to emphasize that ηt ≈ ξt, ηt,p ≈ ξt,p.)

We then get the following
Claim. For L ∈ Ej and t, t′, t̄ ∈ Πj+1 with λ1(t̄) > λ1(t) +R lnM

E(ηt,iq |Fj) =
2c1|Kiq |
M2

(1 + o(1))(20)

E(ξ2
t − ξt|Fj) = O(M−4)(21)

E(ηtηt′ |Fj) = O(M−2)(22)

E(ηtηt̄|Fj) = O(M−4)(23)

Proof of the claim. Because L is representative for (t,Pj,Φ), (20) and (21) follow from parts (a)
and (b) of Lemma 12. Now since since ηtηt′ ≤ ξt, (22) also follows from Lemma 12 (a). Equality
(23) needs a little more work. Since ηt ≤ 1 and ηt̄ ≤ 1 we have

E(ηtηt̄|Fj) = E(E(ηtηt̄|F tj)|Fj)
≤ E(E(1E(ηt|Ftj )=1ηt̄|F tj)|Fj) + P(0 < E(ηt|F tj) < 1|Fj).

Next
E(E(1E(ηt|Ftj )=1ηt̄|F tj)|Fj) = E(1E(ηt|Ftj )=1E(ηt̄|F tj)|Fj).

Recall that if L is representative for (t,F tj) then

E(ηt̄|F tj) ≤ E(ξt̄|F t̄j) = E(ξt̄) +O(M−100).

Since E(ξt̄) = O(M−2), the last expression is bounded by

O(M−2)E(1E(ηt̄|F t̄j )=1|Fj) +O(M−100)

≤ O(M−2)E(ηt̄|Fj) +O(M−100) = O(M−4).

On the other hand if 0 < E(ηt̄|F t̄j) < 1 then z(gt̄L) is M−100 close to the boundary of K, that is

P(0 < E(ηt|F tj) < 1|Fj) ≤ E(φ̂ ◦ gt|Fj) = O(M−100). The claim is proved. �

Back to the proof of (16), we have that

P(∃t ∈ Π̄j+1 : ξt > 1|Fj) ≤
∑
t∈Π̄j+1

E(ξ2
t − ξt|Fj).

Let

I = P(∃t ∈ Sq ∩ Π̄j+1 : ξt,iq = 1, and ξt̄ = 0 for t̄ 6= t, t̄ ∈ Π̄j+1|Fj)
II = P(∃t ∈ Sq ∩ Π̄j+1 : ηt,iq = 1, and ηt̄ = 0 for t̄ 6= t, t̄ ∈ Π̄j+1|Fj)

Then, due to (21),

(24) |I − II| ≤
∑
t∈Π̄j+1

E(ξ2
t − ξt|Fj) = O(M−2).

Next, since for a fixed t ∈ Sq we have that

E

ηt,iq − ∑
t′∈Π̄j+1,t′ 6=t

ηtηt′ |Fj

 ≤
P(ηt,iq = 1, and ηt′ = 0 for t′ 6= t, t′ ∈ Π̄j+1|Fj) ≤ E(ηt,iq |Fj)
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then ∣∣∣∣∣∣II −
∑

t∈Sq∩Π̄j+1

E(ηt,iq |Fj)

∣∣∣∣∣∣ ≤
∑

t∈Sq∩Π̄j+1,t′ 6=t∈Π̄j+1

E(ηtηt′ |Fj)(25)

≤ O(δ̃3) +O(M−1 lnM)

using (22) for bounding the terms with |t− t′| ≤ R lnM , and (23) for |t− t′| > R lnM .
Due to (20) we get that

(26)
∑

t∈Sq∩Π̄j+1

E(ηt,iq |Fj) = 2c1|Kiq |δ̃2(1 + o(1)).

Now, (19) follows for L ∈ Ej from (24), (25) and (26). Finally,

pj+1 = P(Π̄1 . . . Π̄j are compatible and Π̄j+1 is compatible)

= P(Π̄1 . . . Π̄j are compatible and

Π̄j+1 is compatible and L ∈ Ej) +O
(
M−1000

)
= pj2c1|Kiq |δ̃2(1 + o(1)).

This completes the proof of (16). (17) follows lickewise. Part (b) of Lemma 14 is thus completed.
�

6.5. Proof of Theorem 10 (c) and (d). Note that for Poisson process on [0, 1
ε
] ×Π given η

we can find δ̄ such that
P(min

i,j
|τ(t(i))− τ(t(j))| < δ̄) < η.

Therefore (c) of Theorem 10 follows from Theorem 13. Theorem 10(d) follows likewise. �

6.6. Proof of Theorem 10(b). In the proof of Poisson limit for {(Ψ1(gtL), t/M} an important
role was played by foliation of M into the leaves of W1. Indeed, in the typical situation where
t1, . . . , ts ∈ Z are sufficiently separated (our genericity condition) the independence between the
Ψ1(gti·) is due to the fact that Ψ1(gti ·) is determined on a scale e−λ1(ti) of W1 leafs, a scale on
which the successive Ψ1(gtj ·), j > i are completely free.

The key to the proof of part (b) of Theorem 10 is that Ψ1 and Ψ2 are determined at different
scales along the W1 leafs. More precisely Ψ2(gti ·) is determined on a scale 1/(Neλ1(ti)), which means
that Ψ2(gtiL) is uniformly distributed on [0, 2] if L moves along a W1 leaf of size much larger than
1/(Neλ1(ti)). As a consequence, since the scales {e−λ1(t1), . . . , e−λ1(ts), 1/(Neλ1(t1)), . . . , 1/(Neλ1(ts))}
(that have to be rearranged in an increasing order) are typically sufficiently split (see the generectiy
condition below) then the independence of the quantites Ψ1(gt1L), . . . ,Ψ1(gtsL),Ψ2(gt1L), . . . ,Ψ2(gtsL)
is insured.

Thus, the proof of Theorem 10(b) proceeds along the lines of the proof of Theorem 13 with the
modifications described below.

Now in addition to choosing {Sq}q≤k and {iq}q≤k as in Lemma 14, we also divide T1 into segments
T1 . . .Tm2 and choose a sequence {lq} with values in {1 . . .m2}.

We shall say that t̄ is δ̃-resonant with respect to t if

(27) |λ1(t̄)− γM(t)| ≤ 3δ̃M

where γM(t) = M + t1.

Let Rq be the set of points which are δ̃-resonant with respect to some point in t ∈ {Sq}q≤k. We

modify the definition of δ̃-genericity by requiring that the images of {Sq}kq=1 and {Rq}kq=1 by λ1

are δ̃-disjoint. We call the projections of Rq by λ1 type C intervals.
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As observed in the remark following the proof of Part (a) of Lemma 14 the following is valid :

P(∃t′, t′′ ∈ Π : ξt′ = ξt′′ = 1 and |v′ − v′′| ≤ 3δ̃M)→ 0 as δ̃ → 0.

with v′ ∈ {λ1(t′), γM(t′)}, v′′ ∈ {λ1(t′′), γM(t′′)}.
Part (b) of Lemma 14 has to be modified as follows:
If S1, S2 . . . Sk is generic then

P

(
ξt = 0 for t ∈ Π \

⋃
q

Sq and ∃t(q) ∈ Sq :

ξt(q),iq = 1,Ψ2

(
N

et
(q)
1 +t

(q)
2

, gt(q)L
)
∈ Tlq while ξt = 0 for t ∈ Sq − t(q)

)

= (2c1)kδ̃2k

(∏
q

|Kiq ||Tlq |

)
exp

(
−(1− δ)2

ε

)
(1 + oδ̃→0(1)).

As in the proof of Lemma 14 (b), the latter probability is established inductively. The definition
of compatibility for type A and B strips remains the same as in the proof of Lemma 14.

Let Π̄j+1 be a strip of type C so that Πj+1 contains Rq. Note that j + 1 > i for the i such
that Πi contains Sq (because in Π, t1, t2 ≥ 0 and t1 + t2 < M(1 − δ)). Hence in the definition of
compatibility of Πj+1 we assume given the value of t(q) ∈ Sq ⊂ Πi such that ξt(q),iq = 1.

We then say that Π̄j+1 is compatible if

(28) ξt = 0 for t ∈ Π̄j+1 and Ψ2

(
N

et
(q)
1 +t

(q)
2

, gt(q)L
)
∈ Tlq

Recall the definition pj = P(Π̄l are compatible for l ≤ j). Then the proof of Theorem 10(b) is the
same as the proof of Theorem 13 if (16) and (17) that determine the inductive relation on the
probabilities pj are supplemented by the following equation when Πj+1 is of type C :

pj+1 = pj|Tlq |(1 + o(1)).

We just need to show that

(29) P(Π̄j+1 is compatible |Fj) = |Tlq |(1 + o(1)).

Proof of (29). By the definition (27) of resonance between Rq and Sq, we have that Net
(q)
1 ≥ N δ̃eζj

where ζj is the maximal value of λ1 on Πj. We claim that this implies

P
(

Ψ2

(
N

et
(q)
1 +t

(q)
2

, gt(q)L
)
∈ Tlq

∣∣Fj) = |Tlq |(1 + o(1)).

Indeed, observe that if Φiq(gt(q)L) = 1 with (x, y, z) the vector of gt(q)L such that (x, y, xyz) ∈
I × J ×Kq, then we can assume that Φiq(gt(q)h

1
τL) = 1 for τ ∈ [0, e−ζj ] due to the vector

(x, y, xe2t
(q)
1 +t

(q)
2 τ + z).

Since

Ψ2

(
N

et
(q)
1 +t

(q)
2

, gt(q)h
1
τL
)

=
N

et
(q)
1 +t

(q)
2

(xe2t
(q)
1 +t

(q)
2 τ + z) mod (1),

the equidistribution follows from Net
(q)
1 ≥ N δ̃eζj .

On the other hand, the first condition in (28) is not very restrictive since it is violated with
probability o(1) due to (17). (29) is thus established finishing the proof of Theorem 10(b). �
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7. Small boxes.

One can ask what happens if we consider the visits to small boxes CN =
∏

j

[
− uj
Nγ ,

uj
Nγ

]
. The

case γ = 0 is treated in Theorem 1 while case γ = 1/d was studied in [13]. For γ > 1/d most
orbits do not visit CN so we consider the remaining case 0 < γ < 1

d
.

Theorem 16. Under the assumptions of Theorem 1
DCN (x,α,N)

ρ((1−dγ) lnN)d
converges to the standard Cauchy

distribution.

The proof of Theorem 16 is the same as the proof of Theorem 1 except that now we can neglect
the contribution of ks where |k̄j| < Nγ for some j (cf. Section 3.3). Accordingly in Thereom 10 Π
has to be replaced by Πγ = {t : tj > γM,

∑
j tj < M} which decreases the intensity of the limiting

Poisson process by factor (1− dγ)d.

8. Continuous time.

In this section we discuss briefly the behavior of the discrepancy function in the case of linear
flows on the torus. Given a set C we the continuous time discrepancy function as

DC(v, x, T ) =

∫ T

0

χC(S
t
vx)dt− TVol(C)

where Stv = x+ vt.
In the case of balls, it was shown in [5] that for d ≥ 4, the continuous time discrepancy function

has a similar behavior as the discrete time discrepancy, namely it converges in distribution after
normalization by a factor T (d−3)/2(d−1).

Curiously, for balls in dimension d = 3, the continuous time discrepancy behaves similarly to
the discrete discrepancy of cubes and gives rise to a Cauchy distribution after normalization by
lnT . This will be proved in Section 8.2 below.

It was also shown in [5] that for balls in dimension d = 2 the continuous time discrepancy
converges, without any normalization, in distribution. In the next Section 8.1 we will show that
this is also the case in any dimension d ≥ 2 for the continuous time discrepancy for boxes.

8.1. Boxes. Let C = A(
∏

j(0, uj)). We assume that the triple (A, x, v) is distributed according

to a smooth density of compact support and that A ∈ SL(d,R) is such that ||A− I|| ≤ η where η
is sufficiently small.

Theorem 17. As T →∞, DC(v, x, T ) converges in distribution.

Proof. We have

DC(v, x, T ) = 4d
∑
k

∏
j

Φk̄j(uj)
sin(π(k, vT ))

π(k, v)
cos(2π(k, x) + φk,T,v)

where Φm(u) = sin(2πmu)/m and k̄j is given by (2). We claim that for almost all A, v there exist
a constant C(A, v) such that

||DC(v, x, T )||L2
x
≤ C(A, v)

and moreover for each ε there exists N = N(A, v) such that∥∥∥∥∥∥
∑
|k|>N

∏
j

Φk̄j(uj)
sin(π(k, vT ))

π(k, v)
cos(2π(k, x) + φk,T,v)

∥∥∥∥∥∥
L2
x

≤ ε.
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To this end it suffices to demonstrate that for almost every (A, v)∑
k

((∏
j

k̄j

)
(k, v)

)−2

<∞.

Since det(A) 6= 0 there exists δ(A) such that for each k there is l ∈ {1 . . . d} such that |k̄l| > δ|k|.
Accordingly it suffices to check that for each l

∑
k Γk(A, v) <∞ where

Γk(A, v) =

((∏
j 6=l

k̄j

)
(k, v)|k|

)−2

.

All sums have the same form so we consider the case l = d. Given numbers s1, . . . sd−1, sd and
ε > 0 denote Ω(k, s1 . . . sd) =

{(A, v) : |k̄j| ∈ [|k|sj , |k|sj+ε] for j = 1, . . . , d− 1 and |(v, k)| ∈ [|k|sd , |k|sd+ε]}.
Then

P(Ω(k, s1 . . . sd)) ≤ C|k|s+dε−d

where s =
∑d

j=1 sj. We draw two conclusions from this estimate. First, for almost all (A, v) we
have ∣∣∣∣∣

(
d−1∏
j=1

k̄j

)
(k, v)

∣∣∣∣∣ > |k|−2dε

provided that |k| is large enough.
Second, for s ≥ −2dε we have

E(1Ω(k,s1...sd)(A, v)Γk(A, v)) ≤ C|k|dε−[(d+2)+s].

Hence

E

(∑
k

1Ω(k,s1...sd)(A, v)Γk(A, v)

)
<∞.

Summing over all d-tuples (s1 . . . sd) ∈ (εZ)d such that

sj ≤ 1, s =
d∑
j=1

sj > −2dε

we get E (
∑

k Γk(A, v)) <∞ proving our claim.
The claim implies that for large N the distribution of DC(v, x, T ) is close to the distribution of

D−C,N(v, x, T ) = 4d
∑
|k|≤N

∏
j

Φk̄j(uj)
sin(π(k, vT )

π(k, v)
cos(2π(k, x) + φk,T,v).

Hence it remains to prove that D−C,N(v, x, T ) converges in distribution as T →∞. This convergence

follows easily from the fact that as T →∞ {vT} becomes uniformly distributed on (R/2Z)d. �

A similar argument shows that randomness in C is not necessary. namely we have the following
result.

Theorem 18. Let C =
∏

j(0, uj). Suppose that the pair (x, v) has a smooth distribution of compact

support. Then DC(v, x, T ) converges in distribution as T →∞.

The proof of Theorem 18 is similar to the proof of Theorem 17 with the additional simplifications
since there is only one small denominator (k, v). So we leave the proof to the reader.
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8.2. Balls. In this section, C is assumed to be a ball of radius r in T3. We suppose that v is
chosen according to a smooth density p whose support is compact and does not contain the origin
and r is uniformly distributed on some segment [a, b]. Let σ denote the product of the distribution
of v, the distribution of r and the Haar measure on T3.

Theorem 19. There exists a constant ρ̃ such that
DB(0,r)(v,x,T )

ρ̃r lnT
converges to the standard Cauchy

distribution.

Proof. The proof is similar to the proof of Theorem 1 so we just outline the main steps. We have

D(v, x, T ) =
∑
k∈Z3

fk(r, v, x, T ) =
∑

k∈Z3,prime

gk

where fk = ck
cos[2π(k,x)+π(k,Tv)] sin(π(k,Tv))

π(k,v)
, gk =

∑∞
p=1 fkp and

ck ∼
r

πk2
sin(2πr|k|).

Similarly to Section 3 we show that the main contribution to the discrepancy comes from the
harmonics where ε

lnT
< |(k, v)|k2 < 1

ε lnT
and |k| < T. Therefore the key step in proving Theorem

19 is the following.

Proposition 20. The set{
k2(k, v) lnT, (k, vT ) mod 2, (k, x), {r|k|}

}
|k|≤T,εk2|(k,v)| lnT<1

converges as T →∞ to a Poisson process on [−1
ε
, 1
ε
]× (R/2Z)× (R/Z)2 with constant intensity.

The proof of Proposition 20 is similar to the proof of Theorem 7 and consists of the following
steps.

(a) We prove the Poisson limit for {k2(k, v) lnT} using the argument of Section 6.2.
(b) We prove that (v, T ) mod 2 is asymptotically independent of k2(k, v) lnT using the fact that

their values are determined at different scales (cf. Section 6.6).
(c) We show that (k, x) and {r|k|} are independent of the previous data using the superlacunarity

of the sequence of small denominators (cf. Theorem 9). �
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